
Time�lock puzzles and timed�release Crypto

Ronald L� Rivest�� Adi Shamir��� and David A� Wagner���

Revised March ��� ����

�MIT Laboratory for Computer Science
��� Technology Square� Cambridge� Mass� ����	

��Weizmann Institute of Science
Applied Mathematics Department

Rehovot� Israel

���Computer Science Department
U�C� Berkeley

Berkeley� California 	�
��

frivest�shamirg�theory�lcs�mit�edu� daw�cs�berkeley�edu

� Introduction

Our motivation is the notion of �timed�release crypto� where the goal is to encrypt a message
so that it can not be decrypted by anyone� not even the sender� until a pre�determined amount
of time has passed� The goal is to �send information into the future� This problem was
�rst discussed by Timothy May ����

What are the applications of �timed�release crypto� Here are a few possibilities �some
due to May��

� A bidder in an auction wants to seal his bid so that it can only be opened after the
bidding period is closed�

� A homeowner wants to give his mortgage holder a series of encrypted mortgage pay�
ments� These might be encrypted digital cash with di�erent decryption dates� so that
one payment becomes decryptable �and thus usable by the bank� at the beginning of
each successive month�

� An individual wants to encrypt his diaries so that they are only decryptable after �fty
years�



� A key�escrow scheme can be based on timed�release crypto� so that the government
can get the message keys� but only after a �xed period �say one year��

There are presumably many other applications�

There are two natural approaches to implementing timed�release crypto�

� Use �time�lock puzzles�computational problems that can not be solved without run�
ning a computer continuously for at least a certain amount of time�

� Use trusted agents who promise not to reveal certain information until a speci�ed date�

Using trusted agents has the obvious problem of ensuring that the agents are trustworthy�
secret�sharing approaches can be used to alleviate this concern� Using time�lock puzzles has
the problem that the CPU time required to solve a problem can depend on the amount
and nature of the hardware used to solve the problem� as well as the parallelizability of the
computational problem being solved�

In this note we explore both approaches� �We note that Tim May has suggested an
approach based on the use of trusted agents��

� Time�lock puzzles

We �rst explore an approach based on computational complexity� we study the problem of
creating computational puzzles� called �time�lock puzzles� that require a precise amount
of time to solve� The solution to the puzzle reveals a key that can be used to decrypt the
encrypted information� This approach has the obvious problem of trying to make �CPU
time and �real time agree as closely as possible� but is nonetheless interesting�

The major di�culty to be overcome� as noted above� is that those with more compu�
tational resources might be able to solve the time�lock puzzle more quickly� by using large
parallel computers� for example� Our goal is thus to design time�lock puzzles that� to the
greatest extent possible� are �instrinsically sequential in nature� and can not be solved
substantially faster with large investments in hardware� In particular� we want our puzzles
to have the property that putting computers to work together in parallel doesn�t speed up
�nding the solution� �Solving the puzzle should be like having a baby� two women can�t
have a baby in ��� months�� We propose an approach to building puzzles that appears to be
intrisically sequential in the desired manner�

Of course� our approach yields puzzles with a solution time that is only approximately

controllable� since di�erent computers work at di�erent speeds� For example� the underlying
technology may be di�erent� gallium arsenide gates are faster than silicon gates� If precise
timing of the information release is essential� an approach based on the use of trusted agents
is preferable�

We also note that with our approach� the puzzle doesn�t automatically become solvable
at a given time� rather� a computer needs work continuously on the puzzle until it is solved�
A ten�year puzzle needs some dedicated workstation working away for ten years to solve
it� If the computing doesn�t start until �ve years after the puzzle was made� then the

�



solution won�t be found until ten years after that �perhaps a bit less if technology has
improved in the meantime�� Our approach therefore requires much more in the way of
computational resources than an approach based on trusted agents� and thus may be best
suited for relatively simple puzzles �with time�to�solution under a month� say�� Nonetheless�
we feel that our approach has su�cient utility to merit this exposition�

An unworkable approach

We begin by presenting an approach that doesn�t work well� LetM denote the information
to be encrypted for a period of time� Let S denote the speed of a workstation measured in
decryptions per second� Then to encrypt M to be decryptable after T seconds� we choose a
conventional cryptosystem �say RC� �	�� with a key size of approximately k � lg��ST � bits
and encrypt M with a k�bit key� We save the ciphertext and throw away the key� By using
exhaustive search of the key space� a workstation will take about T seconds� on the average�
to �nd the key�

