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two uu-lille learuing models: teach er-clirecteci

learninE and self-dlrectecl learning. In both

models, the learner tries to identify an un-

kuowu concept based on examples of the con-

cept presented one at, a time. The learner pre-

dirts wheth~r each example is positive or neg-

ative with immediate feedback, and the ol)-

ject,ive is to minimize the uurnl)er of predic-

t,iou mistakes. ThP examples are selected by

the teacher in teacher-dlrectecl learning and

hy tlhe learner itself in self-directed learning.

R,oughly, teacher-directed learning represents

the scenario in which a teacher teaches a class

of learners, and self-directed learning repre-

sents the scenario in which a smart learner-

asks questious and learns by itself. For all pre-

violmly studied concept classes, the rnirrimum

numl)er of mistalws in teacller-ciirectf ecl learn-

ing is always larger than that, in self-directed

learning. This raises an mtermting question

[.)t’ whrt, hrr teaching is helpful for all learners

mrlu(ling the smart learner’. Assuming the ex-

istence of clue-way functioms, we construct com

cept clahses for which the miuimum nurnher of

mislakes is hnear in teacher-directed learning

I,ut sllI>rrlJolyllorlllal m self-directed learning,

cler~lc~llst,rt~tillg the power of a helpful teacher

in a Iearmng process.
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1 Introduction

In this paper, we study the power of a teacher in hell)-

in.g students to learn concept classes. In the literature

of learning theory, the teacher has been liiodeled ddfer-

ently in various learning frameworks [3, 8, 9, 10, 11, 15,

20, ’22, 23], and the impact of teaching depends on how

much the teacher is involved in the learning process. We

study the importance of teaching hy investigating two

learning models:

●

●

teacher-directed learning in which the learner highly

relies on the information provided by the teacher to

accomplish learning, and

self-directed learning in which the learner actively.
queries the information neeclerl and accomplishes

learming solely hy itself.

Teacher-directed learning and self-direct[’d learning wer~

first introduced hy (“;oldman, Rivest, and Schapire [1 1].

In both models, the learner tries to identify an unknown

concept based on examples of the concept presented one

at a time. The learner predicts whether each example

is positive or negative with immediate feedback, and

the objective is to rnmirnize the number of prediction

mistakes. The examples are selected by the teacher m

teacher-directed learning and by the learner itself in srlf-

directed learning The picture l)ehind the forrnulat,ion of

the two models 1s roughly as follows. Self-directed learrl-

ing reflects the situation in which a smart learner asks

questions and learns by itselfi teacher-directed learning

reflects the situation in which a teacher teaches a class

of learners, some of which may b e stupid. Throughullt

the paper, we use smart learner to denote an olltirnal

self-directed learner for a given concept class. To study

the power of teaching, we compare the number of rllis-

talies made by the smart learner with the number of

rnist,akes made hy the stupidest Iearner with the help of

a powerful teacher.
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at] d derivpd optimal hounds on the uund)er of mistakes

for several COUCf’pt CkiS’SeS. For all previously stuclied

coucppt classes [81 9, 11, 12, 27], the millimurn number

of lllistlalieti made hy the stupidmtj learner in tJ~acher-

(Iirtwt, ed Iearnillg is always larger than the minimum

nurnh m of ulistakes made hy the srnartf learner in self-

[lirrt-t~tl l~artmlg. This raises an interesting qllestion of

wh~tjher t,?achiug is helpful for all learners including the

suiart< learner, [n other words, can a smart learner learn

faster when being taught instead of asliing questions Wld

Worliing on its own’?

[u this paper, we answer this questiou in the affkmative.

We construct! coucept c1asses for which the minimum

nimh er of rnistalies in self-directed learning is strictly

lflr~er than that h tPaChPr-(hreCted lParrljIl~, aSSllIIlhlg

that, cryljtc~gral~llically strong l>se(l[l(>rail~l(>rll hit, gell-

~r(it(]rs exist. Ill fact, our r&ults are much stronger:

the roucept, claw+ that, we create have the property

that tlh? luinimu m nlmll>er of mistakes is superpolyno-

Illial in self-directed learuing I>iit only linear in teacher-

dirwted learning. hl particular, without, the help from

ii teacherl the concept classes are not learnable even

for the smart learner. This demonstrates the power of

teaching in a learning procws. It has l~een shown that,

the rxisi,euce of cryl]tjogral]llic:illy strong pseuclorandom

hit, generators is equivalent tc the existence of one-way

fullctlions [14, 18]. So our results hold if my c~ue-way

functiuu exists.

