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Abstract. In this work we formalize the notion of a ring signature,
which makes it possible to specify a set of possible signers without re-
vealing which member actually produced the signature. Unlike group sig-
natures, ring signatures have no group managers, no setup procedures,
no revocation procedures, and no coordination: any user can choose any
set of possible signers that includes himself, and sign any message by
using his secret key and the others’ public keys, without getting their
approval or assistance. Ring signatures provide an elegant way to leak
authoritative secrets in an anonymous way, to sign casual email in a way
that can only be verified by its intended recipient, and to solve other
problems in multiparty computations.
Our main contribution lies in the presentation of efficient constructions
of ring signatures; the general concept itself (under different terminology)
was first introduced by Cramer et al. [CDS94]. Our constructions of such
signatures are unconditionally signer-ambiguous, secure in the random
oracle model, and exceptionally efficient: adding each ring member in-
creases the cost of signing or verifying by a single modular multiplication
and a single symmetric encryption. We also describe a large number of
extensions, modifications and applications of ring signatures which were
published after the original version of this work (in Asiacrypt 2001).

Keywords: signature scheme, ring signature scheme, signer-ambiguous sig-
nature scheme, group signature scheme, designated verifier signature scheme.



1 Introduction

The general notion of a group signature scheme was introduced in 1991 by
Chaum and van Heyst [CV91]. In such a scheme, a trusted group manager pre-
defines certain groups of users and distributes specially designed keys to their
members. Individual members can then use these keys to anonymously sign
messages on behalf of their group. The signatures produced by different group
members look indistinguishable to their verifiers, but not to the group manager
who can revoke the anonymity of misbehaving signers.

In this work we formalize the related notion of ring signature schemes. These
are simplified group signature schemes that have only users and no managers (we
call such signatures “ring signatures” instead of “group signatures” since rings
are geometric regions with uniform periphery and no center). Group signatures
are useful when the members want to cooperate, while ring signatures are useful
when the members do not want to cooperate. Both group signatures and ring
signatures are signer-ambiguous, but in a ring signature scheme there are no
prearranged groups of users, there are no procedures for setting, changing, or
deleting groups, there is no way to distribute specialized keys, and there is no
way to revoke the anonymity of the actual signer (unless he decides to expose
himself). Our only assumption is that each member is already associated with
the public key of some standard signature scheme such as RSA. To produce a
ring signature, the actual signer declares an arbitrary set of possible signers that
must include himself, and computes the signature entirely by himself using only
his secret key and the others’ public keys. In particular, the other possible signers
could have chosen their RSA keys only in order to conduct e-commerce over the
internet, and may be completely unaware that their public keys are used by a
stranger to produce such a ring signature on a message they have never seen and
would not wish to sign.

The notion of ring signatures is not completely new, but previous references
do not crisply formalize the notion, and propose constructions that are less effi-
cient and/or that have different, albeit related, objectives. They tend to describe
this notion in the context of general group signatures or multiparty construc-
tions, which are quite inefficient. For example, Chaum et al. [CV91]’s schemes
three and four, and the two signature schemes in Definitions 2 and 3 of Ca-
menisch’s paper [Cam97] can be viewed as ring signature schemes. However the
former schemes require zero-knowledge proofs with each signature, and the latter
schemes require as many modular exponentiations as there are members in the
ring. Cramer et al. [CDS94] show how to produce witness-indistinguishable in-
teractive proofs. Such proofs could be combined with the Fiat-Shamir technique
to produce ring signature schemes. Similarly, DeSantis et al. [SCPY94] show that
interactive SZK for random self-reducible languages are closed under monotone
boolean operations, and show the applicability of this result to the construction
of a ring signature scheme (although they don’t use this terminology).

The direct construction of ring signatures proposed in this paper is based on
a completely different idea, and is exceptionally efficient for large rings (adding
only one modular multiplication and one symmetric encryption per ring member



both to generate and to verify such signatures). The resultant signatures are
unconditionally signer-ambiguous and secure in the random oracle model. This
model, formalized in [BR93], assumes that all parties have oracle access to a
truly random function.

There have been several followup papers on the theory and applications of
ring signatures. We summarize these results in Section 7.

2 Definitions and Applications

2.1 Ring signatures

Terminology: We call a set of possible signers a ring. We call the ring member
who produces the actual signature the signer and each of the other ring members
a non-signer.

We assume that each possible signer is associated (via a PKI directory or
certificate) with a public key Pk that defines his signature scheme and specifies
his verification key. The corresponding secret key (which is used to generate reg-
ular signatures) is denoted by Sk. The general notion of a ring signature scheme
does not require any special properties of these individual signing schemes, but
our simplest construction assumes that they use trapdoor one-way permutations
(such as the RSA functions) to generate and verify signatures.

A ring signature scheme is defined by two procedures:

– ring-sign(m,P1, P2, . . . , Pr, s, Ss) which produces a ring signature σ for the
message m, given the public keys P1, P2, . . . , Pr of the r ring members,
together with the secret key Ss of the s-th member (who is the actual signer).

– ring-verify(m,σ) which accepts a message m and a signature σ (which
includes the public keys of all the possible signers), and outputs either true
or false.