We note that Merkle �
� was the �rst to suggest this method of designing puzzles� and
was also the �rst to introduce the notion of a �puzzle� in research that ultimately led to
the invention of the concept of public�key cryptography�

There are two problems with this way of building a time�lock puzzle by encrypting M

with a conventional cipher�

� A brute�force key�search is trivially parallelizable� so that N computers make the com�
putation run N times faster�

� The computation time estimate of T seconds is only an expected running time� the
actual running time could be signicantly larger or smaller� depending on the order in
which the keys are examined�

These problems are �xed in the proposal given next�

��� Creating a time�lock puzzle

We now show a method for creating time�lock puzzles based on repeated squaring� Our
approach can also be viewed as an application of the �random�access property of the
Blum�Blum�Shub �x� mod n pseudo�random number generator ���� �We actually propose
a scheme that is a variation on the x� mod n generator� but the di�erences are nonessential�
and the original scheme could have been used as well here�� An early version of our paper
suggested a di�erent approach based on superencryption in RSA ���� ��� �� ��� ��� the current
approach is considerably simpler�

Here is our approach� Suppose Alice has a message M that she wants to encrypt with a
time�lock puzzle for a period of T seconds�

� She generates a composite modulus

n � pq ���

as the product of two large randomly�chosen secret primes p and q� She also computes

��n� � �p� ���q � �� � ���

�



� She computes
t � TS � ���

where S is the number of squarings modulo n per second that can be performed by
the solver�

� She generates a random key K for a conventional cryptosystem� such as RC�� This
key is long enough �say ��� bits or more� that searching for it is infeasible� even with
the advances in computing power expected during the lifetime of the puzzle�

� She encrypts M with key K and encryption algorithm RC�� to obtain the ciphertext

CM � RC��K�M� � ���

� She picks a random a modulo n �with � � a � n�� and encrypts K as

CK � K � a�
t

�mod n� � ���

To do this e�ciently� she �rst computes

e � �t �mod ��n�� � ���

and then computes
b � ae �mod n� � �
�

� She produces as output the time�lock puzzle �n� a� t� CK� CM�� and erases any other
variables �such as p� q� created during this computation�

�We add as a technical footnote here the remark that p� q� and a can be chosen carefully�
so that � is guaranteed to have a large order modulo ��n�� and so that a is guaranteed to have
a large order modulo n� See Blum� Blum� and Shub ��� for some relevant discussion� However�
choosing p� q� and a randomly should give the desired level of di�culty with overwhelming
probability� so that these precautions are not expected to be necessary in practice� Indeed�
in practice choosing a �xed value a � � should be safe with high probability� Since there
are other risks in the whole approach �e�g� an adversary could just guess K�� aiming for
perfection in the number�theory is probably overkill��

��� Solving the puzzle

By design� searching for the RC� key K directly is infeasible� so the fastest known approach
to solving the puzzle is to determine

b � a�
t

�mod n� ���

somehow� Knowing ��n� enables �t to be reduced e�ciently to e� modulo ��n�� so that b
can be computed e�ciently by equation �
�� However� computing ��n� from n is provably as
hard as factoring n� so that once Alice publishes the puzzle and throws away the key �throws

�



away the factors p and q�� there seems to be no faster way of computing b than to start with
a and perform t squarings sequentially �each time squaring the previous result��

While factoring n is certainly an alternative attack for solving the puzzle� when p and q

are large enough the factoring approach is far less e�cient than repeated squaring�

The number t of squarings required to solve the puzzle can be exactly controlled� Thus�
we can create puzzles of various desired levels of di�culty�

More importantly� repeated squaring seems to be an �intrinsically sequential process�
We know of no obvious way to parallelize it to any large degree� �A small amount of
parallelization may be possible within each squaring�� Having many computers is no better
than having one� �But having one fast computer is better than one slow one�� The degree
of variation in how long it might take to solve the puzzle depends on the variation in the
speed of single computers� and not on one�s total budget� Since the speed of hardware
available to individual consumers is within a small constant factor of what is available to
large intelligence organizations� the di�erence in time to solution is reasonably controllable�
�We admit that more control here might be desirable� but with a complexity�based approach
such as this one there is not much that can be done to compensate for di�erent gate speeds��

