On the Notion of Pseudo-Free Groups

Ronald L. Rivest MIT Computer Science and Artificial Intelligence Laboratory TCC 2/21/2004

Outline

- Assumptions: complexity-theoretic, grouptheoretic
- Groups: Math, Computational, BB, Free
- Weak pseudo-free groups
- Equations over groups and free groups
- Pseudo-free groups
- Implications of pseudo-freeness
- Open problems

Cryptographic assumptions

- Computational cryptography depends on complexity-theoretic assumptions.
- ♦ H two types:
 - <u>Generic:</u> OWF, TDP, P!=NP, ...
 - <u>Algebraic</u>: Factoring, RSA, DLP, DH, Strong RSA, ECDLP, GAP, WPFG, PFG, ...
- We're interested in *algebraic* assumptions (about *groups*)

Groups

- Familiar algebraic structure in crypto.
- <u>Mathematical group</u> G = (S,*): binary operation * defined on (finite) set S: associative, identity, inverses, perhaps abelian. Example: Z_n*(running example).
- <u>Computational group [G]</u> implements a mathematical group G. Each element x in G has one or more representations [x] in [G].
 E.g. [Z_n*] via least positive residues.

Black-box group: pretend [G] = G.

Free Groups

- ♦ <u>Generators</u>: a₁, a₂, ..., a_t
- Symbols: generators and their inverses.
- <u>Elements</u> of free group F(a₁, a₂, ..., a_t) are reduced finite sequences of symbols---no symbol is next to its inverse.
 ab⁻¹a⁻¹bc is in F(a,b,c); abb⁻¹ is not.
- Group operation: concatenation & reduction.
- <u>Identity</u>: empty sequence ε (or 1).

Free Group Properties

- Free group is infinite.
- In a free group, every element other than the identity has infinite order.
- Free group has no nontrivial relationships.
- Reasoning in a free group is relatively straightforward and simple;
 ≈ "Dolev-Yao" for groups...
- Every group is homomorphic image of a free group.

Abelian Free Groups

- There is also <u>abelian</u> free group FA(a₁, a₂, ..., a_t), which is isomorphic to Z x Z x ... x Z (t times).
- Elements of FA(a₁, a₂, ..., a_t) have simple canonical form:

 $a_1^{e_1}a_2^{e_2}...a_t^{e_t}$

 We will often omit specifying abelian; most of our definitions have abelian and nonabelian versions.

Pseudo-Free Groups (Informal)

- "A finite group is *pseudo-free* if it can not be efficiently distinguished from a free group."
- Notion first expressed, in simple form, in Susan Hohenberger's M.S. thesis.
- We give two formalizations, and show that assumption of pseudo-freeness implies many other well-known assumptions.

0 Ω Cayley graph Cayley graph of finite group of free group

Two ways of distinguishing

 In a <u>weak pseudo-free group</u> (WPFG), adversary can't find any nontrivial identity involving supplied random elements:

$$a^2 b^5 c^{-1} = 1$$
 (!)

 In a <u>(strong) pseudo-free group</u> (PFG), adversary can't solve nontrivial equations:

$$x^2 = a^3 b$$

Weak Pseudo-freeness

- A family of computational groups { G_k } is weakly pseudo-free if for any polynomial t(k) a PPT adversary has negl(k) chance of:
 - Accepting t(k) random elements of G_k ,

 $a_{1}, \dots, a_{t(k)}$

- Producing any word *w* over the symbols

 $a_1, \dots, a_{t(k)} a_1^{-1}, \dots, a_{t(k)}^{-1}$ when interpreted as a product in G_k using the obtained random values, yields the identity 1, while w does not yield 1 in the free group.

- Adversary may use compact notion (exponents, straight-line programs) when describing *w*.

Order problem

- <u>Theorem</u>: In a WPFG, finding the order of a randomly chosen element is hard.
- Proof: The equation

does not hold for any e in FA(a). No element other than 1 in a free group has finite order.

Discrete logarithm problem

<u>Theorem</u>: In a WPFG, DLP is hard.
 <u>Proof</u>: The equation
 a^e = b does not hold for any *e* in *FA(a,b); a* and *b* are distinct independent
 generators, one can not be power of
 other.

Subgroups of PFG's

- <u>Subgroup Theorem for WPFG's</u>: If G is a WPFG, and g is chosen at random from G, then <q> is a WPFG. [not in paper]
- <u>Proof sketch</u>: Ability to find nontrivial identities in *<g>* can be shown to imply that *g* has finite order.
- ==> DLP is hard in WPFG even if we enforce "promise" that b is a (random) power of a.
- Similar proof implies that
 QR_n is WPFG when n = (2p'+1)(2q'+1).

Equations in Groups

- Let x, y, ... denote variables in group.
- Consider the equation

 $x^2 = a$ (*) This equation may be satisfiable in Z_n^* (when a is in QR_n), but this equation is *never* satisfiable in a free group, since reduced form of x^2 always has *even* length.

 Exhibiting a solution to (*) in a group G is another way to demonstrate that G is not a free group.

Equations in Free Groups

- Can always be put into form: w = 1

 where w is sequence over symbols of group and variables.
- It is decidable (Makanin '82) in PSPACE (Gutierrez '00) whether an equation is satisfiable in free group.
- Multiple equations equivalent to single one.
- For abelian free group it is in P. Also: if equation is unsatisfiable in FA() it is unsatisfiable in F().

Pseudo-freeness

- A family of computational groups { G_k } is pseudo-free if for any poly's t(k), m(k) a PPT adversary has negl(k) chance of:
 - Accepting t(k) random elements of G_k ,
 - Producing any equation
 - $E(a_1,...,a_{t(k)},x_1,...,x_{m(k)}): w = 1$ with t(k) generator symbols and m(k)variables that is *unsatisfiable* over $F(a_1,...,a_{t(k)})$
 - Producing a solution to E over G_k , with given random elements substituted for generators.

Main conjecture

- Conjecture:
 { Z_n* } is a (strong) (abelian)
 pseudo-free group
- aka "Super-strong RSA conjecture"
- What are implications of PFG assumption?

RSA and Strong RSA

- <u>Theorem</u>: In a PFG, RSA assumption and Strong RSA assumptions hold.
- Proof: For e>1 the equation

 $x^e = a$

is not satisfiable in FA(a) (and also thus not in F(a)).

Taking square roots

- <u>Theorem</u>: In a PFG, taking square roots of randomly chosen elements is hard.
- <u>Proof</u>: As noted earlier, the equation $x^2 = a$ (*) has no solution in FA(a) or F(a).
- Note the importance of forcing adversary to solve (*) for a random a; it wouldn't do to allow him to take square root of, say, 4.

Computational Diffie-Hellman 🟵

- CDH: Given g, $a = g^e$, and $b = g^f$, computing $x = g^{ef}$ is hard.
- <u>Conjecture:</u> CDH holds in a PFG.
- <u>Remark</u>: This seems natural, since in a free group there is no element (other than 1) that is simultaneously a power of more than one generator. Yet the adversary merely needs to output x; there is no equation involving x that he must output.

Open problems

- Show factoring implies Z_n^* is PFG.
- Show CDH holds in PFG's.
- Show utility of PFG theory by simplifying known security proofs.
- Determine is satisfiability of equation over free group is decidable when variables include exponents.
- Extend theory to groups of known size (e.g. mod p), and adaptive attacks (adversary can get solution to some equations of his choice for free).

(THE END)

Safe travels!