A ring signature scheme is set-up free: The signer does not need the knowl-
edge, consent, or assistance of the other ring members to put them in the ring;
all he needs is knowledge of their regular public keys. Different members can
use different independent public key signature schemes, with different key and
signature sizes. Verification must satisfy the usual soundness and completeness
conditions, but in addition we want the signatures to be signer-ambiguous in
the sense that a signature should leek no information about the identity of the
signer. This anonymity property can be either computational or unconditional.
Our main construction provides unconditional anonymity in the sense that even
an infinitely powerful adversary with access to an unbounded number of chosen-
message signatures produced by the same ring member cannot guess his identity
with any advantage, and cannot link additional signatures to the same signer.

Note that the size of any ring signature must grow linearly with the size of
the ring, since it must list the ring members; this is an inherent disadvantage of
ring signatures as compared to group signatures that use predefined groups.



2.2 Leaking secrets

To motivate the title for this paper, suppose that Bob (also known as “Deep
Throat”) is a member of the cabinet of Lower Kryptonia, and that Bob wishes
to leak a juicy fact to a journalist about the escapades of the Prime Minister,
in such a way that Bob remains anonymous, yet such that the journalist is
convinced that the leak was indeed from a cabinet member.

Bob cannot send to the journalist a standard digitally signed message, since
such a message, although it convinces the journalist that it came from a cabinet
member, does so by directly revealing Bob’s identity.

It also doesn’t work for Bob to send the journalist a message through a
standard “anonymizer” [Ch81,Ch88,GRS99], since the anonymizer strips off all
source identification and authentication: the journalist would have no reason to
believe that the message really came from a cabinet member at all.

A standard group signature scheme does not solve the problem, since it re-
quires the prior cooperation of the other group members to set up, and leaves
Bob vulnerable to later identification by the group manager, who may be con-
trolled by the Prime Minister.

The correct approach is for Bob to send the story to the journalist (through
an anonymizer), signed with a ring signature scheme that names each cabinet
member (including himself) as a ring member. The journalist can verify the
ring signature on the message, and learn that it definitely came from a cabinet
member. He can even post the ring signature in his paper or web page, to prove to
his readers that the juicy story came from a reputable source. However, neither
he nor his readers can determine the actual source of the leak, and thus the
whistleblower has perfect protection even if the journalist is later forced by a
judge to reveal his “source” (the signed document).

2.3 Designated verifier signature schemes

A designated verifier signature scheme is a signature scheme in which signatures
can only be verified by a single “designated verifier” chosen by the signer. It
can be viewed as a “light signature scheme” which can authenticate messages
to their intended recipients without having the nonrepudiation property. This
concept was first introduced by Jakobsson, Sako and Impagliazzo at Eurocrypt
96 [JSI96].

A typical application is to enable users to authenticate casual emails without
being legally bound to their contents. For example, two companies may exchange
drafts of proposed contracts. They wish to add to each email an authenticator,
but not a real signature which can be shown to a third party (immediately or
years later) as proof that a particular draft was proposed by the other company.

One approach would be to use zero knowledge interactive proofs, which can
only convince their verifiers. However, this requires interaction and is difficult
to integrate with standard email systems and anonymizers. We can use non-
interactive zero knowledge proofs, but then the authenticators become signatures
which can be shown to third parties. Another approach is to agree on a shared



secret symmetric key k, and to authenticate each contract draft by appending a
message authentication code (MAC) for the draft computed with key k. A third
party would have to be shown the secret key to validate a MAC, and even then
he wouldn’t know which of the two companies computed the MAC. However,
this requires an initial set-up procedure to generate the secret symmetric key k.

A designated verifier scheme provides a simple solution to this problem: com-
pany A can sign each draft it sends, naming company B as the designated verifier.
This can be easily achieved by using a ring signature scheme with companies A
and B as the ring members. Just as with a MAC, company B knows that the
message came from company A (since no third party could have produced this
ring signature), but company B cannot prove to anyone else that the draft of the
contract was signed by company A, since company B could have produced this
draft by itself. Unlike the case of MAC’s, this scheme uses public key cryptogra-
phy, and thus A can send unsolicited email to B signed with the ring signature
without any preparations, interactions, or secret key exchanges. By using our
proposed ring signature scheme, we can turn standard signature schemes into
designated verifier schemes, which can be added at almost no cost as an extra
option to any email system.

3 Efficiency of our Ring Signature Scheme

When based on Rabin or RSA signatures, our ring signature scheme is particu-
larly efficient:

– signing requires one modular exponentiation, plus one or two modular mul-
tiplications for each non-signer.

– verification requires one or two modular multiplications for each ring mem-
ber.

In essence, generating or verifying a ring signature costs the same as generat-
ing or verifying a regular signature plus an extra multiplication or two for each
non-signer, and thus the scheme is truly practical even when the ring contains
hundreds of members. It is two to three orders of magnitude faster than Ca-
menisch’s scheme, whose claimed efficiency is based on the fact that it is 4 times
faster than earlier known schemes (see bottom of page 476 in his paper [Cam97]).
In addition, a Camenisch-like scheme uses linear algebra in the exponents, and
thus requires all the members to use the same prime modulus p in their indi-
vidual signature schemes. One of our design criteria is that the signer should be
able to assemble an arbitrary ring without any coordination with the other ring
members. In reality, if one wants to use other users’ public keys, they are much
more likely to be RSA keys, and even if they are based on discrete logs, different
users are likely to have different moduli p. The only realistic way to arrange a
Camenisch-like signature scheme is thus to have a group of consenting parties.



