Complexity of Computing the Margin of Victory for Various Voting Rules

Ronald L. Rivest Emily Shen Lirong Xia

HARVARD

School of Engineering and Applied Sciences

CAEC, Nov. 18, 2011

Voting

Criteria for voting rules

- Lots of voting rules (plurality, approval, instant runoff voting, etc.) – How to choose one?
- "Traditional" criteria: monotonicity, consistency, majority, etc.
- More recently: computational complexity of manipulation (strategic voting)
- We consider: efficient auditability specifically, computational complexity of computing *margin of victory* (related to manipulation problems)

Margin of Victory (MoV)

- Definition: Given a profile of ballots, the margin of victory is the smallest number k such that k modified ballots could change the election winner
- Margin of victory is critical to efficient, effective post-election audits
 - To provide a given level of statistical confidence, landslide election requires much less checking than a close election
- Margin of victory is a *measure of closeness* of election, suggests level of political mandate won by winner

Margin of Victory Examples

• Plurality

– A:10 votes, B: 15 votes, C: 4 votes

– Margin of victory = 3

Instant-runoff voting (IRV)

A > B > C	B > A > C	C>A>B
10	15	4

– Margin of victory = 1

The MoV computational problem

- Computational problem MoV: compute margin of victory of a profile of ballots
- Decision problem MoVk: Is the margin of victory at most k?
- MoV problem closely related to previously studied manipulation problems: UCM, bribery

Margin of Victory & Related Manipulation Problems

Problem	Objective	Ву	Desired Complexity
Margin of Victory	Change the winner	Changing votes	Low
Unweighted Coalitional Manipulation	Make a given candidate win	Adding votes	High
Bribery	Make a given candidate win	Changing votes	High

Our Results

Voting rule	Margin of Victory	Unweighted Coalitional Manipulation	
Positional scoring rules Including Borda	This work P	P (1 manipulator)	[BTT89]
		NPC (2 or more)	[XCP10] [DKNW11] [BNW11]
Plurality with runoff	Р	Р	[ZPR09]
Copeland	NPC and FPT	P (1 manipulator)	[BTT89]
		NPC (2 or more)	[FHS08,10]
Maximin	NPC and FPT	P (1 manipulator)	[BTT89]
		NPC (2 or more)	[XZP+09]
STV	NPC for MoV ₁	NPC	[BO91]
Ranked pairs	NPC for MoV ₁	NPC	[XZP+09]
Nanson's rule	?	NPC	[NWX11]
Baldwin's rule	?	NPC	[NWX11]

Poly-time margin algorithm for plurality with runoff

- Let *d* be the current winner
- For every *k*
 - Check whether there is a way to make d not in the runoff by changing k votes
 - Check for every adversarial *c*, every threshold *l*,
 whether there is a way to change *k* votes such that
 - c and d are ranked at the top for at least l times
 - Any other alternative is ranked at the top for no more than *l* times
 - *c* beats *d* in their pairwise election

IRV Margin of Victory = 1 is NP-Complete

- Proof by reduction from unweighted coalitional manipulation problem
- Tweak UCM1 profile *P* to get new profile *P*' by:
 - Adding a new candidate *d*
 - Ranking d just below c in P
 - Adding |P|+1 voters who all rank d as 1st choice
- Show: MoV of P' is 1 if and only if UCM1 has a solution

Summary and Future Work

• We studied complexity of computing the margin of victory for some common voting rules

Future work:

- Complexity of MoVk (k > 1) for IRV, ranked pairs
- Practical algorithms to compute/approximate margin of victory for IRV, ranked pairs
 - Heuristics, approximation algorithms