111tile l~ast, cryptography has had considerable impact

(Jn learning t,heory, and virtually every Kl(jrl-le;irllal>ilit,y

rwult has at its }leart a cryl)tographic construction [1,

2. 4, 16, 17, 2 1]. Although the constrllction of our con-

ce~]t, classes is also l~asrcl on a cryptographic assump

t,iou, our nomlearnability rmultl for self-directed learn-

ing is stronger than previous nou-learnability results in

the following sense: Most of the previous results of this

type rrly ou the fa,ct that the examples arr chosen a,c-

cordiug to a distribution or by an adversary which rni,ght,

he “malicious” to the learner. Since the examples are

s~lect,e(l by t,he]parner itself in self-directed learning, t,h~

11f311-leiirll:Ll~ ility of our concept classes is solely inherent

in the structure of the concept classes and does not de-

llend on haviug the learner see examplm in a way that

IS less desjr:i,l)l; than could have heeiI ch(osen hy itself.

As a by-pro duct,, our results alsc) imply that the rrlin-

im]rn number of IIli+tak~S for learning a concept class

mself-directleci Iearningcau he sullstantial]y larger than

the V:i~>llil{-( ~llervullellkis dimemsion [25] of the-concept

class. This answers an open question posed hy (~olclman

and Sloan [1 2].

The rertmill(lrr dthe paper is organized as follows. In

\2, we fornmlly define teacher-directed learning and self-

directled learning. In 33, we review some useful detini-

t,ions m cryptography. In $4, we present the construc-

tion of our con~rpt classes and show that they have t,he

desired property. In 55, we further discuss some utlh[’r

properties of our concept, clzLw5es. We conclude in !6

with some open prohlerrls.

2 The learning models

In this section, we first introduce sonle basic definitions

in learning theory and review Littlestone’s on-line learn-

ing model. Then, we formally clefine teacher-directed

learning and self-directed learning] which are two vari-

ants of Littlestone’s model.

A co7Lcfp 1 r is a Boolean function on S(JIM’ domain c~f im

stances X. A co7~ccpt [-lass C is a family of concepts. An

exar7tple is an instance z E .Y , and, for a given concept,

c, a la bt’ied ~zamplt: of c is a pair (x, c(J:)). An examplt’

x is called a po(stt~vr fzamplf’ if c(J:) = 1, and it, is callrd

a ncgattvr exa7TLplts otherwise. An instance domain X is

often decomposed into subsets {.Yn } according to some

natural dimension measure n. A c cordingly, a concept

class C is decomposed into suh classes {d,,}. In all rnocl-

els for concept learning, the objective of the learurr is

to learn an unknown target co7LIq~t in a known concept,

class using labeled examples of the target concept. SuIce

we are interested in designing H3icientj algorithms, we

Will fOCUS OUr dkCUSSjOll oIl l)Olyl](Jlllitil-tilIl(’ d~Orlt,hlllS

througholit the pappr unless othrrwisv specified,

one of the commonly used nmdels in learning theory is

Littlest one’s rnistalie-l>ound model [ 19] in which learm

ing is done omline in a series of stages. In each st)age,

au adversary first presents an unlabeled example z to

the learner. The learner predicts if z: is positive or neg-

ative and is then told the correct answer. The goal

of the learner is to minimize the nunher of prediction

mistakes. We say that the learner learns a concept, class

C = {C,, } if there exists a polynomial F’ such that, for all

target concepts in C,,, the learner makes at most, P( 71)

mistakes using polynomial time in each stage.

WP say that, a learner is con,ststcntif, in every StfagP,

there is a concept in CrL that agrees with the lt~arner’s

cllrrent pr~dictiou and all previously tieeu Iahele(l {’x-

zunples. A consistent, learner is a reasonable learner in

the sense that it pays attention to what has h ern pre-

sented. We define a ~J(jly7L(j7rttal-tt7rLf cous2<7tf711 lrar71rr

as a learner that rrm.kes consistent predictions wing poly-

nomial time in each stage.