4 The Proposed Ring Signature Scheme (RSA version)

Suppose that Alice wishes to sign a message m with a ring signature for the
ring of r individuals A1, A2, . . . , Ar, where the signer Alice is As, for some
value of s, 1 ≤ s ≤ r. To simplify the presentation and proof, we first describe a
ring signature scheme in which all the ring members use RSA [RSA78] as their
individual signature schemes. The same construction can be used for any other
trapdoor one way permutation, but we have to modify it slightly in order to
use trapdoor one way functions (as in, for example, Rabin’s signature scheme
[Rab79]).

4.1 RSA trapdoor permutations

Each ring member Ai has an RSA public key Pi = (ni, ei) which specifies the
trapdoor one-way permutation fi of Zni

:

fi(x) = xei (mod ni) .

We assume that only Ai knows how to compute the inverse permutation
f−1

i efficiently, using trapdoor information (i.e., f−1
i (y) = ydi(mod ni), where

di = e−1
i (mod φ(ni)) is the trapdoor information). This is the original Diffie-

Hellman model [DH76] for public-key cryptography.
Extending trapdoor permutations to a common domain

The trapdoor RSA permutations of the various ring members will have do-
mains of different sizes (even if all the moduli ni have the same number of bits).
This makes it awkward to combine the individual signatures, and thus we ex-
tend all the trapdoor permutations to have as their common domain the same
set {0, 1}b, where 2b is some power of two which is larger than all the moduli
ni’s.

For each trapdoor permutation f over Zn, we define the extended trapdoor
permutation g over {0, 1}b in the following way. For any b-bit input m define
nonnegative integers q and r so that m = qn + r and 0 ≤ r < n. Then

g(m) =
{

qn + f(r) if (q + 1)n ≤ 2b

m else.

Intuitively, g is defined by using f to operate on the low-order digit of the n-ary
representation of m, leaving the higher order digits unchanged. The exception is
when this might cause a result larger than 2b−1, in which case m is unchanged.
If we choose a sufficiently large b (e.g. 160 bits larger than any of the ni’s),
the chance that a randomly chosen m is unchanged by the extended g becomes
negligible. (A stronger but more expensive approach, which we don’t need, would
use instead of g(m) the function g′(m) = g((2b − 1) − g(m)) which can modify
all its inputs). The function g is clearly a permutation over {0, 1}b, and it is a
one-way trapdoor permutation since only someone who knows how to invert f
can invert g efficiently on more than a negligible fraction of the possible inputs.



4.2 Symmetric encryption

We assume the existence of a publicly defined symmetric encryption algorithm
E such that for any key k of length l, the function Ek is a permutation over b-bit
strings. Here we use the ideal cipher model which assumes that all the parties
have access to an oracle that provides truly random answers to new queries of
the form Ek(x) and E−1

k (y), provided only that they are consistent with previous
answers and with the requirement that Ek be a permutation. It was shown in
[BSS02] that the ideal cipher model can be reduced to the random oracle model
without almost any efficiency loss.1 For simplicity we use the ideal cipher model
in this presentation.

4.3 Hash functions

We assume the existence of a publicly defined collision-resistant hash function h
that maps arbitrary inputs to strings of length l, which are used as keys for E.
We model h as a random oracle. (Since h need not be a permutation, different
queries may have the same answer, and we do not consider “h−1” queries.)

4.4 Combining functions

We define a family of keyed “combining functions” Ck,v(y1, y2, . . . , yr) which
take as input a key k, an initialization value v, and arbitrary values y1, y2, . . . ,
yr in {0, 1}b. Each such combining function uses Ek as a sub-procedure, and
produces as output a value z in {0, 1}b such that given any fixed values for k
and v, we have the following properties.

1. Permutation on each input: For each s ∈ {1, . . . , r}, and for any fixed
values of all the other inputs yi, i 6= s, the function Ck,v is a one-to-one
mapping from ys to the output z.

2. Efficiently solvable for any single input: For each s ∈ {1, . . . , r}, given
a b-bit value z and values for all inputs yi except ys, it is possible to efficiently
find a b-bit value for ys such that Ck,v(y1, y2, . . . , yr) = z.

3. Infeasible to solve verification equation for all inputs without trapdoors:
Given k, v, and z, it is infeasible for an adversary to solve the equation

Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = z (1)

for x1, x2, . . . , xr, (given access to each gi, and to Ek) if the adversary can’t
invert any of the trapdoor functions g1, g2, . . . , gr.

For example, the function

Ck,v(y1, y2, . . . , yr) = y1 ⊕ y2 ⊕ · · · ⊕ yr

1 It was shown in [LR88] that the ideal cipher model can always be reduced to the
random oracle model (with some efficiency loss).



