
On the notion of “software independence” in
voting systems

Ronald L. Rivest
John P. Wack

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139
rivest@mit.edu

National Institute of Standards and Technology (NIST)
Information Technology Laboratory

Gaithersburg, MD 20899
john.wack@nist.gov

DRAFT Version July 28, 2006

Abstract. This paper defines and explores the notion of “software in-
dependence” in voting systems:

A voting system is software-independent if an undetected change
or error in its software cannot cause an undetectable change or
error in an election outcome.

We propose that software independent voting systems should be pre-
ferred, and software-dependent voting systems should be avoided. VVPAT
and some cryptographically-based voting systems are software-independent.
Variations and implications of this definition are explored.

This white paper is also for discussion by the Technical Guidelines Devel-
opment Committee (TGDC) in its development of the Voluntary Voting
System Guidelines (VVSG) of 2007.

1 Introduction

The main purpose of this paper is to introduce and carefully define the ter-
minology of “software-independent” and “software-dependent” voting systems,
and to discuss their properties. This paper is definitional in character; there are
no “results” as such. The contribution is to help provide crisp terminology for
discussing voting systems and some recommendations for its usage in the VVSG
2007, currently under development by NIST and the TGDC.

This paper starts by describing the problem that software-independence ad-
dresses: complex and difficult-to-test software in voting systems. It then defines
what constitutes a software-independent approach to voting system design. The



paper provides examples of this approach and then discusses various issues, in-
cluding ramifications to testing and issues with usability and accessibility. It
concludes with recommendations for the role of software-independence in the
VVSG 2007.

This working note is intended to stimulate discussion, and does not represent
an official document or any official position of NIST, EAC, TGDC, or MIT.

2 Problem: Software complexity of voting systems

Electronic voting systems are complex and getting more so, as both elections
themselves and voter interfaces get more complex. The requirements for a voting
system are also very demanding: the requirements for accuracy of the final tally,
privacy of individual votes, and security against attack are in serious conflict with
each other. Conflicting requirements also usually leads to burgeoning system
complexity.

As a consequence, voting systems express and capture this complexity via
software; software provides a powerful means of describing the complex patterns
of behavior that a voting system must exhibit. Perhaps the best example of this is
the Direct-Recording Electronic (DRE) voting system, which typically provides
a touch-screen user interface for voters to make selections and cast ballots, and
stores the cast vote records in memory and on a removable memory card. A
DRE may display and use potentially thousands of different ballot layouts. A
DRE may also include complex accessibility features for the sight-impaired such
that a voter could use headphones and be guided to make selections.

An issue, then, is how to determine, despite the complexity of the software,
whether the voting system is accurately recording the voters intentions. The
DRE voting system produces only one instance of its cast ballot records (there
is no second independently-created set of records for which to compare them),
consequently the accuracy of the records must be ascertained by a variety of
(imperfect) measures. These include comparing the accumulated tallies to pre-
election canvassing results as a measure of their expected accuracy, and tech-
niques such as parallel testing to gauge voting system accuracy.

Fundamentally, though, one must trust that the software was written and
tested well, that the software running on the system is indeed the certified,
tested software, and that no tampering of the software has occurred.

2.1 The difficulty of evaluating complex software for errors

However, it is a common maxim that complexity is the enemy of security—it is
very difficult to evaluate the security of a complex system. A very small error,
such as a transposed pair of characters or an omitted command to initialize a

2



variable, in a large complex system may provide a vulnerability that can be
exploited by an adversary for large benefits. Or, it may simple cause unexpected
results at unpredictable intervals.

Finding all errors in a large system is generally held to be impossible in
general or else highly demanding and extremely expensive. Our ability to develop
complex software vastly exceeds our ability to prove its correctness or test it
satisfactorily within reasonable fiscal constraints (extensive testing of a voting
system’s software would certainly be cost-prohibitive). A voting system for which
the integrity of the election results depends on the correctness of its software will
always be somewhat suspect and require routine checks of its software, even after
extensive (and expensive) federal testing and certification.