The self-directed learning mo&d

Self-directeci learning is a variant of Littlestoue’s mo[lel

in which the adversary is replaced hy the learner it-

self. Let A he a self-directed learning algorithm for

selecting examples and making predictions. we use

Lf.$ ( Cn, “A ) to denote the maximum number of mistakes

made hy A for any target concept c E Cn, and we de-

fine optkfs (~,, ) = minA ~l,s (L~n, A). In other words,
opt~s (CT1) is the number of mistakes made by an op-



timal self-directed learner (i.e., a smart learner) in the

worst, c<me.

Note that a self-directed learner selects examples by it-

self, and the selection in each stage is based on the

learner’s current, knowledge of the target concept, ob-

tained frolll previously seen lal~elecl examples. This re-

Hects the situation in which a smart, learner actively asks

qliestlions and learns by itself.

The teacller-dirwct ed learning mo ciel

Te:~cller-clirectecl learning is a variant of Littkstone’s

mode] in which the adversary is replackil by a help-

ful teacher who knows the target concep’tJ$Let A be a

teacher’s algorithm for selecting examples. We define

111~(C,,, A ) M the maximum number of mistakes made

hy any l>c)ly~lo~~lial-tirrle consistent learner for any tar-

get concept c ~ C,,. (We make the convention that

MT ( C,,, A ) = I.Y,, I if C,, has no polynomial-time consis-

tent, learner. ) We define opt MT (C,, ) = rrlin,4 MT (C,t, A ).

[n other words, opt M~ (Cn ) is the number of mistakes

made by the stupidest learner in the worst case when

the teacher uses an optimal algorithm.

Note that the teacher is required to teach any polyno-

mial-time consistent learner. Equivalently, the teacher

is required to present a sequence of labeled examples

that uniquely specifies the target concept. This require-

ment represents the situation in which a teacher teaches

a class of learners who may be stupid but pay attention

to (i.e., is consistent with) what, the teacher has pre-

sented.

The requirement is essential since it prevents possible

collusions I>etween the teacher and the learner, which

would make l~ot,h teaching and learning trivial. An easy

collusion strategy is the following: The teacher and the

learner agree beforehand on an “encoding” of the con-

cepts in a concept class by certain sequences of exam-

ples. When teaching a concept,, the teacher just presents

the sequence of examples that encodes the concept, even

though there may be several concepts consistent with

the sequence of examples.

optMs ((;) V(XSUS c@MT(~)

For all the natural concept classes that have been pre-

vic)usly st,uclied [9, 12, 27], opt Ms (C) is always smaller

than opt MT (C). As we analyze these algorithms, it is

always the case that, a smart, self-directed learner can

obtain some information al)outl the target concept, “for

free”

We illustrate this phenomenon by a simple concept class.

Let C consist of all the concepts with exactly one pos-

itive example and the unique concept whose examples

are all negative. To learn C, a smart learner can sinl-

ply follow “any order of the examples and always predict

negative. In such a way: the smart learner makes at

most one mist ake, and hence opt Ms (C) = 1. on the

other hand, to teach the concept that only has negative

examples, the teacher must preseut all the examples in

riornain X; otherwise, some consistent learner may still

make prediction mistakes for unseen examples, This

implies optMT(~) = 1~].

3 Sonle background in cryptography

In this section, we first introduce some notation and

definitions in cryptography. We then review the (~ol-

dreich, ( ;oldwasser, and Mic.ali pseuclorandorn function

construction [13], which will be useful for constructing

our concept classes.

Let R, = IJ,l I&, where each Etn is the set of all pos-

sible O-1 strings of length n. Let ,5’ = IJ,, ,Sn l>e a set

of strings, where each ,S’n consists of ml>it-long strings,

We use notation .s e ~arid ,S’,, to denote that s is chosen

uniformly at, random from ,5’rl. Let, T be a probabilistic

polynomial-time algorithm that takes as input strings

from S’n and outputs either O or 1. We use Pn(T, 5’) to

denote the probability that T outputs 1 on s Era71d h’n.

