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We give an exact characterization of permutation polynomials modulo n"2w,
w52: a polynomial P(x)"a
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xd with integral coe$cients is a per-

mutation polynomial modulo n if and only if a
1

is odd, (a
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#2) is even,

and (a
3
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7
#2) is even. We also characterize polynomials de"ning latin

squares modulo n"2w, but prove that polynomial multipermutations (that is, a pair
of polynomials de"ning a pair of orthogonal latin squares) modulo n"2w do not
exist. ( 2001 Academic Press
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1. INTRODUCTION

A polynomial P (x)"a
0
#a

1
x#2#a

d
xd is said to be a permutation

polynomial over a "nite ring R if P permutes the elements of R.
Permutation polynomials have been extensively studied; see Lidl and

Niederreiter [4, Chap. 7] for a survey. Permutation polynomials have numer-
ous applications, including cryptography [7]. Indeed, the RSA cryptosystem
[13] is one such application.

Most studies have assumed that R is a "nite "eld. See, for example, the
survey of Lidl and Mullen [5, 6].

In this paper we consider the case where R is the ring (Z
/
,#, ) ) where n is

a power of 2: n"2w. Modern computers perform computations modulo 2w
e$ciently (where w"8, 16, 32, or 64 is the word size of the machine), and so it
is of interest to study permutation polynomials modulo a power of 2.

We note that the RC6 block cipher [12] makes essential use of the fact that
the polynomial x (2x#1) is a permutation polynomial modulo n"2w, where
w is the word size of the machine.
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2. CHARACTERIZING PERMUTATION POLYNOMIALS

In this section we give a simple characterization of permutation poly-
nomials modulo n"2w.

Our result stands in surprising contrast to the situation for "nite "elds,
where the problem of determining whether a given input polynomial is
a permutation polynomial is quite challenging and has not yet been shown to
be in P. There are, however, e$cient probabilistic algorithms for this prob-
lem [8, 17].

We assume for convenience that P is an integral polynomial; that is, its
coe$cients are integers, rather than elements of Z

n
. This assumption allows

us to talk about the same polynomial with di!erent values of n. In particular,
our proof will work by induction on w, where n"2w.

2.1. ¹he Case n"2

The case n"2 (w"1) is trivial:

LEMMA 1. A polynomial P (x)"a
0
#a

1
x#2#a

d
xd with integral coe.-

cients is a permutation polynomial modulo 2 if and only if (a
1
#a

2
#2#a

d
)

is odd.

Proof. Trivial, since 0i"0 and 1i"1 modulo 2 for i51. j

2.2. ¹he Case n"2w, w'1

LEMMA 2. ¸et P (x)"a
0
#a

1
x#2#a

d
xd be a polynomial with integral

coe.cients and let n"2m, where m is an even positive integer. If P(x) is
a permutation polynomial modulo n, then a

1
is odd.

Proof. If a
1

were even, then a
i
) 0i"a

i
)mi"0 (mod n) for i51, implying

that P (0)"P (m), a contradiction with the assumption that P is a permuta-
tion polynomial modulo n. j

LEMMA 3. ¸et P (x)"a
0
#a

1
x#2#a

d
xd be a polynomial with integral

coe.cients, let n"2w, where w'0, and let m"2w~1"n/2. If P (x) is a per-
mutation polynomial modulo n, then P (x) is a permutation polynomial modulo m.

Proof. Clearly, P(x#m)"P (x) (mod m), for any x. Assume that P(x) is
a permutation polynomial modulo n. If P is not a permutation polynomial
modulo m, then there are two distinct values x, x@ modulo m such that
P(x)"P (x@)"y (modm), for some y. This collision means there are four
values Mx, x#m, x@, x@#mN modulo n that P maps to a value congruent to
y modulo m. But there can only be two such values if P is a permutation
polynomial, since there are only two values in Z

n
congruent to y modulo

m. j
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LEMMA 4. ¸et P (x)"a
0
#a

1
x#2#a

d
xd be a polynomial with integral

coe.cients, and let n"2m. If P (x) is a permutation polynomial modulo n, then
P(x#m)"P (x)#m (mod n), for all x3Z

n
.

Proof. This follows directly from Lemma 3, since the only two values
modulon that are congruent to P (x) modulom are x and P (x)#m. j

LEMMA 5. ¸et P (x)"a
0
#a

1
x#2#a

d
xd be a polynomial with integral

coe.cients, and let n"2m, where m is even. If P (x) is a permutation polynomial
modulo m, then P (x) is a permutation polynomial modulo n if and only if
(a

3
#a

5
#a

7
#2) is even.

Proof. By Lemma 2, a
1

is odd. Since P (x#m)"P (x) (modm) for any x,
and since P is a permutation polynomial modulo m, the only way P could fail
to be a permutation polynomial modulo n would be if P (x#m)"P (m)
(modn) for some x.

Since m"n/2 is even,

(x#m)i"xi#imxi~1 (modn)

for i51. Therefore,

a
i
(x#m)i"a

i
xi (mod n),

unless a
i
is odd and either

f i"1 or
f i'1 and both x and i are odd,

in which cases

a
i
(x#m)i"a

i
xi#m (mod n).

Since a
1

is odd, a
1
(x#m)"a

1
x#m (mod n) for all x. Thus

P(x#m)"P (x)#m (modn) for all even x3Z
n

and P (x#m)"P(x)#
(a

1
#a

3
#a

5
#a

7
#2)m (mod n) for all odd x3Z

n
. The lemma follows

directly. j

The previous lemmas can now be combined to give our main theorem.