2.2 The need for software independent approaches

One should strongly prefer any approach where the integrity of the election
outcome is not dependent on trusting the correctness of complex software. Voter-
verified paper audit trails (VVPAT) provide the most prominent (albeit ad hoc)
approach available today in the market. But there are other approaches possible,
such as those based on novel cryptographic techniques that promise levels of
assurance of correct election outcomes that exceed those provided by simple
voter verifiable paper audit trails.

What does this mean for voting systems? The purpose of this paper is to
provide a new notion, that of “software independence,” that captures the essence
of the problem.

Voting systems that are “software dependent” rely on the correctness and
integrity of their software in ways that “software independent” systems do not.
The complexity of the software in “software-independent” voting systems is much
less of a problem.

Software-independent voting systems should support much greater assurance
of the correctness of their election outcomes; there is no lingering unanswerable
concern that the election outcome was actually determined by some software
bug or worse (e.g., a malicious piece of code).

3 Definition and rationale for software independence

We now repeat the definition of software independence, and explore its meaning.

A voting system is software-independent if an undetected change or error
in its software cannot cause an undetectable change or error in an election
outcome.

3



A voting system that is not software-independent is said to be “software-
dependent”–it is, in some sense, vulnerable to undetected programming errors
or malicious code; the correctness of the election results are dependent on the
correctness of the software and on whatever assurances can be obtained that the
software on the voting machine is in fact the software that is supposed to be
there.

These notions are not exactly new—many have discussed the problems as-
sociated with using complex software in voting systems. Yet, we have lacked
crisp terminology for talking about the dependence of election outcomes on such
complex software.

3.1 Refinements and elaborations of software independence

There are a number of possible refinements and elaborations of the notion of
software independence. We now motivate and introduce the distinction between
strong software-independence and weak software-independence.

Security mechanisms are typically one of two forms: prevention or detec-
tion. Detection mechanisms may also be coupled with means for recovery. When
identification of participants and accountability for actions is also present, then
detection mechanisms are also the foundation for deterrence.

In voting systems, preventing software changes and errors is very difficult,
given the difficulty of assuring software correctness, our current level of invest-
ment in voting system security, the distributed and infrequent nature of elections,
and the volunteer status of many election workers. Trying to justify the adop-
tion of software-dependent voting systems on the basis that software changes
and errors can be entirely prevented seems very unrealistic. So, relying as well
on strong detection methods is well motivated.

Given the importance of recovery mechanisms in addition to detection mech-
anisms, we propose the following two definitions:

A voting system is strongly software-independent if an undetected change
or error in its software cannot cause an undetectable change or error in an
election outcome, and moreover, a detected change or error in an election
outcome (due to change or error in the software) can be corrected without
re-running the election.

A voting system that is weakly software-independent conforms to the basic
definition of software-independence, that is, there is no recovery mechanism.

As an illustration of these terms, consider the DRE. Even if used with parallel
testing, it is not software-independent. If it produces a voter-verifiable paper
audit trail, it is software-independent. If its paper trail meets all requirements

4



in a given election for use as an official ballot of record, it is strongly software-
independent - if errors are detected, the paper trail can be legally used and the
election need not be re-run. If its paper trail is useful only for showing errors, it is
weakly software-independent, i.e., it meets the basic requirements for software-
independence.

3.2 Usability of software-independent approaches

A software-independent approach is able to detect errors via voter-verification (if
used) and via audits of its cast ballot records. It is possibly able to recover from
errors and problems depending on the suitability of its records for recounts.
Therefore, it follows that usability issues affecting voter-verification and cast
ballot record production are paramount in consideration of software-independent
approaches. This paper does not address or detail those issues further other than
to note that these issues must be considered as a fundamental to the design
of voter-independent approaches. Otherwise, if voter-verification or audits are
complex or difficult to use, software-independence quickly becomes software-
dependence.

3.3 Examples

In general, voting systems that have a voter-verifiable paper audit trail are
software-independent, since the paper audit trail allows (via a recount) the pos-
sibility of detecting (and even correcting) errors due to software. Accordingly,
these voting systems can be strongly software-independent.

In this category we should include not only DRE voting systems that have
been augmented with VVPAT, but also electronic ballot marking systems (EBMs)
and mark-sense (optical scanning) systems. This approach has the advantage of
isolating the complex user-interface software on the EBM from the more crit-
ical ballot recording and counting software on the optical scanner. The EBM
prints a high-quality paper ballot of the voter’s choices, which can be verified
for accuracy before being fed into the optical scanner; the paper ballot serves
as a paper trail that can be used in audits of the optical scanner’s records. This
usage of voting devices provides both detection and recovery, and is strongly
software-independent.

