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1. Introduction

An interesting open problem in arithmetic com-
plexity is to find concrete polynomials that are both
simple in form and hard to compute. In this paper
we study the complexity of univariate polynomials
with 0-1 coefficients in the model with intcger pre-
conditioning. In this model the free constants are
the integers and the allowed operations are addition,
substraction and multiplication (no division). We
compute over the ring of integer polynomials. Using
a couniing argument inspired by Paterson—Stock-

meyer [1], we prove a lower bound of order (n/lg n)'/2

on the additive complexity of 0-1 polynomials in this
model. in other words there is a strictly positive real
number vy such that for all natural numbersn > 1
there is a univariate nth degree 0-1 polynomiai that
requires at ieast y(n/lg n)'/2 + operations to be evalu-
ated in Z[x] mod(Z U {x}). (Evaluating a polynomial
fix) in (Z[x] mod(Z U {x})) must begin with the
variable x and the integers, and compute f(x)in a
sequence of steps each of which uses only +, —, or o
on the given inputs or results of previous steps.) This
bound is better than the best known lower bound on
the additive complexity of 0-1 polynomials in the
model with general complex preconditioning, which
is only Q(n'/2/1g n). ([4]. See also this paper for a
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survey of results on the computational complexity
of 0-1 polynomials.)

In both models the best upper bound is O(n/lg n).
(See [2].) Hence a stronger lower bound may still be
shown.

Paterson, Stockmeyer [1] have shown a lower
bound of order n!/2 on the non scalar multiplicative
complexity of 0-1 nth degree polynomials in the
model with integer preconditioning. Moreover they
have shown the optimality of this bound. The ques-
tion is also settled for the total number of operations.
Indeed it has been shown [4] that there are nth
degree 0-1 polynomials that require order of (n/lg n)
total arithmetic operations to be computed over the
field of corplex rational functions. Like the previous
one, this bound is asymptotically optimal.

2. Definitiens and model of computation

Let F denote the set {0, 1} and let N, Z, Z, stand
for :he set of nonnegative natural numbers, integers
and integers modulo p, respectively. For a prime p,
Z, is a field. Let x be an indeterminate. F[x] is the
set of polynomials in x with 0-1 coefficients. Let k be
a ring. k[x] is the ring of polynomials in x over k.

A computation 8 in k[x] mod(k U {x}) for
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p(x) € k[x] is a sequence « { computation steps Sj,
1 <i<], such that there 15 ip, 1 <ip <!, with
i, =p(x) and either

(i)S;€EkVU {x} or
(ii) Sy =S; 0 Sy with j, k <iand e € {+, -, }.

The polynomials S; are the results of the computa-
tion and f is said to compute the S;.

The additive complexity of a polynomial p(x) €
k[x] over the ring k[x] is the minimum number of
addition and subtraction steps in a computation for
pin k[x] mod(k U {x}).

We are now going to study the additive complexity
over Z[x] of polynomials in F[x]. We denote by
L(%, p) the additive complexity over Z[x] of a poly-
nomial p(x) in Z[x].

If f and g are functions from N to N, f(n) = Q(g(n))
means that there is a positive constant vy such that
finally f(rn) = yg(n). The abbreviation lg stands for
log,.

3. AnQ((n/lg n)'/? lower bound on the additive
complexity of 0-1 polynomials over the ring of integers

Theorem 1. There exists a real number vy > 0 such
that for any natural number n > 1 there is a poly-
nomial of degree n in F[x] that cannot be computed
in Z[x] mod(Z U {x}) with less than y((n/Ig n))*/?
additive operations.

Proof. Let n and ¢ be natural numbers, g a prime. We
shall fix q later. Consider the finite field Z, and the
ring homomorphism H : Z - Z,, given by H(z) =
z mod(q). If p(x) = o zix' € Z[x] can be evaluated
by a computation in Z{x] mod(Z U {x}) using k
additions, then certainly p(x) = Zto H(z;) x' € Z,[x]
can be evaluated by an algorithm in Z;[x] mod(Z, U
{x}) using k additions. In the rest of the paper the
term additions will be employed in place of additive
operations.

Any computation in Z4[x] mod(Z, U {x}) with
<k additions can be expressed by the following
scheme o z, where the m;;, m;; are natural numbers,
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and ¢; and d; are integers modulo g:

So=X,

j—1 j—1
mi ; m; .
Ay s,-=c,-n S; "’+d,n.s,- hi for 1 <j<k,
=0 i=0

k
ms
P(X) = Sk+1 = Cis1 il_—!) si e

Let N(k) be the number of different polynomials
in Z, [x] that are computable by at least one algorithm
in oy Leta be an element in Z, and let b and ¢ be
natural numbers with b =c mod(g — 1). Then it is
well known that 2° = a° mod(g), since q is a prime.
Thereiore the exponents m; ;, m;,j can be assumed to
range over {0, 1, ...,q — 2} and N(k) is bounded
above by ¢° where s is the number of different param-
eters in <.

Thus

k a2 2
N(k)gq(zj—lz(l"'l»*'k*'z =qk +4k+2 .

Let now M(k) be the number of different nth
degree 0-1 polynomials in Z,[x]. M(k) = 2" provided
q = n. Choose the prime g such that n <q <2n.

Such a prime exists for all n = 1. (See for instance
[3,p. 57, Satz 31].)

Every 0-1 polynomial of degree n can be computed
by an algorithm in &{; only if N(k) = M(k). This
means

2
qk +4Kk+2 >on .

Thus k2 + 4k + 2 >n/lg q = n/(2 1g n) for n large
enough. Hence k= (n/(2 lgm)/? — 2> 1. (n/1igm)*/?
for n large enough. This proves that there is a positive
real number v such that for all natural numbers n > 1
there exists some 0-1 polynomial p of degree n such
that L(%, p) = y(n/lg n). We are done.
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