THEOREM 1. ¸et P (x)"a
0
#a

1
x#2#a

d
xd be a polynomial with inte-

gral coe.cients. ¹hen P (x) is a permutation polynomial modulo n"2w, w52,
if and only if a

1
is odd, (a

2
#a

4
#a

6
#2) is even, and (a

3
#a

5
#a

7
#2) is

even.
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Proof. If P (x) is a permutation polynomial modulo n, then a
1

is odd by
Lemma 2. Furthermore, P(x) is also a permutation polynomial modulo
m"n/2, by application of Lemma 3, and so (a

3
#a

5
#a

7
#2) is even, by

Lemma 5. Finally, by repeated application of Lemma 3 as necessary, P (x) is
a permutation polynomial modulo 2, and so (a

1
#a

2
#a

3
#2) is odd by

Lemma 1. The &&if '' direction of the proof is then complete.
Conversely, if a

1
is odd, (a

2
#a

4
#a

6
#2) is even, and (a

3
#a

5
#

a
7
#2) is even, then P(x) is a permutation polynomial modulo n"2w, by

induction on w, using Lemma 1 for the base case (w"1) and Lemma 5 for the
inductive step. j

EXAMPLES. The following are permutation polynomials modulo n"2w,
w51:

f x (a#bx) where a is odd and b is even.
f x#x2#x4.
f 1#x#x2#2#xd, where d"1 (mod 4). (If we work over GF (pk),

where p is odd, instead of modulo 2w, Matthews [9] shows that this poly-
nomial is a permutation polynomial if and only if d"1 (mod p (pk!1))).

After the "rst draft of this paper was written, we became aware of the paper
by Mullen and Stevens [10], in which it is stated that &&It is a direct
consequence of Theorem 123 of [3] that f (x) in (2.2) permutes the elements of
Z/pnZ if and only if it permutes the elements of Z/pZ and f @(a)I0 (mod p) for
every integer a.'' (Here the reference number has been changed to match our
bibliography, and (2.2) refers to the polynomial representation of f in terms of
factorial powers.) An alternate (and slightly simpler) derivation of our main
theorem can be obtained using this characterization; details are omitted here.
Mullen and Stevens also give a (somewhat complicated) formula for counting
the number of polynomials that represent permutations modulo m"pn.

3. LATIN SQUARES AND MULTIPERMUTATIONS

A function f : S2PS on a "nite set S of size n'0 is said to be a latin square
(of order n) if for any value a3S both functions f (a, ) ) and f ( ) , a) are
permutations of S. Latin squares exist for all orders n, e.g., consider addition
modulo n.

A pair of functions f
1
( ) , ) ), f

2
( ) , ) ) is said to be orthogonal if the pairs

( f
1
(x, y), f

2
(x, y)) are all distinct, as x and y vary. Orthogonal latin squares

were "rst studied by Euler [1] in 1782, who called them graeco-latin squares.
For an overview of orthogonal latin squares see Lidl and Niederreiter [4,
Sect. 9.4] or Hall [2, Chap. 13]. Orthogonal latin squares exist for all orders
except n"2 or n"6.
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Shannon [15] observed that latin squares are useful in cryptography; more
recently Schnorr and Vaudenay [14, 16] applied pairs of orthogonal latin
squares (which they called multipermutations) to cryptography.

Since the focus of this paper is on polynomials, we now restrict attention to
latin squares and multipermutations de"ned by bivariate polynomials
modulo n"2w.

Since the conditions in Theorem 1 depend only on the parity of the
coe$cients, it is easy to state necessary and su$cient conditions for a bivari-
ate polynomial to represent a latin square of order n"2w. For convenience,
these conditions are stated in terms of conditions on derived univariate
polynomials. The proof is omitted.

THEOREM 2. A bivariate polynomial P(x, y)"+
i,j

a
ij
xiyj represents a latin

square modulo n"2w, where w52, if and only if the four univariate poly-
nomials P(x, 0), P (x, 1), P (0, y), and P(1, y) are all permutation polynomials
modulo n.

Mullen [11] has derived necessary and su$cient conditions for a bivariate
polynomial to be a latin square modulo prime p; these conditions turn out to
be rather more complicated than the conditions given here for n"2w.

For example, here is a second-degree polynomial representing a latin
square modulo n"2w :

2xy#x#y"x ) (2y#1)#y

"y ) (2x#1)#x.

Sadly, however, the situation is di!erent for orthogonal latin squares
modulo 2w, as shown by the following theorem.

THEOREM 3. ¹here are no two polynomials P
1
(x, y), P

2
(x, y) modulo 2w for

w51 that form a pair of orthogonal latin squares.

Proof. Lemma 4 implies that P (x#m)"P (x)#m (modm) for any per-
mutation polynomial modulo n"2m. Thus

P
i
(x#m, y#m)"P

i
(x#m, y)#m (mod n)

"P
i
(x, y)#2m (mod n)

"P
i
(x, y) (mod n).

Therefore, (P
1
(x, y), P

2
(x, y))"(P

1
(x#m, y#m), P

2
(x#m, y#m)), and

the pair (P
1
, P

2
) fails (rather badly) at being a pair of orthogonal latin

squares. j
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