� Using trusted agents

A natural approach is to use a trusted agent to store the message M until its desired release
time t� As an extension of this idea� the message M could be shared among several agents
�using standard secret�sharing techniques� such as the one proposed by Shamir ����� who all
agree to release their shares at time t� The message M can then be reconstructed from those
shares� As a further re�nement� the agents can be asked to store shares of a cryptographic
key K instead of shares of M � This reduces the storage demands on the agents� Then the
encryption C � E�K�M� of M with key K can be kept in some publicly available location�
At time t� the key K can be reconstructed and C decrypted to yield M � These ideas are
discussed brie�y by May� Related work on time�lock puzzles and �veri�able partial�key
escrow has been developed by Bellare and Goldwasser ��� ���

We suggest here an alternative� but related� approach that has the following properties
and implementation�

� The agents are not �escrow agents as they are in May�s proposal� they do not have
to store any information that is given to them by the user� The amount of storage
required for an agent is �xed and bounded� independent of the number of timed�release
user secrets that he has been asked to help out with�

� The main task of an agent is to periodically �say at the beginning of each hour� publish
a previously secret value� We let sit denote the secret published by agent i at time t�
The agent will digitally sign all secrets sit he publishes� using some standard digital
signature scheme�

� The only other task that an agent must perform is to respond to requests of the form�
�Here are values for y and t� please return E�sit� y�� the encryption of y under the secret

�



key sit that you will reveal at future time t� The agent will only perform encryptions
�never decryptions�� It is assumed that the encryption algorithm is secure against
chosen�message attacks� so that an adversary can obtain many encryptions of various
y�s with some future sit and will not be able to thereby deduce sit� Having received
the request� the agent will return an encrypted digitally signed copy of the message

�i� t� t�� E�sit� y��

where i is the index of the agent� t is the future time requested� t� is the current
time �by the agent�s clock�� and E�sit� y� is the requested ciphertext� The message is
encrypted with the public key of the requestor and then signed with the agent�s private
key� The agent need not require that t � t�� although this will be the normal case�

� Anyone can set himself up in business as a trusted agent� without requiring coordination
between himself and other agents� More precisely� the sequence of secrets published
by one agent is independent of the sequence of secrets published by any other agent�

� The sequence of secrets published by each agent has the property that from sit one can
easily compute sit� for all t� � t� The secret the agent reveals at time t can be used to
compute all of his previously published secrets� Thus� it su�ces to ask an agent for
his latest secret in order to learn all of his previously published secrets� This can be
easily implemented by having the secrets satisfy a recurrence such as�

si�t��� � f�sit� �	�

for some suitable �but otherwise arbitrary� one�way function f � Because f is one�way�
publishing sit does not reveal any future secrets sit�� for t�� � t� �The agent might
precompute his sequence of secrets� beginning with a randomly chosen secret for some
point in the distant future and working backwards� or he might chose f as a trap�door
one�way function� so that only he can compute sit from si�t�����

� The message M to be released at time t is encrypted with a randomly chosen key K

and a conventional encryption algorithm� to yield a ciphertext C � E�K�M�� The
user picks some number d of agents i�� i�� � � � � id� and publishes

�C� i�� i�� � � � � id� r�� r�� � � � � rd� ����

where r�� r�� � � � � rd are d �timed�release shares of the key K that will allow K to be
reconstructed once time t is reached and the agents publish their secrets for time t�

� The user may pick a threshold � �where � � � � d� such that one can reconstruct K
given � or more time�release shares and the corresponding agents� secrets for time t�
To accomplish this� the user splits K into d shares

y�� y�� � � � � yd ����

according some standard secret�sharing scheme with threshold �� and then asks agent
ij �for � � j � d� to produce the value

rj � E�sijt� yj� � ����

�



the encryption of share yj of K with the secret sijt of agent ij that will be revealed
at time t� This request should be encrypted with the public key of the agent� and the
reply should be encrypted and signed as described earlier�

The agents in this scheme are extremely simple� they only need

� to produce an unpredictable sequence of secrets satisfying equation �	���

� to decrypt a message of the form �y� t� �e� n�� encrypted with the public key of the
agent�

� to encrypt values y under the secret sit to be revealed by the agent at time t�

� to return the resulting ciphertext� signed by the agent and then encrypted with the
public key �e� n� of the requestor� and

� to publish a signed version of sit at time t�

Since such a simple agent could be built into a small tamper�proof device quite easily� one
can produce implementations of such agents that are highly secure�

