1 7 Simulation Results for a New Two-armed Bandit Heuristic

Ronald L. Rivest and Yiqun Yin

17.1 Introduction

Bandit problems were first introduced by Robbins [10] in 1952. The name
derives from an imagined slot machine with k > 2 arms. When an arm is
pulled, the player wins a random reward according to an unknown proba-
bility distribution n;. The player’s problem is to choose a sequence of pulls
on the k arms, depending on the results of previous trials, so as to maxi-
mize the long-run total reward. In general, we consider the problem of
sampling x,, x,, ... sequentially from k statistical populations (arms, med-
ical treatments, etc.) specified by density functions f(x, §;) with respect to
some measure v, where f(-, -) is known and the ;s are unknown parame-
ters belonging to some set ©. We assume that the average reward

o) = f xf(x, 8) dv(x) (1)
is well defined for all § € ®. The goal is to maximize, in some sense, the
expected value of the sum

S, =x;+x,+ " +x, 2)

as n — oo. There have been several different approaches to this problem
based on different formulations of optimality.

In 1985 Lai and Robbins [6] constructed a class of asymptotically effi-
cient strategies (also called “adaptive allocation rules”), and many works
in recent years are based on their results. An adaptive allocation rule ¢ for
a k-armed bandit problem is a sequence of random variables ¢,, ¢,, ...
taking values in the set {1,2,...,k}. We will give a brief survey of their
algorithms in section 17.2.

Another approach is to consider for large fixed n (finite horizon) the
Bayes problem of maximizing

j EqS,dH(9), (3)
<]

where H(0) is a prior distribution on ©* and where 8 = (6,,6,,...,6,)
gives the parameters defining the probability distribution for the rewards
of each arm. Berry and Fristedt [1] studied the dynamic programming
equations for the Bayes optimal solution analytically and obtained several
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interesting results about the Bayes optimal rules with respect to general
priors. However, Bayes rules are usually described only implicitly by the
dynamic programming equations, and they are usually difficult to com-
pute numerically.

Besides the bandit problem we discussed above, there is also a class of
“discounted multiarmed bandit problems,” in which a discount factor of f,
for some 0 < B < 1, is introduced. Here we consider the problem of maxi-
mizing the expected value of the series

i Biix,. @

Major advances in this problem were made by Gittins and Jones (see [3]
for a survey of their work); their strategies are usually called “Gittins index
rules.” These rules have been shown to be optimal for the discounted
probiem.

In another point of view, the classical bandit problem can also be
viewed as a learning process, in which we make decisions according to
what we have learned in the past. Narendra and Thathachar [9] used
“learning automata” as a framework for attacking this problem. Their
basic idea is to update the probabilities of pulling each arm at every stage,
based on the previous results. Most of these schemes were shown to be
e-optimal, which means that for every ¢ there exists a learning automaton
that can achieve an asymptotic average reward rate that is within & of
optimality. Because learning automata have limited number of states, one
cannot expect optimal performance from them.

17.2  Asymptotically Efficient Adaptive Allocation Rules
Let
p*(0) = max w(6) = u(0*) (5)

1<j<k
for some 6* € {6,,0,,...,6,}. Robbins [10] formulated a notion of asymp-
totic optimality as obtaining
lim n7'E,S, = u*(0) forall 6e @ (6)
For the case k = 2, he also introduced a class of simple allocation rules
that attains (6). A natural question is how to make the rule so that n1E,S,
approaches u*(0) as quickly as possible.
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Lai and Robbins [6] introduced the concept of “regret” as

R,(0) = nu*(0) — EoS, = Y (u*(0) — u(B))E,To(J) (7)
J m(8;)< u¥(6)

where T,(j) is the total number of observations from =; up to stage n.

Therefore, maximizing E,S, is equivalent to minimizing the regret R,(6).

Their main theoretical result is that for every reasonably good allocation

rule (one that satisfies R,(0) = o(n®) for every a > 0 for every fixed 6), we

also have

R,(6) (1*(0) — u(6))

:Ln:o w2 juey<urey  1(6;,60%) ®
for all € %, where
1(0,2) = f_ {In[ f(x, 0)/f(x, H]} S (x, 0) dv(x) ®

is the Kullback-Leibler information number which gives a measure of
the difference between two density functions. Moreover, a class of alloca-
tion rules that asymptotically attains this theoretical lower bound is
constructed.

