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Cryptographic assumptions 
 Computational cryptography depends 

on complexity-theoretic assumptions. 
 ∃ two types: 

–  Generic: OWF, TDP, P!=NP, ... 
–  Algebraic:  Factoring, RSA, DLP, DH, 

Strong RSA, ECDLP, GAP, WPFG, PFG, … 
 We’re interested in algebraic 

assumptions ( about groups ) 



Groups 
  Familiar algebraic structure in crypto. 
  Mathematical group G = (S,*): binary 

operation * defined on (finite) set S: 
associative, identity, inverses, perhaps 
abelian.  Example:  Zn

* (running example). 
  Computational group [G]  implements a 

mathematical group G. Each element x in G 
has one or more representations [x] in [G].  
E.g. [Zn

*] via least positive residues. 
  Black-box group: pretend [G] = G. 



Free Groups 
  Generators:  a1, a2, …, at 

  Symbols: generators and their inverses. 
  Elements of free group F(a1, a2, …, at) are 

reduced finite sequences of symbols---no 
symbol is next to its inverse.  
     ab-1a-1bc  is in  F(a,b,c) ;  abb-1  is not. 

  Group operation: concatenation & reduction.   
  Identity: empty sequence ε  (or 1). 



Free Group Properties 
  Free group is infinite. 
  In a free group, every element other than 

the identity has infinite order. 
  Free group has no nontrivial relationships. 
  Reasoning in a free group is relatively 

straightforward and simple; 
≈ “Dolev-Yao” for groups… 

  Every group is homomorphic image of a 
free group.   



Abelian Free Groups 
  There is also abelian free group  

             FA(a1, a2, …, at),   
which is isomorphic to   
             Z x Z x … x Z   (t  times). 

  Elements of FA(a1, a2, …, at)  have simple 
canonical form: 
             a1

e1a2
e2…at

et 

  We will often omit specifying abelian; most 
of our definitions have abelian and non-
abelian versions. 



Pseudo-Free Groups (Informal) 
  “A finite group is pseudo-free if it 

can not be efficiently distinguished 
from a free group.” 

 Notion first expressed, in simple 
form, in Susan Hohenberger’s M.S. 
thesis.   

 We give two formalizations, and show 
that assumption of pseudo-freeness 
implies many other well-known 
assumptions. 
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Two ways of distinguishing 
 In a weak pseudo-free group (WPFG), 

adversary can’t find any nontrivial 
identity involving supplied random 
elements: 

   a2 b5 c-1 = 1      (!) 
 In a (strong) pseudo-free group 

(PFG), adversary can’t solve nontrivial 
equations: 

   x2 = a3 b 



Weak Pseudo-freeness 
  A family of computational groups { Gk } is weakly 

pseudo-free if for any polynomial t(k) a PPT 
adversary has negl(k) chance of: 
–  Accepting t(k) random elements of Gk, 

                      a1, … ,at(k) 
–  Producing any word w over the symbols 

               a1, … ,at(k) a1
-1, … ,at(k)

-1 

when interpreted as a product in Gk using the 
obtained random values, yields the identity 1 , while 
w does not yield  1  in the free group. 

–  Adversary may use compact notion (exponents, 
straight-line programs) when describing w.                  



Order problem 
 Theorem: In a WPFG, finding the 

order of a randomly chosen element is 
hard. 

 Proof: The equation 
                        ae = 1 
does not hold for any e in FA(a).  No 
element other than 1 in a free group 
has finite order.  



Discrete logarithm problem 
 Theorem: In a WPFG, DLP is hard. 
 Proof: The equation 

                        ae = b 
does not hold for any e in FA(a,b);  a  
and  b  are distinct independent 
generators, one can not be power of 
other. 



Subgroups of PFG’s 
  Subgroup Theorem for WPFG’s:   

If  G  is a WPFG, and g is chosen at random 
from G, then <g> is a WPFG.    [not in paper] 

  Proof sketch:   Ability to find nontrivial 
identities in <g>  can be shown to imply that g 
has finite order. 

  ==> DLP is hard in WPFG even if we enforce 
“promise” that  b  is a (random) power of a . 

  Similar proof implies that  
    QRn  is WPFG when n = (2p’+1)(2q’+1). 



Equations in Groups 
  Let x, y, … denote variables in group. 
  Consider the equation 

   x2 = a    (*) 
This equation may be satisfiable in Zn*  
(when a is in QRn), but this equation is 
never satisfiable in a free group,  since 
reduced form of x2  always has even length. 

  Exhibiting a solution to (*) in a group  G  is 
another way to demonstrate that  G  is not 
a free group. 



Equations in Free Groups 
  Can always be put into form: 

   w = 1 
where w is sequence over symbols of group 
and variables. 

  It is decidable (Makanin ’82) in PSPACE 
(Gutierrez ’00) whether an equation is 
satisfiable in free group. 

  Multiple equations equivalent to single one. 
  For abelian free group it is in P.  Also: if 

equation is unsatisfiable in FA() it is 
unsatisfiable in F(). 



Pseudo-freeness 
 A family of computational groups { Gk } is 

pseudo-free if for any poly’s t(k), m(k) a 
PPT adversary has negl(k) chance of: 
–  Accepting t(k) random elements of Gk, 
–  Producing any equation  

          E(a1,…,at(k),x1,…,xm(k)):  w = 1 
with t(k) generator symbols and m(k) 
variables that is unsatisfiable over F(a1,…,at(k))   

–  Producing a solution to E over Gk, with given 
random elements substituted for generators. 



Main conjecture  
 Conjecture:     

    { Zn*  }  is a (strong) (abelian)  
                    pseudo-free group 

 aka “Super-strong RSA conjecture” 

 What are implications of PFG 
assumption? 



RSA and Strong RSA 
 Theorem:  In a PFG, RSA assumption 

and Strong RSA assumptions hold. 
 Proof: For  e>1  the equation  

                      xe = a 
is not satisfiable in FA(a)  
(and also thus not in F(a)).   



Taking square roots 
 Theorem: In a PFG, taking square 

roots of randomly chosen elements is 
hard. 

 Proof:  As noted earlier, the equation 
   x2 = a    (*)  

has no solution in FA(a) or F(a). 
 Note the importance of forcing 

adversary to solve (*) for a random a; 
it wouldn’t do to allow him to take 
square root of, say,  4 . 



Computational Diffie-Hellman  
 CDH: Given  g ,  a = ge,  and  b = gf,  

         computing  x = gef  is hard. 
 Conjecture:   CDH holds in a PFG. 
 Remark:  This seems natural, since in 

a free group there is no element 
(other than 1) that is simultaneously a 
power of more than one generator.  
Yet the adversary merely needs to 
output x; there is no equation 
involving x that he must output. 



Open problems 
  Show factoring implies Zn* is PFG.  
  Show CDH holds in PFG’s. 
  Show utility of PFG theory by simplifying 

known security proofs. 
  Determine is satisfiability of equation over 

free group is decidable when variables 
include exponents. 

  Extend theory to groups of known size (e.g. 
mod p), and adaptive attacks (adversary 
can get solution to some equations of his 
choice for free). 



      ( THE END ) 

Safe travels! 