Cryptographic voting systems are another example of software-independent
voting systems. They can provide detection mechanisms for errors caused by
software changes or errors (e.g. [4,5,9,10,3]). At one level, they can enable voters
to detect when their votes have been improperly represented to them at the
polling site, and a simple recovery mechanism (re-voting) is available. At another
level, they can enable anyone to detect when the official tally has been computed
incorrectly. Recovery is again possible, assuming that the tally administrators

5



still possess the necessary cryptographic key information. Most of the recently
proposed cryptographic voting systems are strongly software-independent.

(We note that in many of the cryptographic schemes the detection of vote
mis-representation is probabilistic; the voter can “catch” the misbehavior of a
voting system with probability at least 1/2. The ability of a voting system to
undetectably mis-represent more than a few votes becomes vanishingly small
very quickly. If one wanted a term to distinguish these schemes from schemes
(such as op-scan) where the ability of the voter to catch mis-representations
was guaranteed, one might call the cryptographic schemes “virtually software-
independent, whereas a VVPAT or op-scan is “strictly software-independent”.)

4 Relationship to Independent Verification in the VVSG
2007

The terms Independent Verification (IV) and Independent Dual Verification
(IDV) have been used by NIST and the TGDC to describe voting systems that
produce multiple cast ballot records, at least one of which is immutable and can
be verified by the voter to be correct. IV/IDV was included in the VVSG 2005
as informative text, and NIST and the TGDC have been considering requiring
that voting systems in the VVSG of 2007 meet its requirements. Its essential
requirements are:

1. At least two records of the voter’s choices are produced and one of the records
is then stored such that it cannot be modified by the voting system, e.g. the
voting system creates a record of the voters choices and then copies it to
some write-once media (e.g., paper).

2. The voter must verify that both records are correct, e.g., verify his or her
choices on a DREs display and also verify the second record of choices stored
on the write-once media.

3. The verification processes for the two verifications must be independent of
each other and (a) at least one of the records must be verified directly by the
voter, or (b) it is acceptable for the voter to indirectly verify both records if
they are stored on different systems produced by different vendors.

4. The content of the two records can be checked later for consistency.

VVPAT is the most obvious example of a voting system that provides IV or
IDV, and other approaches have been discussed that have the potential of using
other media besides paper. IV/IDV remains an important concept for the VVSG
2007, as it describes how records must be produced in certain types of voting
systems so that they can be said to be software-independent.

The third requirement for IV/IDV opens the possibility of two independent
verifications being permissible. As an example, a DRE could be attached to a
second system and thus transmit its electronic cast vote record to that system

6



after a voter has indicated they have completed the ballot. However, this is an
apparent violation of the software-independence approach because the verifica-
tions are both dependent on the accuracy of the software. We would assert that,
practically speaking, enforcing a rule requiring that different vendors produce
the systems would be difficult at best and not likely to counter the software-
dependent approaches of both systems. Therefore, we recommend that part (b)
of this requirement be dropped.

As a primary concept for use in the VVSG 2007, ID/IDV misses the mark in
that it describes a technique to achieve software-independence but does not fo-
cus on the problem it is attempting to address, that being the inability to verify
complex software in voting systems. Consequently, arguments for or against it
have focused more on issues concerning voter-verification of paper records, e.g.,
the additional cost of VVPAT systems and the usefulness of the paper records
in audits. We assert that the term software-dependence better focuses the argu-
ment on the difficulty and expense of evaluating complex code and subsequently
trusting that it doesn’t contain errors or that the voting system software has not
been tampered with.

5 Are parallel testing and other measures sufficient for
software-dependent approaches

Parallel testing [8] is often cited as an efficient and accurate gauge of the correct
operation of a voting system and, by implication, the correctness of its software.
However, this approach is designed to detect software changes or errors, not
to detect whether the election outcome has been affected by such changes or
errors. A problem detected during parallel testing may or may not indicate an
actual problem during the election. The best one can do when parallel testing
uncovers a problem is assume the worst. There is no obvious recovery mechanism
available, other than re-running the election.