For a polynomial P, a Gyptographa’tally Strong pseudo-

random Btt generator (CKB generator) [6] with stretch

P is defined as a deterministic polynomial-time algo-

rithm G with the following properties: (1) C)n an input

string s ~ {O, I}n, (; generates a P(n)-bit-long out-

put string. (2) The set of strings ,5’ = (Jn ,S’n that C

generates cannot l>e efficiently distinguished from set

FL More precisely, for any prol>abilistic polynomial-

time algorithm T and any polynomial Q, IP,, (T, ,5’) –

P~ (T, R)/ < & for sufficiently large n.

Let F = {Fn} be a collection of functions, where each

F,l consists of functions from {O, l}n to {O, 1}n. Let A

be a probabilistic polynornial-tirne algorithm capable of

oracle calls. On an input function ~: {O, l}n + {O, 1 }’t,

A outputs either O or 1 by querying an oracle for ~

about some instances. We me P,J(A, F) to denote the

probability that A outputs 1 on a function f cra~td Fn.

Let F = {F. } and F’ = {F~} be two collections of

functions, where l~oth F,, and FL consist of functions

from {O, l}n to {O, l}n. We say that F and F’ are

polynomially indistmguishuble if, for any probabilistic

polynomial-time algorithm A and any polynomial Q,

lP~(A, F’) – P~(A, F’)1 < & for sufficiently large 7L.

It is easy to prove that polynomial indistinguishaljility

is transitive.

Let F = {Fn} Le a collection of functions, where each

Fn consists of functions from {O, I}n to {O, I}n. Let

A be a probabilistic polynomial-time algorithm capable

of oracle talk. on an input function ~ erand Fn, A

queries an oracle ~jf for ~ about some instances and

then chooses a different instance y. At this point,, .4

is disconnected from (2j and is presented with values

~(~) and r Erand {0, 1}7’ in a random order. For any
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l,, II,vnonlia] Q, we say that, algorithm ,4 Q-t7Ljer,s F if,

t,)r mtiuitelyHmny 71, A correctly guessm which of the

t,w(, values is f(y) with prohal>ility at, least, ~ + &

for j E ~a7Ld ~,, We say that, F can l~e poltjnomtully

zrlferred if there exist a polynomial Q and a probabilistic

I>c>lyil(:,lllial-t,illle algorithm A that Q-infers F.

‘llr l)sellfltjr:~rl(lolll function collection constructed l)y

(Joldreicll, (loldwasser, and Micali is a set of functions

F“ = { F,; }, where ~ach F; = {fs}se{J,l}’ is defiKIed as

tollfw~. Letf [; he a ( ~Si3 generator that stretches a seed

s E {o, I }“ iutlj :i Y71-llit-long sequence (;(.s) = b; . . bjn.

Let (~,,(,’i) he the Iettlilosl n hits b; Y, and C:l(S) he

the right,lllost, 71 hits b~,+l b~,, For t > 1, let

(1’.,, J,($) = (~z,((~Jt_,((J,cl(.s) )).

Thm function ~, :{0, 1}” -+ {0, 1 }“ is defined as

f,, (J~ . ..zn) = (;,., ~,, (.$) = {l’r,, ((;z,L_, (. (;l, (s) ~~.)).

(;ol(ireich rt al showed that if (.XB generators exist,

then the collection of functions F’* is polynornially im

tlist,illgllisll:tljle from H = { H,, } where Hn is the set of

all fullctlions from {0, 1}n to {0, 1}n. Itl is easy to see

that, F* also has the followirrg two Ijropert,ies: ( 1) 17L-

dvM7~g: each fuuctlion f$ ● Rrl has a unique whit index

.S assc]ciatw.1 with it, (2) [){}ly7Lv71Ltul-ti7t~e 6valuatzo7u

there exists a l>r,lyIlollLial-tillle algorithm that on inputs

s, J c {0, 1}” computes f,($).

(;oldreich et al. further studied how to infer a fhnction

in F,; given its input-output, values. They ol~tained the

following general result, which immediately implies that

F* = {F;} cannot be polynomially inferred if ( ;S13 gen-

erators exist,.