(where ⊕ is the exclusive-or operation on b-bit words) satisfies the first two of the
above conditions, and can be kept in mind as a candidate combining function.
Indeed, it was the first one we tried. But it fails the third condition since for any
choice of trapdoor one-way permutations gi, it is possible to use linear algebra
when r is large enough to find a solution for x1, x2, . . . , xr without inverting any
of the gi’s. The basic idea of the attack is to choose a random value for each xi,
and to compute each yi = gi(xi) in the easy forward direction. If the number of
values r exceeds the number of bits b, we can find with high probability a subset
of the yi bit strings whose XOR is any desired b-bit target z. However, our goal
is to represent z as the XOR of all the values y1, y2, . . . , yr rather than as a XOR
of a random subset of these values. To overcome this problem, we choose for each
i two random values x′i and x′′i , and compute their corresponding y′i = gi(x′i)
and y′′i = gi(x′′i ). We then define y′′′i = y′i ⊕ y′′i , and modify the target value to
z′ = z⊕y′1⊕y′2, . . .⊕y′r. We use the previous algorithm to represent z′ as a XOR
of a random subset of y′′′i values. After simplification, we get a representation
of the original z as the XOR of a set of r values, with exactly one value chosen
from each pair (y′i, y

′′
i ). By choosing the corresponding value of either x′i or x′′i ,

we can solve the verification equation without inverting any of the trapdoor one-
way permutations gi. (One approach to countering this attack, which we don’t
explore further here, is to let b grow with r.)

Even worse problems can be shown to exist in other natural combining func-
tions such as addition mod 2b. Assume that we use the RSA trapdoor func-
tions gi(xi) = x3

i (mod ni) where all the moduli ni have the same size b. It is
known [HW79] that any nonnegative integer z can be efficiently represented as
the sum of exactly nine nonnegative integer cubes x3

1 + x3
2 + . . . + x3

9. If z is
a b-bit target value, we can expect each one of the x3

i to be slightly shorter
than z, and thus their values are not likely to be affected by reducing each x3

i

modulo the corresponding b-bit ni. Consequently, we can solve the verification
equation (x3

1 mod n1) + (x3
2 mod n2) . . . + (x3

9 mod n9) = z(mod 2b) with nine
RSA permutations without inverting any one of them.

Our proposed combining function utilizes the symmetric encryption function
Ek as follows:

Ck,v(y1, y2, . . . , yr) = Ek(yr ⊕Ek(yr−1 ⊕Ek(yr−2 ⊕Ek(. . .⊕Ek(y1 ⊕ v) . . .)))) .

This function is applied to the sequence (y1, y2, . . . , yr), where yi = gi(xi), as
shown in Figure 1.

This function is clearly a permutation on each input, since the XOR and Ek

functions are permutations. In addition, it is efficiently solvable for any single
input since knowledge of k makes it possible to run the evaluation forwards from
the initial v and backwards from the final z in order to uniquely compute any
missing value yi.

This function can be used to construct a signature scheme as follows: In
order to sign a message m, set k = h(m), where h is some predetermined hash
function, and output x1, . . . , xr such that Ck,v(g1(x1), g2(x2), . . . , gr(xr)) = v.
Notice that forcing the output z to be equal to the input v, bends the line into
the ring shape shown in Fig. 2.



y1=g1(x1)

Ek
v

x1

…Ek
z

y2=g2(x2) yr=gr(xr)

x2
xr

Ek

Fig. 1. An illustration of the proposed combining function

A slightly more compact ring signature variant can be obtained by always
selecting 0 as the “glue value” v. This variant is also secure, but we prefer the
total ring symmetry of our main proposal.

y1=g1(x1)

Ek Ek

yr=gr(xr) Ek

y3=g3(x3)

z=v

Ek

Ek Ek

Ek

y2=g2(x2)

Fig. 2. Ring signatures

4.5 The Ring Signature Scheme

We now formally describe the signature generation and verification procedures:

Generating a ring signature:
Given the message m to be signed, a sequence of public keys P1, P2, . . . , Pr

of all the ring members (each public key Pi specifies a trapdoor permutation gi),
and a secret key Ss (which specifies the trapdoor information needed to compute
g−1

s ), the signer computes a ring signature as follows.



1. Determine the symmetric key: The signer first computes the symmetric
key k as the hash of the message m to be signed:

k = h(m)

(a more complicated variant computes k as h(m,P1, . . . , Pr); however, the
simpler construction is also secure.)

2. Pick a random glue value: Second, the signer picks an initialization (or
“glue”) value v uniformly at random from {0, 1}b.

3. Pick random xi’s: Third, the signer picks random xi for all the other ring
members 1 ≤ i ≤ r, where i 6= s, uniformly and independently from {0, 1}b,
and computes

yi = gi(xi) .

4. Solve for ys: Fourth, the signer solves the following ring equation for ys:

Ck,v(y1, y2, . . . , yr) = v .

By assumption, given arbitrary values for the other inputs, there is a unique
value for ys satisfying the equation, which can be computed efficiently.

5. Invert the signer’s trapdoor permutation: Fifth, the signer uses his knowl-
edge of his trapdoor in order to invert gs on ys, to obtain xs:

xs = g−1
s (ys) .

6. Output the ring signature: The signature on the message m is defined to
be the (2r + 1)-tuple:

(P1, P2, . . . , Pr; v; x1, x2, . . . , xr) .

Verifying a ring signature:
A verifier can verify an alleged signature

(P1, P2, . . . , Pr; v; x1, x2, . . . , xr) .

on the message m as follows.

1. Apply the trapdoor permutations: First, for i = 1, 2, . . . , r the verifier
computes

yi = gi(xi) .