Furthermore, reliance on parallel testing to detect errors would require that
the testing be done in a very comprehensive manner for each use of the vot-
ing system, such that the voting systems capabilities are thoroughly exploited
and tested. Determining how extensive the tests should be could itself be quite
complicated and labor intensive. For example, a voting system expected to hold
10,000 votes but in reality holding only 3,000 [7] likely would not have been
detected by parallel testing, yet this incident resulted in 4,400 lost votes and
an election partially re-run. Given the large number of voting jurisdictions with
varying procedures, varying levels of expertise with electronic voting systems,
and a largely volunteer force of poll workers, it seems more likely that paral-
lel testing can be at best an approximate or possibly rough gauge of software
accuracy.

Logic and accuracy (L&A) testing is also cited as an effective detection
method, but again it suffers from the same quality deficiencies as parallel testing.

7



Furthermore, some voting systems actually perform logic and accuracy testing
on a separate base of software and do not test the operational voting system
software used to conduct elections.

Additionally, the VVSG 2005 contains requirements for (a) more secure and
verifiable mechanisms and procedures for distributing certified voting system
software, and (b) voting systems to support secure election-day validation of
their software (setup validation). The purpose of these requirements is to assist
in ensuring that the correct certified software is shipped with the voting system
and that the correct certified software is actually running on the voting system.
These requirements are sometimes confused as being sufficient for ensuring that
a software-dependent approach is using correct, error-free software; they ensure
only that the system is using the correct certified (lab tested) software. These
requirements are highly recommended regardless, but alone or in combination
with techniques such as parallel or logic and accuracy testing, they offer no
guarantees that the correct, certified software is actually error-free.

6 Discussion

6.1 Implications for testing and certification

Given the exceptional difficulty of proving software to be correct, and given
the difficulties of maintaining tight physical control over a multitude of voting
machines (so as to prevent tampering with software), it is a reasonable proposal
to disallow voting systems that are software-dependent altogether.

If testing and certification of software-dependent voting systems are to be
nonetheless contemplated, then one should reasonably expect the certification
process should be very much more demanding and rigorous for a software-
dependent voting system than for a software-independent voting system. The
manufacturer of a software-dependent voting system should submit, as part of
the evaluation package, a formal proof of correctness. Perhaps an assurance level
corresponding to EAL level 6 or 7 should be required, whereas for a software-
independent system [2,1] an lower assurance level (or the equivalent) would be
the norm. It is reasonable to expect that when the correctness of election out-
comes depends fundamentally on the correctness of software, that the software
producer should have to work significantly harder to assure potential customers
of the correctness and security of its system. Moreover, the potential customer
needs to have rigorous procedures in place to assure that the system utilized
during an election is indeed the same as what was evaluated and purchased.

6.2 Disabled voters

Since a blind voter may be unable to verify a printed ballot without assis-
tance, a voting system that is software-independent for typical voters may not be

8



software-independent for a blind voter; the blind voter may use software support
to read back his or her choices.

We propose that the notion of “software-independence” be understood (un-
less further qualification is given) to refer to the qualities of the voting system
for typical voters; it being understood that the system may be qualitatively dif-
ferent for a disabled voter. This difference may be unavoidable, but is worth
noting when considering each system.

That said, some electronic ballot marking devices and cryptographic voting
systems that use a DRE-like interface carry great promise for accessibility. Fur-
thermore, accessibility-related software is expected to be complex, thus sticking
as much as possible to software-independent approaches offers greater potential
for accessibility features to be included in voting systems without necessarily
requiring expansive and highly-expensive testing.

6.3 Interoperability issues

Software-independent approaches rely on audits of cast ballot records to detect
errors and problems. Requiring a common, interoperable format for electronic
representations of cast ballot records would assist in comparisons as well as
tabulations, especially when combining the output of different types of voting
systems (e.g., combining and tallying records from an accessible voting station
and a VVPAT system). OASIS Election Markup Language (EML) [6] or a scaled-
down variant is a likely choice.

6.4 Transparency

The issue of transparency is important in that voters should be able to under-
stand in general how the voting system “works.” This is important to any vot-
ing system approach but may be more so to software-independent cryptographic
approaches, which can be difficult to understand and therefore not especially
transparent.