Theorem 1 [1:1] L~t F = { F,, } Je (r collection of func-

hon.$, where cac/? F,, [“on.nst.s Of ~U71Ct207LSfrom {(), 1 }“

f(, {0. 1 }“. If F has ihr pmpertz~s of indetxng and po/y -

UO Illt(hl-tllllt’ t’V(L[ll(Zh OTt. Lh?ll F can?l Ot bf’ po@L07111(L[@

t ihte?’{’t ’d Lf U?~d o?blY ~f F 1,s ~lc]l,qllo~llla[l~ ZILdl.>tZTL(JUiSh-

ablv JT0711 H .

We remark that the above theorem also holds for collec-

tiOUS [)f fUnCtiOll~ With dOIIlaili {(), 1 }n aild l’an~e {(), 1}

as opposed t,o {o, 1 }n. This fact will be used in the next

section,

4 The power of teaching

ln this section, we construct concept, classes for which

the k=aruer makes substantially f~’wer mistakes in t,eacher-

(iirrrted learning than in self-directed learning.

We that prove a useful lemma. Let 2,, denote th~ set of

all functions from {O, 1}” to {0, 1} and let Z = {Zr, }.

Lemma 2 If a con cept class C = {C,, } tcs polynovltallg

zrlclz.stt?lg?l!.~)lable from Z, then for’ any polynonlzal f) and

f(,~’ 171,fi7LltL!hJ?ll(l?t,~ 71, O@~,S(~:n ) > ~(71).

P?’oof. We assume for contradiction that there exist

a p olynomial-tirne self-directed learning algorithm A*

and a polynomial P such that Lfs(Cn, A*) ~ P(n) for

suflicient,ly large n. Let m = (xl, .C2, . . . . Xt) be the query

sequence that A* chooses. (Note that for different target

concepts, m may he different,. So each query Z:i depends

on the target concept,. )

By the assumption J2.$(~~, A*) < P(n), we obtainthat,

for any fixed target concept c E &, the numljer of pre-

diction mistakes that, A* makes over the first 6P(n)

queries (fl:l, . . . . .C,;F(,,)) is at most P(n). Therefore, for

sufficiently large 71, with probability one, the number of

prediction mistakes that algorithm A* makes over the

first, 6P(n) queries is at most P(71) if c 6ra71d [~,,.

on the other hand, l)Y Theorem 1, we know that (; can-

not be polynomially inferred . This implies that,, for any

polynomial Q and for sufficiently large 71, the probability

that A* predicts correctly for each J:, ( 1< i < 6F’(n)) is

at most ~ + ~ for c ~ra7Ld (;,l. Hencel for suffici~llt]y

large n, the probability that .4* predicts incorrectly for

each xi (1 < i < 6P(7J)) is at, least, ~ — ~ ~ :. on

average, algorithm A* makes at least ~ 61)(7L) = 21’(7J)

prediction mistakes over the first tiP(7t) queries. This

contradicts the fact that with probability one, A* makes

at most P(7~) mistakes over the first 6P(7~) queries if

C Erand ~n. c1

By the above lemma, we know that in order to construct

a concept class such that optlh’ls(~~) is superpolynornial,

it is sufficient to construct a concept class such that, ~

is polynomially irldist,illg~lishable from Z.

In what, follows, we construct a concept class ~’ = {~~ }

SIICI1 that, (~’ is polynomially indistinguishable from Z

and (@ i!~T (~~ ) is linear. We begin” with some use-

ful notation. For z: G {O, 1}”, we use x(t) to denote

(z+ i) mod 2“. (iiven a concept c, we call the sequence

(c(x), c(j:~~)) . . . . c(x(z’’-l~)) (where z = 0... O) the la-

bei sq7Le71ce of c. Note that the label sequence of r is a

O-1 sequence of length 2“.

Let C be a (.;S13 generator with stretch 271, and let,

F* = {F,:} be the (loldreich, (joldwasser, Micali pseu-

dorarrdom function collection constructed based con (:,

where Fry = {fs }Se{ 0,1}” ~t’’’rtiW with F“ , ‘e c“”-
structj ~~+ = {~~ }, together with two intermediate con-

cept classes L = {Ln } and L’ = {L~, }, by the following

three-step procedure.

Step 1: Define L~ = {l, }$C{O,l}T1, where

l$(x) = the least significant bit of ~$ (z).