2. Obtain k: Second, the verifier hashes the message to compute the symmetric
encryption key k:

k = h(m) .

3. Verify the ring equation: Finally, the verifier checks that the yi’s satisfy
the fundamental equation:

Ck,v(y1, y2, . . . , yr) = v . (2)

If the ring equation (2) is satisfied, the verifier accepts the signature as valid.
Otherwise the verifier rejects.



4.6 Security

The identity of the signer is unconditionally protected with our ring signature
scheme. To see this, note that for each k and v the ring equation has exactly
(2b)(r−1) solutions, and all of them can be chosen by the signature generation
procedure with equal probability, regardless of the signer’s identity. This ar-
gument does not depend on any complexity-theoretic assumptions or on the
randomness of the oracle (which determines Ek).

The soundness of the ring signature scheme must be computational, since
ring signatures cannot be stronger than the individual signature scheme used by
the possible signers.

Theorem 1. The above ring signature scheme is secure against adaptive chosen
message attacks in the ideal cipher model (assuming each public key specifies a
trapdoor one-way permutation).

We need to prove that in the ideal cipher model, any forging algorithm A
which on input (P1, . . . , Pr) can generate with non-negligible probability a new
ring signature for m∗ by analyzing polynomially many ring signatures for other
chosen messages m 6= m∗, can be turned into an algorithm B which inverts
one of the trapdoor one-way permutations corresponding to (P1, . . . , Pr) on a
random input, with non-negligible probability.

The basic idea behind the proof is the following: We first show that the
ring signing oracle “does not help” A in generating a new signature. This is
done by showing that the ring signing oracle can be simulated by an efficient
algorithm that has control over the oracles h, E and E−1. We then show that any
forgery algorithm (with no ring signing oracle) can be used to invert one of the
trapdoor permutations g1, . . . , gr corresponding to the public keys (P1, . . . , Pr),
on a random input y. This is done by showing how to control the oracles h, E,
and E−1, so as to force the “gap” between the output and input values of two
cyclically consecutive Ek’s along the ring equation of the forgery to be equal to
the value y. This forces the forger to close the gap by providing the corresponding
g−1

i (y) in the generated signature (for some i ∈ {1, . . . , r}). Since y is a random
value which is not known to the forger, the forger cannot “recognize the trap”
and refuse to sign the corresponding messages.

In what follows, we prove Theorem 1 by formalizing the above basic idea.

Proof of Theorem 1: Assume that there exists a forging algorithm A, that
succeeds in creating a forgery with non-negligible probability. More specifically,
algorithm A gets as input a set of random public keys (P1, P2, . . . , Pr) (but
not any of the corresponding secret keys), where each Pi specifies a trapdoor
one-way permutation gi. Algorithm A is also given oracle access to h, E, E−1,
and to a ring signing oracle. It can work adaptively, querying the oracles at
arguments that may depend on previous answers. Eventually, it produces a valid
ring signature on a new message that was not presented to the signing oracle,
with a non-negligible probability (over the random answers of the oracles and
its own random coin tosses). We show that A can be turned into an algorithm



B which inverts one of the trapdoor one-way functions gi on random inputs y
with non-negligible probability.

Algorithm B, on input g1, . . . , gr and a random value y ∈ {0, 1}b, uses A on
input (g1, . . . , gr) as a black-box (while simulating its oracles), in order to find
a value g−1

i (y), for some i ∈ {1, . . . , r}.
We first note that A must query the oracle h with the message that it is

actually going to forge (otherwise the probability of satisfying the ring equation
becomes negligible). Assume that, with non-negligible probability, A forges the
j’th message that it sends to the oracle h. We denote this message by m∗.
Algorithm B begins by guessing randomly this index j. Note that B guesses the
correct value with non-negligible probability (since A makes in total at most
polynomially many queries to the oracle h).

Algorithm B simulates A’s oracles in the following way. The oracle h is
simulated in the straightforward manner: Whenever A makes a query to h, the
query is answered by a uniformly chosen value (unless this query has previously
appeared, in which case it is answered the same way as it was before, to ensure
consistency).

Algorithm B simulates the ring signing oracle by providing a random vector
(v, x1, x2, . . . , xr) as a ring signature to any query m. It then adjusts the random
answers to queries of the form Eh(m) and E−1

h(m), to support the correctness of
the ring equation for these messages. Namely, B chooses randomly r − 1 values
z1, . . . , zr−1, and sets Eh(m)(v⊕g1(x1)) = z1 and Eh(m)(zi⊕gi+1(xi+1)) = zi+1,
such that zr = v. Similarly, B sets E−1

h(m)(z1) = v⊕g1(x1) and E−1
h(m)(zi+1) = zi⊕

gi+1(xi+1). Note that A cannot ask oracle queries that will limit B’s freedom of
choice, before providing m to the signing oracle, since all the values v, z1, . . . , zr−1

are chosen randomly by B, and cannot be guessed in advance by A.
In order to simulate the oracles Ek and E−1

k , algorithm B first checks whether
k = h(m∗) (where m∗ is the j’th query that A sends the oracle h). If k 6= h(m∗)
(or if A has not yet queried its j’th query to the oracle h), then B simulates
these oracles in the straightforward manner. Namely, each query to Ek or E−1

k is
answered randomly, unless the value of this query has already been determined
by B, in which case it is answered with the predetermined value. Note that
so far, the simulated oracles are statistically close to the real oracles, and thus
in particular A cannot distinguish between the real oracles and the simulated
oracles.