At the same time, voters do not need to understand complex cryptographic
methods and protocols to have an adequate comprehension of the voting system
and level of comfort in using it — if the design is somewhat simple to grasp,
voters could, with the passage of some time, be comfortable using systems that
may be very complicated “under the hood.” Consider, for example, how readily
people now use and trust web-based transactions underpinned by SSL (e.g.,
https://...). Simply adding an “s” at the end of “http” and associating it with
“secure” seems to be satisfactory.

9



6.5 Extensions and variations

The notion of “software-independence” speaks only to the goal of accuracy (cor-
rectness of election outcome). Thus, we might have termed this notion “software
independence for correctness”.

Using similar qualifiers, we can also create and consider related notions, such
as “software-independence for voter privacy”.

And of course, we could think of independence of other parts of the voting
system, “hardware-independence for correctness” or “poll worker-independence
for voter privacy”.

7 Conclusions and suggestions

We have suggested the use of the terms “software-independence” and “software-
dependence” to describe whether or not the correctness of election results de-
pends in an essential way on the correctness of voting system software.

Should software-independence be mandated in the VVSG 2007? The history
of computing systems is that, given improvements and breakthroughs in technol-
ogy and speed, software is able to do more and thus its complexity increases. The
ability to prove the correctness of software diminishes rapidly as the software
becomes more complex. It would effectively be impossible to adequately test fu-
ture (and current) voting systems for flaws and introduced fraud, and thus these
systems would always remain suspect in their ability to provide secure and accu-
rate elections. The cost of effective testing would be prohibitive and could place
restraints on vendors to introducing new (and software-intensive) improvements
in voting technology.

Adopting the software-independent approach would place fewer restraints on
the market place to develop new and improved technology for voting systems. As
long as the validity of election results does not fundamentally depend on software
correctness, vendors may better address increasing usability and accessibility
needs in an aging and increasingly diverse population. It should be noted that
software independence will not obviate the need for strong and thorough testing,
in fact testing of future voting systems may well be more expensive than today.

References

1. Common criteria assurance levels. Available at:
http://www.cesg.gov.uk/site/iacs/index.cfm?menuSelected=
1&displayPage=13.

2. Common criteria evaluation and validation scheme. Available at:
http://niap.bahialab.com/cc-scheme/.

10



3. Ben Adida. Verifying Secret-Ballot Elections With Cryptography. PhD thesis, MIT
Department of EECS, August 2006.

4. David Chaum. Secret ballot receipts: True voter-verifiable elections. IEEE J.
Security and Privacy, pages 38 – 47, Jan/Feb 2004.

5. David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical, voter-
verifiable election scheme. Technical Report CS-TR-880, University of Newcastle
upon Tyne School of Computing Science, December 2004. Available at:
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/880.pdf.

6. Organization for the Advancement of Structured Information Standards. Oasis
election markup language specification. Available at:
http://www.oasis-open.org/committees/tc home.php?wg abbrev=election.

7. Heather Havenstein. Voting system ballot counter overflow. Computerworld
Magazine, Dec 2004. Available at:
http://www.computerworld.com/governmenttopics/government/story/0,
10801,98054,00.html.

8. Douglas Jones. Parallel testing during an election. Available at:
http://www.cs.uiowa.edu/∼jones/voting/testing.shtml#parallel.

9. Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting protocols:
A system perspective. In Proceedings 14th USENIX Security Symposium, August
2005. Available at:
http://www.cs.berkeley.edu/∼nks/papers/cryptovoting-usenix05.pdf.

10. C. Andrew Neff. Practical high intent verification fo encrypted votes, October
2004. Available from VoteHere.

11. Peter Y. A. Ryan and Thea Peacock. Prêt à Voter: A system perspective. Techni-
cal Report CS-TR-929, University of Newcastle upon Tyne School of Computing
Science, September 2005. Available at:
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/929.pdf.

12. Peter Y. A. Ryan and Steve A. Schneider. Prêt à Voter with re-encryption mixes.
Technical Report CS-TR-956, University of Newcastle upon Tyne School of Com-
puting Science, April 2006. Available at:
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/956.pdf.

11