Step 2: Define L~, = {lj}$<{o,ll~,, where

{
((J:) = 0 ifl, (~(z))= l, for i= 0,1, . . ..n - 1,

1S(%) otherwisr.
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step 3: [)efine q = {C., }.c{(,,, },. , where Proof. Assume for contradiction that Z and Z’ are

polynomially clistinguishable. Then there exist a prob-

{

1 if ~ ~ {.s,.sll ),. ..,.$(’’-l)}, abilistic polynomial-time algorithm A and a polynomial

r,(%) = (J if z c {.s~–’),.s(~l}, Q such that for infinitely many n,

1: (z) otherwise,
IPn(A, Z) – Pn(A, Z’)\ ~ &. (1)

We remark that, a somewhat similar construction was Let P br a polynomial such that algorithm A makes

used hy Amsterdam [1] to distinguish learning by raxl- at most P(n) oracle calls (to request the value ~(x) for

dom examples from learning by “experirnent,s” (a cer- chosen x). Since A can distinguish between a function

tam extended queries) However, his construction does ~ Era7~d Z,l and a function ~’ =rand Z;, A must detect
uot work for our problem of distinguishing self-directed a sequence of 71 consecutive 1’s in the label sequence of

Iearumg from teacher-directed learning. ~. Since Z,, contains all functions ~:{0, l}n + {O, 1},

We I>rove in the next, two theorems that concept class
we know that for a fixed z: c {O, l}n and .f ~rand Z.,

(~’ constructed above has trhe desired property, “
Pr(~(x) = ~(x(l)) = = ~(z(n-l)) = 1) = +.

Theorem 3 Optk’fT(~:)< n.
The probability that A detects a sequeuce of 7L ccJusecu-

P(rl)

Proof. For ally target concept c, c d:, we prove
tive 1‘s by using at most P(7L) queries is less than ~.

that, the teacher only needs to ~resent the n labeled
Therefore, for any polynomial Q,

examples (.s, 1), (.s(l), 1), (.s(n– l), 1) in order to teach

c, ( ~onsider Step 2 of our construction. For each con-
IP.(A, Z) - P.(A, Z’)1 < &

cfptf, we flip certlain 1‘s to O’s in its label sequence to

eliminate all sequences of consecutive 1‘s of length 7t or
for sufficiently large 71, which contradicts Equation 1. 0

longer. In Step 3, we further modify the label sequence

so that (1) there is a unique sequence of consecutive

1‘s of length n in the label sequence for each concept,

and (2) for any given concept, the starting position of

its unique sequence of consecutive 1‘s of length 71 is dif-

ferent, from all of the other concepts. Therefore, the n

labeled examples (s, 1), ((J’), 1), ~~~(s~’’-’), 1) uniquely

specify e,. Furthermore, any polynomial-t irne consis-

tent learuer can infer c. from these n labeled examples.

Therrfoi-e, a p cdynomlzd-tirne consistent learner will not

make more mistakes aft,er seeing the n labeled examples.

Thus, [@’fT(~~) <71. D

Tl~eorem 4 If 07Le-wrry f?mction$ exist, then for any

poly7~onwai P, optMs(C~) > P(7t) for infinitely many

n .

By bl-rlma 2, we only need to show that C* and Z =

{Z,, } are polynomially indistinguishable provided that

our-way fuuctlons exist. (Recall that Z,l is the set of all

functions from {O, 1}n to {O, 1 }.) The inclistii~lgllisl~al>il-

ity will be proved via the next three lemmas,

We dt+ine a set of functions Z’ = {Z:} by modifying

Z = {2,,). For each ~ & Z,,, the corresponding j’ G Z~

1s defined as

Lemma 6 Z’ and L’ ar~ polynomzally zndz.~tznguz.sh-

able.

The proof of this lemlrla is technically the most difficult

one, and it relies on the assumption that one-way func-

tions exist. The basic idea, however, is quite simple. In

particular, we use a standard cryptographic technique

introduced by Yao ~J6]. Recall that the collection of

functions L’ is constructed based on (.;$B generator {:.