It remains to simulate the oracles Ek and E−1
k , for k = h(m∗). Recall that

the goal of algorithm B is to compute xi = g−1
i (y), for some i. The basic idea

is to slip this value y as the “gap” between the output and input values of two
cyclically consecutive Ek’s along the ring equation of the final forgery, which
forces A to close the gap by providing the corresponding xi in the generated
signature. This basic idea is carried out in the following way.

We note that with overwhelming probability Ek and E−1
k are not constrained

up to the point where A queries the oracle h with query m∗. Thus, B will do
the following immediately after A queries the oracle h with query m∗. Notice
that A must query the oracles Ek or E−1

k about each one of the r symmetric



encryptions along the forged ring signature of m∗. Without loss of generality, we
may assume that each of these r symmetric encryptions is queried once either in
the “clockwise” Ek direction or in the “counterclockwise” E−1

k direction, but not
in both directions since this is redundant. We distinguish between the following
three cases:

Case 1: Each of these r symmetric encryptions is queried in the “clockwise” Ek

direction.
Case 2: Each of these r symmetric encryptions is queried in the “counterclock-

wise” E−1
k direction.

Case 3: Some of these queries are in the “clockwise” Ek direction and some are
in the “counterclockwise” E−1

k direction.

We next show how in each of these cases, B can simulate answers to these
queries in such a way that A’s ring signature of m∗ would yield the value g−1

i (y)
for some i ∈ {1, . . . , r}.

Case 1: The structure of the ring implies that for every Ek on the ring there
exists an Ek that precedes it (we note that the r’th Ek precedes the 1’st
Ek). This implies that there must exist an Ek that was queried before the
Ek that precedes it. Assume that the i’th Ek was queried before the i− 1’st
Ek. B will guess which query corresponds to the i’th Ek and which query
corresponds to the i−1’st Ek (there are only polynomially many possibilities
and thus he will succeed with non-negligible probability). B will provide an
answer to the i− 1’st Ek based on its knowledge of the input to the i’th Ek.
More precisely, if the input to the i’th Ek was z, then B will set the output
of the i−1’st Ek to be z⊕y (so that the XOR of the values across the gap is
the desired y). All other queries are answered randomly (unless the value of
this query has already been determined by B, in which case it is answered
with the predetermined value).

Case 2: This case is completely analogous to the previous case, and so B behaves
accordingly.

Case 3: The structure of the ring is such that for every Ek on the ring there
exists an Ek that proceeds it (we note that the 1’st Ek proceeds the r’th
Ek). This implies that there exists an Ek that was queried in the “clockwise”
direction whereas the proceeding Ek was queried in the “counterclockwise”
direction. Assume that the i’th Ek was queried in the “clockwise” direction
whereas the i+1’st Ek was queried in the “counterclockwise” direction. As in
the previous two cases, B will guess which query corresponds to the i’th Ek

and which query corresponds to the i+1’st Ek (there are only polynomially
many possibilities and thus he will succeed with non-negligible probability).
B will answer the query to the i’th Ek with a random value z and will answer
the query to the i+1’st E−1

k with z⊕y (so that the XOR of the values across
the gap is the desired y). All other queries are answered randomly (unless
the value of this query has already been determined by B, in which case it
is answered with the predetermined value).



Note that since y is a random value, the simulated oracles Ek and E−1
k

cannot be distinguished from the real oracles, and therefore, with non-negligible
probability, A will output a signature (v;x1, . . . , xr) to a message m∗. Moreover,
with non-negligible probability there exists i ∈ {1, . . . , r} such that gi(xi) = y,
as desired. ut
Remark. When the trapdoor one-way functions gi are RSA functions, we can
slightly strengthen the result. Since RSA is homomorphic, we can randomize y
by computing y′ = y ·tei(mod ni) for a randomly chosen t. By using y′ instead of
y, we can show that successful forgeries of ring signatures can be used to extract
modular roots from particular numbers such as y = 2, and not just from random
inputs y. This is not necessarily true for other trapdoor one-way functions, since
the forger A can intentionally decide not to produce any forgeries in which one
of the gaps between cyclically consecutive E functions happens to be 2.

5 Our Ring Signature Scheme (Rabin version)

Rabin’s public-key cryptosystem [Rab79] has more efficient signature verification
than RSA, since verification involves squaring rather than cubing, which reduces
the number of modular multiplications from 2 to 1. However, we need to deal
with the fact that the Rabin mapping fi(xi) = x2

i (mod ni) is not a permutation
over Z∗ni

, and thus only one quarter of the messages can be signed, and those
which can be signed have multiple signatures.

We note that Rabin’s function, fN (x) = x2(mod N), is actually a permuta-
tion over {x : x < N

2 ∧ ( x
N ) = 1}, assuming N is a Blum integer. Moreover,

it can be easily extended to be a permutation over Z∗N ([G04, Section C.1]).
However this permutation is no longer as efficient, since in order to compute it
on a value x, one first needs to compute ( x

N ), which is a relatively expensive
computation. Moreover, both in the signing and verifying procedures, the num-
ber of times that a Jacobi symbol needs to be computed grows linearly with the
size of the ring.

