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Typical Iterated hashing 

f f f f h0 h1 h2 h3 hL hL-1 
H(M) 

M1 M2 ML M3 

  Message extended with 10* & length (MD) 
  f  is  compression function. 
  h0  is  initialization vector (IV) 
  hi  is i-th chaining variable 
  Last chaining variable hL is hash output H(M) 



Dean/Kelsey/Schneier Attacks 

  Assumes one can find fixpoint h  for f,M0: 
            h = f(h,M0) 

  Can then have message expansion attacks that find 
second preimage by 
–  Finding many fixpoint pairs (h,M) 
–  Finding a fixpoint h in actual chain for given message 
–  Finding another shorter path from h0 to some chaining variable 
–  Creating second preimage with this new starting path using 

message expansion to handle Merkle-Damgard strengthening 

f f f f h0 h1 h2 h3 hL hL-1 
H(M) 

M1 M2 ML M3 



Dithering and Recoding 
  Make hash function round dependent on 

round index i  as well as hi-1 and Mi 
  Dithering: include dither input di  to 

compression function: 
        hi = f(hi-1,Mi,di) 

  Recoding:  Include dither input as part of  
i-th message block 
        hi = f(hi-1,M’i) 
where  
        M’i = (Mi,di) 

  (These are equivalent, of course…) 



Iterated hashing with dithering 

 How to choose dither input di?  
–  Could choose  di = i 
–  Could choose  di = ri  (pseudo-random) 
–  Use square-free sequence di  

(repetition-free sequence; no repeated 
symbols or subwords.) 

d1 d2 d3 dL 
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Square-Free Sequence 
 A sequence is square-free if it 

contains no two equal adjacent 
subwords. 

 Examples:  
    abracadabra is square-free 
    hobbit  is not (repeated “b” ) 
    banana  is not (repeated “an” ) 

 Dithering with a square-free sequence 
prevents message expansion attacks. 
(Would need fixpoint that works for 
all dither inputs.) 



Infinite square-free sequences 
 There exists infinite square-free 

sequences over 3-letter alphabet. 
 Start with parity sequence: 

    0110100110010110… 
i-th element is parity of integer i. 
This (Prouhet-Thue-Morse, or PTM) 
sequence is only cube-free, but… 

 Sequence of inter-zero gap lengths in 
PTM is square-free: 
    2102012101202102012021… 



Generating infinite sf sequences 

 Or: 
–  Take two copies of PTM sequence;  

shift second one over by one,  
then code vertical pairs: 
A = 00, B = 01, C = 10, D = 11: 
   0 1 1 0 1 0 0 1 1 0 0 1 0 1 … 
    - 0 1 1 0 1 0 0 1 1 0 0 1 0 … 
  -  C D B C B A C D B A C B C … 

 Result is also square-free. 



Towers of Hanoi Sequence 

  Optimal play moves small disk on odd moves 
cyclically 1->2->3->1->2->3…; even moves are 
then forced. 

  Code moves with six letters as  
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2] 

  Optimal sequence is square-free! (Shallit &c) 

1 2 3 



Towers of Hanoi Sequence 

  Code moves with six letters as  
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2] 

  Optimal play: 

1 2 3 

A D B A E F A B D C… 
  Easy to generate sequence for infinitely many 

disks… 



Abelian square-free sequences 
  An even stronger notion of “repetition-

free” than (ordinary) square-free. 
  A sequence is abelian square-free if it 

contains no two adjacent subwords yy’ 
where y’  is a permutation of y  (possibly 
identity permutation). 

  Example: 
    abelianalien 
is square-free but not abelian square-free, 
since “alien”  is a permutation of “elian”. 



Infinite ASF sequences exist 
 Thm (Keränen).  There exists infinite 

ASF sequences on four letters. 
 Keränen’s sequence based on “magic 

sequence” S of length 85:    
abcacdcbcdcadcdbdabacabadbabc
bdbcbacbcdcacbabdabacadcbcdca
cdbcbacbcdcacdcbdcdadbdcbca 

 Let σ(w) denote word  w  with all 
letters shifted one letter cyclically: 
 σ(abcacd) = bcdbda 



Generating infinite asf sequence(I) 
 Start with Keränen’s magic sequence  

    S = abcac…dcbca   (length 85) 
 Apply morphism: 

    a  →  S       = abcac…dcbca 
    b  → σ(S)     = bcdbd…adcdb 
    c  → σ2(S)   = cdaca…badac 
    d  → σ3(S)   = dabdb…cbabd 
simultaneously to all letters. 

 Repeat to taste (each sequence is prefix 
of next, and of infinite limit sequence). 



Generating infinite asf sequence(II) 

 Count i = 0  to infinity in base 85 
 Apply simple four-state machine to 

base-85 representation of i   
(high-order digit processed first). 

 Output  a/b/c/d   is last state. 
 Requires constant (amortized) time per 

output symbol. 



Dithering with ASF sequence 
 Since Keränen’s ASF sequence on 

four letters is so easy to generate 
efficiently, we propose using it to 
dither an iterated hash function. 

 This add negligible computational 
overhead, and only two new bits of 
input to compression function. 



Recoding with ASF sequence 
 Can also recode message using given 

ASF sequence.  (This is essentially 
equivalent to dithering, just viewed 
another way…) 



Open Questions 
  Can Dean/Kelsey/Schneier attacks be 

adapted to defeat use of ASF sequences in 
hash function? 

  Does ASF really add anything over SF? 
  Are there generalizations of ASF that could 

be used?  (“Even more” pattern-free?) 
  Where else in cryptography can ASF 

sequences be used? 



Conclusions 
 Abelian square-free sequences seem 

to be a very inexpensive way to 
prevent repetitive inputs from 
causing vulnerabilities in hash 
functions. 

  (Thanks to Jeff Shallit and Veikko 
Keränen for teaching me about 
square-free and abelian square-free 
sequences.) 



               (The End) 



Iterated hashing 
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Iterated hashing with dithering 
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