If a probabilistic polynomial-time algorithm A can dis-

tinguish between Z’ and L’, then we can use A to colI-

struct another probabilistic polynomial-time algorithm

T such that T can distinguish the set of strings gener-

ated by G from set R (the set of all possible O-1 strings).

This is a contradiction. A detailed proof is given in the

appendix.

Lemma 7 L’ and C* are poly7107n2allg t7Ldtstt71glLz.sh -

able.

Proof. Sirrlilar to the proof of Lemma 5. U

Proof of Theorem 4. Using Lemmas 5, 6, and 7 and

the fact that polynomial indistinguishability is transi-

tive, we can easily prove that C* and Z are polyno-

rnially indistinguishable. By Lemma 2, optllls (C* ) is

superpolynomial. O

{

if~(x[ij) =1, fori=O, l,.. .,71—1,
.f’(~;) = ~(x) otherwise.

Remarks
Note that we modify Z to obtain Z’ in the same way as

we modify L to obtain L’. We have seen that for each concept, ill ~~, there exists

a small set of labeled examples that, contains the “key”

Lemma 5 Z a7~d Z’ ar~ polyno7rLially mdwtanguashabl~. information of the concept. However, the set of key
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examplm ih hard to find by the smart learner for an

uuknown target concept,, and the learner may have to

1 ‘gmake a w e uuiul>er of mistakes m self-directed learn-

iug,. Wt’ have ais(J seen that the teacher, who knows the

target concept, can easily select and present the key ex-

amples to the learner. This phenomenon also occurs in

the real world: A knowledgeable teacher can help stu-

deuts to learn faster by providing key points that are

sum~tirnes hard to find by the students themselves.

We have shuwn that concept, C1<WSC“ is not learnable

in self-directed learning assuming one-way ftmctfions ex-

ist,. This result is stronger than most, of the previous

Llt:lil-le:irtlzillility results that rely on cryptographic m-

sumpt,iom in the following sense: The uon-learuahility

of C* i> solely inherent, in the structure of C’ and does

not, depend on having the learner see examples in a way

that is less desirable than could have been chosen by

itself.

5 Discussions

III this section, we further discuss some properties of

concept class C*. First, we consider concept class C*

in Littlest,olle’s mistake-bound model [1 9] and Valiant’s

clist,ril~llt,io~l-frcr mode] [24]. It is uot hard to obtain the

following noli-learnability results from Theorem 4.

Chuwllary 8 Ij one-way ftlnciion.s tmst, then concept

class [Y M nut learnablt? tn the nlwtakc-bound model.

Cfmollary 9 If on c-way functions ezvst, then concept

class C* is not iear’nable zn thf dustn”butiou-fr et>model.

We next comider some relation between the number

of mistakes in self-directed learning and thr Vapuik-

( ‘hervonenkis dimension of a cone.el]t class. Let, C be a

concept class over an instance domain X. We say that,

a fkite set Y ~ .~ is .shattert’d by (; if {c (l Y I c E ~} =

2J’. The va~)lttk-[~}Lt. rllorler)kl.s dtmen.sion of C ~~s], de-

noted by v<:(C), is defined to be the smallest, d for which

no set of d + 1 instances is shattered by C. Note that

fur any finite concept class C, vc(C) ~ log ICI.

(ioldman and Sloan [12] studied the relatiou between

v(:(C) and r@A4s(C) and presented concept classes for

which v(;((;) can be arbitrarily larger than opt14~(C).

They also ccmstructed a concept class C for which VC(C)

= 2 and optlll,$(t~) = 3. Since this was the only known

concept class for which v(~(C) is strictly smaller than

optM,$ (L’), t,hey posed the following question: Is there a

concept, class (~ for which opt Ms(d) = L+J(v(Y(C) )“? The

following corollary answers ( +oldrnan and Sloan’s open

question in tile affirmative.

Proof. By Theorem 4, optk2s (C;) is superpolynomia]

in n. Since the number of concepts in C; is i?n, we have

Vc(c;) < log I(!:l = ?L. II

6 Open problems

As we have pointed out, in ~ 1 and $4, for all the natural

concept classes studied prior to our work, the number of

mistakes is always smaller in self-directed learuing than

teacher-directed learning. In particular, the smart self-

directfed learner can always get useful information for

the target concept without making many mistakes. It

would be interesting to characterize such a property in

a rigorous way.