Rather than trying to convert Rabin’s function to a permutation, we suggest
the following natural operational fix: when signing, change your last random
choice of xs−1 if g−1

s (ys) is undefined. Since only one trapdoor one-way function
has to be inverted, the signer should expect on average to try four times before
succeeding in producing a ring signature. The complexity of this search is essen-
tially the same as in the case of regular Rabin signatures, regardless of the size
of the ring.

A more important difference is in the proof of unconditional anonymity, which
relied on the fact that all the mappings were permutations. When the gi are not
permutations, there can be noticeable differences between the distribution of
randomly chosen and computed xi values in given ring signatures. This could
lead to the identification of the real signer among all the possible signers, and
can be demonstrated to be a real problem in many concrete types of trapdoor
one-way functions.



We overcome this difficulty in the case of Rabin signatures with the following
simple observation:

Lemma 1. Let S be a given finite set of “marbles” and let B1, B2, . . . , Bn

be disjoint subsets of S (called “buckets”) such that all non-empty buckets have
the same number of marbles, and every marble in S is in exactly one bucket.
Consider the following sampling procedure: pick a bucket at random until you
find a non-empty bucket, and then pick a marble at random from that bucket.
Then this procedure picks marbles from S with uniform probability distribution.

Proof. Trivial. ut
Rabin’s functions fi(xi) = x2

i (mod ni) are extended to functions gi(xi) over
{0, 1}b in the usual way. Both the marbles and the buckets are all the b-bit num-
bers u = qini +ri in which ri ∈ Z∗ni

and (qi +1)ni ≤ 2b. Each marble is placed in
the bucket to which it is mapped by the extended Rabin mapping gi. We know
that each bucket contains either zero or four marbles, and the lemma implies
that the sampled distribution of the marbles xi is exactly the same regardless of
whether they were chosen at random or picked at random among the computed
inverses in a randomly chosen bucket. Consequently, even an infinitely power-
ful adversary cannot distinguish between signers and non-signers by analyzing
actual ring signatures produced by one of the possible signers.

6 Generalizations and Special Cases

The notion of ring signatures has many interesting extensions and special cases.
In particular, ring signatures with r = 1 can be viewed as a randomized version
of Rabin’s signature scheme (or RSA’s signature scheme): As shown in Fig. 3,
the verification condition can be written as (x2 mod n) = v ⊕ E−1

h(m)(v). The
right hand side is essentially a hash of the message m, randomized by the choice
of v.

Ring signatures with r = 2 have the ring equation:

Eh(m)(x2
2 ⊕ Eh(m)(x2

1 ⊕ v)) = v

(see Fig. 3). A simpler ring equation (which is not equivalent but has the same
security properties) is:

(x2
1 mod n1) = Eh(m)(x2

2 mod n2)

where the modular squares are extended to {0, 1}b in the usual way. This is our
recommended method for implementing designated verifier signatures in email
systems, where n1 is the public key of the sender and n2 is the public key of the
recipient.

In regular ring signatures it is impossible for an adversary to expose the
signer’s identity. However, there may be cases in which the signer himself wants
to have the option of later proving his authorship of the anonymized email
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Fig. 3. Rabin-based Ring Signatures with r = 1, 2

(e.g., if he is successful in toppling the disgraced Prime Minister). Yet another
possibility is that the signer A wants to initially use {A,B,C} as the list of
possible signers, but later prove that C is not the real signer. There is a simple
way to implement these options, by choosing the xi values for the non-signers
in a pseudorandom rather than truly random way. To show that C is not the
author, A publishes the seed which pseudorandomly generated the part of the
signature associated with C. To prove that A is the signer, A can reveal a single
seed which was used to generate all the non-signers’ parts of the signature. The
signer A cannot misuse this technique to prove that he is not the signer since his
xi is computed by applying g−1 to a random value given to him by the oracle
(where g is the trapdoor one-way permutation corresponding to his public key).
Thus, his xi is extremely unlikely to have a corresponding seed. Note that these
modified versions can guarantee only computational anonymity, since a powerful
adversary can search for such proofs of non-authorship and use them to expose
the signer.

A different approach that guarantees unbounded anonymity is to choose the
xi value for each non-signer by choosing a random wi and letting xi = f(wi),
where f is a one-way function with the additional property that each element in
the range has a pre-image under f . By demonstrating wi, the signer proves that
the i’th ring member is not the signer. Notice that the fact that the signer (which
corresponds to the s’th ring member) is computationally bounded, implies that
he cannot produce f−1(xs), and therefore he cannot prove that he himself is not
the signer. Moreover, an adversary with unlimited computational power cannot
figure out who the signer is since any xi (including xs) has a pre-image under f .



7 Followup Papers

In this section we summarize the followup papers on the theory and applications
of ring signatures.

Deniable Ring Signature Schemes. In [Na02] Naor defined the notion of
Deniable Ring Authentication. This notion allows a member of an ad hoc subset
of participants (a ring) to convince a verifier that a message m is authenti-
cated by one of the members of the subset without revealing by which one, and
the verifier cannot convince a third party that message m was indeed authenti-
cated. Naor also provided an efficient protocol for deniable ring authentication
based on any secure encryption scheme. The scheme is interactive. Susilo and
Mu [SM03,SM04] constructed non interactive deniable ring authentication pro-
tocols. They first showed in [SM03] how to use any ring signature scheme and
a chameleon hash family to construct a deniable ring signature scheme. In this
construction the verifier is assumed to be associated with a pair of secret and
public keys (corresponding to the chameleon hash family). They then showed in
[SM04] how to use any ring signature scheme and an ID based chameleon hash
family [AM04] to construct a deniable ring signature scheme. In this construction
the verifier is only assumed to have his ID published.