The fact that the scheme is based on secret�sharing with a threshold gives robustness�
both against the possible corruption of one or more agents �who might sell future values of
their secrets� or the death or disappearance of one or more agents� As long as � agents are
still around at time t� the message M will be reconstructable at time t �and at any later
time�� As long as fewer than � agents have been corrupted� the message M will not be
revealed before time t�

This scheme is not �veri�able in the sense that an observer who sees the published
material of equation ���� can not verify that it is the proper encryption of anything particular�
Only when the secrets of time t are published can he decrypt the shares rj to obtain the
corresponding yj values that allow him to reconstruct K� and thus obtain M � Standard
�veri�able secret�sharing techniques aren�t particularly applicable here� since the message
M could be junk� even if K was veri�ably shared� �We note that in principle� it is possible�
albeit di�cult� to prove certain properties of M to a veri�er without having to reveal K
or M ��

Because the agent includes the current time t� in his signed reply to an encryption
request� he acts as a simple �time�stamping service �e�g� ����� A user can give the agent the
cryptographic hash value h�M� of some message M � and ask the agent to sign and encrypt
it with sit for some value of t� The signed hash value becomes decryptable at time t� thus
proving �assuming that the agent is trustworthy� that the document M existed at time t��
Normally one might have t � t�� but a user might choose t � t� in some cases� For example�
in an auction it may be required that the bids be submitted before some time t�� and that
they be opened at time t��� The user would submit �the encryption key K for� his bid at
time t� � t�� and ask for it to be encrypted with sit where t � t���

��� An o��line version

The previous protocol can be converted to an o�ine protocol� as follows� Each trusted
agent constructs a public private keypair Ei�t�Di�t for each future time t� The public key






Ei�t is published immediately� and the private key Di�t is published at time t� �Of course� a
trusted agent always digitally signs the published E�s and D�s under his master public key�
to eliminate would�be imposters��

The E�s and D�s directly replace the s�s� now the user can perform the encryption of
the y�s himself� without needing to invoke the trusted agent� The trusted agent can now be
entirely o�ine� except for the periodic publication of the D�s�

On the other hand� in this o�ine formulation� it seems hard to encode any structure into
the agent�s keys� so it seems to require more storage to store the list of public keys for the
future and the private keys revealed for the past� At ��� bytes per key� storing one key for
each day of the next �fty years requires about ��� megabytes�

Another disadvantage of this o��line approach is that the agents are no longer usable or
available as �time�stamping agents�

� Conclusions

We have suggested a way to create �time�lock puzzles� which require �approximately� a
certain amount of time �real time� not total CPU time� to solve� We have also discussed a
way to use trusted agents to e�ciently enable timed�release crypto�

References

��� Mihir Bellare and Sha� Goldwasser� Veri�able partial key escrow� Technical Report
CS	����
� Dept� of Computer Science and Engineering� U�C� San Diego� October �		��

��� Shimshon Berkovits� Factoring via superencryption� Cryptologia� �������	���
� July
�	���

��� L� Blum� M� Blum� and M� Shub� A simple unpredictable pseudo�random number
generator� SIAM J� Computing� �������������� May �	���

��� Sha� Goldwasser� �		�� Personal communication�

��� S� Haber and W�S� Stornetta� How to time�stamp a digital document� Journal of

Cryptology� ��		����� �		��

��� Timothy C� May� Timed�release crypto� February �		��
http���www�hks�net�cpunks�cpunks����	
��html�

�
� R� C� Merkle� Secure communications over insecure channels� Communications of the

ACM� ����	���		� April �	
��

��� Ronald L� Rivest� Remarks on a proposed cryptanalytic attack of the M�I�T� public�key
cryptosystem� Cryptologia� ����������� January �	
��

�



�	� Ronald L� Rivest� The RC� encryption algorithm� In Bart Preneel� editor� Fast Software
Encryption� pages ���	�� Springer� �		�� �Proceedings Second International Workshop�
Dec� �		�� Leuven� Belgium��

���� Ronald L� Rivest� Adi Shamir� and Leonard M� Adleman� A method for obtaining digital
signatures and public�key cryptosystems� Communications of the ACM� ��������������
�	
��

���� A� Shamir� How to share a secret� Communications of the ACM� ����������� November
�	
	�

���� Gustavus J� Simmons and Michael J� Norris� Preliminary comments on the MIT public�
key cryptosystem� Cryptologia� ������������� October �	

�

���� H� C� Williams and B� Schmid� Some remarks concerning the MIT public�key cryp�
tosystem� BIT� �	��������� �	
	�

	