As we have pointed out, our results and most of the pre-

vious work rely on cryptographic assumptions to prove

the non-learnability of certain concept classes. There

has been some recent research in the reverse direction [5]:

Provably secure cryptosysterns are constructed assum-

ing certain concept classes are hard to learn in the distri-

bution-free model. It would be interesting to construct

cryptosystems based on concept classes that are easy to

leiin i~; teacher-clirectred

self-directed learning.
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Appendix: Proof of Lemma 6

Assume for contradiction that Z’ and L’ are polynu-

rnially distinguishable. Then there exist a prol~abilist ic

polynornial-tirne algorithm A and a polynomial Q such

that for infinitely many n,

\P.(A, Z’) - Pn(A, L’)1 z & (2)

Thus, algorithm A can distinguish between a function

~ Erand LA and a function g Crand .z~, by oracle calls.

We next construct a sequence of n oracles that transits

smoothly from an oracle (3f for ~ to an oracle og for g.

(.~onsider the computations of A in which A’s oracle

calls are answered by one of the following algorithms

Di(i = O, 1, . . . ,7~). Let y be a query of A. Recall that

1/[1~, Vtn– i J are the n – 1 instances knmdately after

~ in {O, l}n and y(”) is y itself. For j = 0,1, . . ..n - 1,

write y(~) as y!) ..y~). Algorithm 1), answers A‘s

query y as follows:

forj=O, l,. ..,7l–l

[~)if the pair (yl . ..yy). . )
has not been stored

‘h20~E’’Il~ ~aj~~~f) !.!j~~~”’ 1}”

compute b] = (; (,,
Y,+l ~$;) (~)

(J)else retri, eve the pair (yl . . yf~), w)

compute bj = G (,,~t+l. ,Y$) (~)

if bo=bl=. .bm_l=l

then answer O

else answer b.

Define pi to be the probability that A outputs 1 when

71 is given as an input and its queries are answered by
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algoritlml [)?, U < i < 71. The II p: = P~(A, L’) and

p; = P,, (A, Z’). Hence, Equation 2 is equivalent to

1A–1’:12 *

We now use A to construct a prolmbi]istic polynornial-

time algorithm T for distinguishing the set of strings

generated by ( X B generator (; from set R = U,, Rn.

(Recall that iZ~ is the set of all possible O-1 strings of

length n.) Let F’ be a polynomial such that algorithm

.-l M:Llws at, most I’(n) queries on input n. Algorithm T

wo~]is ill two stages On input 71 and a set [Jn containing

P(n) strings each of which has 2n bits. [n the first stage,

T piclw i cr(~nd {(J, 1, ..., n — 1 }. ln the second stage,

T answms A‘s queries using set (J,, as follows (where y

is a query of A):

forj=O, l,. ..,7l–l

[~)...y:),).)if the pair (YI

has not been stored

then pick the next string u= UOU1 i.n lJn

(j) (~)o,u(l)store the pairs (YI . ..vi

~~J...Y,jjjl,lL1)and (fyi

compute b~ = (~ (,) (~)
~,A, ~~~)(1~~), where cu =vi+l

.,.
(.7)else retrieve the pairs (y, .y~+)l,v)

compute bj = (; (,)

V,+A
J:)(l))

if btl=bl=.b~_l=l

then answer O

else answer 60

We ct)rlsicier two cases for [J~: (1) [Jn consists of(2n)-

bitf strings output by the(.XB generator Gon random

seeds, and (2) LI,t consists of randomly Selectled (2n)-

hit strings. In case 1, T simulates A with oracle D,.

Tllel)rol>ability that T[~[ltl~llts lis~~jOl(l/n).p~. In

case2, T simulatesA with oracle Di+l. Theproba.bility

t,hatT outputs 1 is~~~t~(l/n).pj+l =~~=l(l/n).p~.

Forirlfillit,ely I1-lzilly?~, tllepr(~l]abilitiesf orthetwocmes

— Therefore,differ by at, least] (1/T~) “ Ip# ‘P~l > ~~~n).

algorithm T can distinguish the set of strings generated

by (.!!+EI generator Gfrornset R, which is acontradic-

tiou,
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