Threshold and General Access Ring Signature Schemes. A t-threshold
ring signature scheme is a ring signature scheme where each ring signature is
a proof that at least t members of the ring are confirming the message. In a
general access ring signature scheme, members of a set can freely choose any
family of sets including their own set, and prove that all members of some set in
the access structure have cooperated to compute the signature, without revealing
any information about which set it is.

There have been many papers which considered these scenarios. The early
work of [CDS94] has already considered this scenario, and showed (using dif-
ferent terminology) that a witness indistinguishable proof (with witnesses that
correspond to some monotone access structure), can be combined with the Fiat-
Shamir paradigm, to obtain a monotone access ring signature scheme. The work
of Naor [Na02] also contains a construction of a general access (and in particular
threshold) ring signature scheme. His scheme is interactive and its security is
based only the existence of secure encryption schemes. There have been subse-
quent works which consider the general access scenario, such as [HS04a].

The work of Bresson et. al. [BSS02] contains a construction of a threshold
ring signature scheme (proven secure in the Random Oracle Model under the
RSA Assumption). Subsequent works which consider the threshold setting are
[Wei04,KT03,WFLW03] (where security is proved in the Random Oracle Model).

Identity-based Ring Signature Schemes. Shamir introduced in 1984 the
concept of Identity-based (ID-based) cryptography [Sha84]. The idea is that the
public-key of a user can be publicly computed from his identity (for example,
from a complete name, an email or an IP address). ID-based schemes avoid the



necessity of certificates to authenticate public keys in a digital communication
system. This is especially desirable in applications which involve a large number
of public keys in each execution, such as ring signatures.

The first to construct an ID-based ring signature scheme were Zhang and
Kim [ZK02]. Its security was analyzed in [Her03], based on bilinear pairings in
the Random Oracle Model. Subsequent constructions of ID-based ring signatures
appear in [HS04b,LW03a,AL03,TLW03,CYH04].

Identity-based Threshold Ring Signature Schemes. ID-based threshold
ring signature schemes proven secure in the Random Oracle Model, under the
bilinear pairings were constructed in [CHY04,HS04c]. This was extended in
[HS04c], to a general access setting, where any subset of users S can cooper-
ate to compute an anonymous signature on a message, on behalf of any family
of users that includes S.

Separable Ring Signature Schemes. A ring signature scheme is said to be
separable if all participants can choose their keys independently with different
parameter domains and for different types of signature schemes. Abe et. al.
[AOS02] were the first to address the problem of constructing a separable ring
signature scheme. They show how to construct a ring signature scheme from a
mixture of both trapdoor-type signature schemes (such as RSA based) and three-
move-type signature schemes (such as Discrete Log based). This was extended
in [LWW03] to the threshold setting.

Linkable Ring Signature Schemes. The notion of linkable ring signatures,
introduced by Liu et al. [LWW04], allows anyone to determine if two ring sig-
natures are signed by the same group member. In [LWW04] they also presented
a linkable ring signature scheme that can be extended to the threshold setting.
Their construction was improved in [TWC+04], who presented a separable link-
able threshold ring signature scheme.

Verifiable Ring Signature Schemes. Lv and Wang [LW03b] formalized the
notion of verifiable ring signatures, which has the following additional property:
if the actual signer is willing to prove to a recipient that he signed the signature,
then the recipient can correctly determine whether this is the fact. We note that
this additional property was considered in our (original) work, and as was men-
tioned in Section 6, we showed that this property can be obtained by choosing
the xi values for the non-signers in a pseudorandom rather than a truly random
way.

Accountable Ring Signaure Schemes. An accountable ring signature scheme,
a notion introduces by Xu and Yung [XY04], ensures the following: anyone can
verify that the signature is generated by a user belonging to a set of possible
signers (that may be chosen on-the-fly), whereas the actual signer can never-
theless be identified by a designated trusted entity. Xu and Yung [XY04] also



presented a framework for constructing accountable ring signatures. The frame-
work is based on a compiler that transforms a traditional ring signature scheme
into an accountable one.

Short Ring Signature Schemes. Dodis et. al. [DKNS04] were the first to
construct a ring signature scheme in which the length of an “actual signature”
is independent of the size of the ad hoc group (where an “actual signature”
does not include the group description). We note that in all other constructions
that we are aware of, the size of an “actual signature” is at least linear in the
size of the group. Their scheme was proven secure in the Random Oracle Model
assuming the existence of accumulators with one-way domain (which in turn can
be based on the Strong RSA Assumption).

Ring Authenticated Encryption. An authenticated encryption scheme [LRCK04]
allows the verifier to recover and verify the message simultaneously. Lv et al.
[LRCK04] introduced a new type of authenticated encryption, called ring au-
thenticated encryption, which loosely speaking, is an authenticated encryption
scheme where the verifiability property holds with respect to a ring signature
scheme.
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