Forj=1,2,...,klet Y, Y,,..., Y  denote the successive observa-
tions from n;. Define

Yo+ Y+ + Y
T.(j)

as the estimated sample mean, and define a certain upper confidence
bound for the mean of each population z; as

.(j) =

U(J) = Gn 1,60 Gi1s - -5 Y (10)
Define j, € {1,2,...,k} such that

fin(jn) = max{f,(j): T,(j) = én}. (1)
At stage n + 1, then, where j = (n + 1)mod k, we select arm j only if
Ann) < Un()); (12)

otherwise we select arm j,. Lai and Robbins proved that this rule satisfies
the equation
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Inn
Eo(T(J) ~—i— 13
o(Ta())) 16,6%) (13)
for every j such that u(6;) < u(6*).
For normal, Bernoulli, Poisson, and double exponential populations,
they expressed the upper confidence bound as

U,(j) = inf{A = 2,()): [((j) 4) = auif, (14)

where a,; (n = 1,2,...,i = 1,2,...,n) are positive constants satsifying cer-
tain conditions. For example, in the case of a two-armed Bernoulli bandit
a,; can be chosen as (Inn)/i.

17.3 A New Heuristic Algorithm

In this section we propose a simple heuristic algorithm for the bandit
problem, which seems to have (empirically) better performance than the
algorithm of Lai and Robbins [6] discussed in the previous section.

As before, let Y;,, Yy, ..., ¥;r ; denote the successive observations from
7; up to stage n. We define fi,(j) as the estimated sample mean (as above),
and define 6,( ) as the estimated standard deviation of the sample mean,
for j =1, 2,..., k. The new allocation rule is the following:

At stage n + 1, we associate a random variable Z,(j) with each arm j,
where Z,(j) has a normal distribution with mean £,(j) and standard devi-
ation 4,(j). We then sample from population j,, where

Z,(jn) = max{Z,(1), Z,(2),..., Z,{k)}.

We call this new heuristic the “Z-heuristic.” The Z,(j) variables are in-
tended to reflect the learner’s uncertainty about the true values for 6(j).

We now apply both the Lai and Robbins algorithm and our new heu-
ristic to construct allocation rules for normal and Bernoulli populations.
The simulation results are given in the next section.

17.4 Experimental Results

We considered the bandit problem for two kinds of arms: Bernblli vari-
ables and normal variables. In both case the parameter 8 was equal to the
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expected reward. For the Bernoulli arms with parameter § a reward of
value 1 was received with probability 6, and a reward of value 0 was
received with probability (1 — 0). For the normal arms the mean reward
was 0, and the variance was equal to 1.

We implemented the Lai and Robbins algorithm and the Z-heuristic
and ran these algorithms for n = 107 trials for k =2 and four sets of
probabilities:

6 = (0.1,0.9),
0 = (0.46,0.54),
# = (0.496,0.504), and
0 = (0.4996,0.5004).
We also calculated for these experiments the theoretical bound from

equation (13). Because this formula behaved poorly for smalil values of n,
we also calculated the value of the heuristic formula
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Two Bernoulli arms: 8 = (0.1,0.9)
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Two Bernoulli arms: § = (0.46,0.54).
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Figure 17.3
Two Bernoulli arms: § = (0.496,0.504)




105

T Ty YT T T T T T T T T T T

T T T T

o 100k
g F ;
8 3 4
8 100
o = 3
g r ]
3 C ]
& 5 J
E 10 ; 3
~ E =
] F 3
o r -
£ L ]
B o
g 101E 3
oo = =
g = 3
8 C ]
5
& 100 ]
= * . B e PR P YT, Devenn T T T
: o B B 3
- >
10! PP I W WY S S S S AT PSSR L0 T
102 103 104 105 106 107
Stage
Figure 17.4
Two Bernoulli arms: 8 = (0.4996,0.5004)
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Figure 17.5
Two normal arms: 6 = (0.1,0.9)
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Figure 17.6
Two normal arms: 6 = (0.46,0.54)
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Figure 17.7
Two normal arms: 6 = (0.496,0.504)
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Two normal arms: 8 = (0.4996,0.5004)

1
Ef(T,(j) ~ —— (15)

16,,6,) + 22"

(which is approximately n/2 for small n, but approaches the Lai and
Robbins bound asymptotically).

The results are plotted in figures 17.1-17.8. In each case, the Lai and
Robbins bound is plotted as a heavy line, and formula (15) is plotted as a
dotted line. The performance of the Lai and Robbins algorithm is plotted
as 0’s, and the Z-heuristic is plotted as *’s.

We see that the Z-heuristic performs much better than the Lai and
Robbins algorithm for the experiments we tried. We conjecture that the
Z-heuristic is asymptotically optimal, and we are working to prove this
conjecture.
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