Some Thoughts on Electronic Voting

Ronald L. Rivest

MIT CSAIL

DIMACS Voting Workshop
May 26, 2004
"What's one and one?"

"I don't know," said Alice. "I lost count."
Outline

- 12 “debatable propositions”
- A “pedagogical variant” of Chaum’s voting proposal
12 Debatable Propositions

- We give some “propositions” worth consideration and debate.
- These are arbitrarily phrased, so as not to imply support, one way or the other.
- We give a couple of pro/con arguments each way for each proposition.
- “Sometimes I’ve believed as many as six impossible things before breakfast.” (White Queen)
1. Voting in private is not important

- **Pro:**
 - If so, why do we allow such widespread use of absentee ballots or vote-by-mail??
 - Threats affecting large number of vote counts are more important.

- **Con:**
 - Voter privacy is necessary to defeat coercion and vote-selling.
 - History of voting shows privacy to be important.
2. Voting fraud is rare

- **Pro:**
 - Few convicted of voting fraud
 - Problems in manipulation of registration seem much more prevalent.

- **Con:**
 - *Absence of evidence is not evidence of absence.*
 “We’ve never seen a problem” does not mean problems don’t exist!
 - Maybe unsuccessful voting fraud is rare.
3. Voter is not a computer

- **Pro:**
 - *Gee, this seems obvious.*

- **Con:**
 - Much existing cryptographic voting literature assumes otherwise.
 - Someday voters will have their own “trusted computing base” (a cell phone?) that can act on their behalf in a trustworthy manner...
4. Voting by machine is “proxy voting”

◆ Pro:
 - Gee, this seems obvious.

◆ Con:
 - Well, we don’t consider a pencil a “proxy” for the voter, do we?
 - Is a DRE (or a computer) more like a pencil or more like a corruptible person?
5. We must “trust the machines”

- **Pro:**
 - It’s either that, or back to #2 pencils…
 - Because we can

- **Con:**
 - Why outsource our elections to vendors?
 - Necessity has not been demonstrated; good audit and controls seem possible
 - Because we can’t
6. Trustworthy software is possible

- **Pro:**
 - We fly in planes, don’t we?

- **Con:**
 - Planes have no field-upgradable software.
 - Avionics software is enormously expensive. (DO178B regulations)
 - Insider threat less serious for planes.
7. Code review is sufficient

- **Pro:**
 - Gee, it’s what we’re doing now…
 - Open source could make this even better…

- **Con:**
 - Need to trust compiler, and even that’s not enough (Ken Thompson)
 - Undecidable in general
 - Very hard even in simple cases:
 » Does this program ever refuse to let someone vote? :
 * On input n (e.g. n is the blank ballot, as an integer)
 * While n>1: if n even n ← n/2 else n ← 3x+1
 * Proceed to ordinary voting code…
 » It is an *unsolved problem* even for this program!
8. Testing is sufficient

◆ **Pro:**
 - As long as voting machine can’t tell if it is being used “for real”, it can’t cheat.

◆ **Con:**
 - Easy for an accomplice to “signal” software that it is being used “for real”.
 - Sufficiently extensive parallel testing is very expensive.
9. Paper is necessary

`I think I should understand that better,' Alice said very politely, `if I had it written down: but I can't quite follow it as you say it.'

Pro:
- Without (voter-verified) paper ballot, voter doesn't really know how he voted.
- Without paper output, voting machine isn't committed to any particular behavior or action.
- Electronics can't audit itself (at least, if made by same manufacturer...)

Con:
- Same investment can yield equivalent results in other ways...
10. Transparency helps security

- **Pro:**
 - Publishing source code, lists of voters, ballot images, etc. seems like a good idea

- **Con:**
 - Not easy to do and protect voter privacy.
 - Giving voters more chances to complain can cause more problems than it solves.
11. We’ll see fewer close elections

- **Pro:**
 - Populations are growing

- **Con:**
 - Sophisticated polling allows candidates’ resources to be spent efficiently, narrowing margins in close states.
12. If it’s close, it doesn’t matter

◆ Pro:
 - No matter which way it goes, about the same number of voters are unhappy.
 - “Which road do I take?” asked Alice.
 “Where do you want to go?” said the cat.
 “I don’t know…” said Alice.
 “Then it doesn’t matter!” said the cat.

◆ Con:
 - Rule by minority is not democracy!
A pedagogical variant of Chaum’s voting proposal

- Used in my class this spring as introductory example, before going into details of Chaum’s and Neff’s schemes.
- Captures many significant features, but not all; some problems/concerns not well handled.
- Intended to be simpler to explain and understand than full versions.
- Related to Jakobsson/Juels/Rivest mix-net scheme.
- Little novelty here; main ideas (e.g. cut and choose) already present in Chaum’s scheme.
Pedagogical variant (overview)

- Voting machine produces ciphertext that is encryption of voter’s ballot.
- Ciphertext posted on bulletin board as “official cast ballot” (electronic).
- Voter given receipt copy of ciphertext.
- Voter given evidence that ciphertext correctly encodes his intended choices.
- Ciphertexts “mixed” for anonymity.
- Ciphertexts decrypted and counted.
Pedagogical variant (details)

- Voter V_i prepares ballot B_i
- Machine prints and signs B_i, C_i, D_i, r_i, s_i and gives them to voter.
 C_i is encryption of B_i (randomization r_i)
 D_i is re-encryption of C_i (randomization s_i)
- If voter doesn’t like B_i, he starts over.
- Voter destroys either r_i or s_i, and keeps the other information as evidence (paper).
- Voting machine signs and posts (V_i, D_i,”final”), and gives (paper) receipt copy to voter.
- Final D_i’s mixed up (mixnet), decrypted, and counted.
Pedagogical variant (details)

El-Gamal encryption and re-encryption:

\[C_i = (g^{ri}, B_i^r y^{ri}) \]
\[D_i = (g^{ri+s_i}, B_i^r y^{ri+s_i}) \]

- Voter keeps only one link as evidence (similar to Jakobsson/Juels/Rivest, or Chaum)
- Voting machine can cheat undetectably with probability at most 1/2 per vote.
- Voter can check evidence on exit.
- Signed \(B_i \)’s are easy to get...
- Can add “visual crypto” to hide \(B_i \)’s...
Pedagogical variant (summary)

- Official ballot is *electronic ciphertext*.
- Voter’s *receipt* allows him to ensure his ballot is counted.
- Voter’s *evidence* supports claim that ballot captures his intended vote.
- Schemes such as these (Chaum / Neff) provide an interesting degree of “end-to-end” security...
“Begin at the beginning,” the King said gravely, “and go on until you come to the end, then stop.”
(The End)