
Abelian Square-Free
Dithering and Recoding

for Iterated Hash Functions
Ronald L. Rivest

MIT CSAIL
ECRYPT Hash Function Conference

 June 23, 2005

Outline
 Dean/Kelsey/Schneier Attacks
 Square-Free Sequences

–  Prouhet-Thue-Morse Sequences
–  Towers of Hanoi

 Abelian Square-Free Sequences
–  Keränen’s Sequence

 Dithering and Recoding
 Open Questions
 Conclusions

Typical Iterated hashing

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

  Message extended with 10* & length (MD)
  f is compression function.
  h0 is initialization vector (IV)
  hi is i-th chaining variable
  Last chaining variable hL is hash output H(M)

Dean/Kelsey/Schneier Attacks

  Assumes one can find fixpoint h for f,M0:
 h = f(h,M0)

  Can then have message expansion attacks that find
second preimage by
–  Finding many fixpoint pairs (h,M)
–  Finding a fixpoint h in actual chain for given message
–  Finding another shorter path from h0 to some chaining variable
–  Creating second preimage with this new starting path using

message expansion to handle Merkle-Damgard strengthening

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

Dithering and Recoding
  Make hash function round dependent on

round index i as well as hi-1 and Mi
  Dithering: include dither input di to

compression function:
 hi = f(hi-1,Mi,di)

  Recoding: Include dither input as part of
i-th message block
 hi = f(hi-1,M’i)
where
 M’i = (Mi,di)

  (These are equivalent, of course…)

Iterated hashing with dithering

 How to choose dither input di?
–  Could choose di = i
–  Could choose di = ri (pseudo-random)
–  Use square-free sequence di

(repetition-free sequence; no repeated
symbols or subwords.)

d1 d2 d3 dL

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

Square-Free Sequence
 A sequence is square-free if it

contains no two equal adjacent
subwords.

 Examples:
 abracadabra is square-free
 hobbit is not (repeated “b”)
 banana is not (repeated “an”)

 Dithering with a square-free sequence
prevents message expansion attacks.
(Would need fixpoint that works for
all dither inputs.)

Infinite square-free sequences
 There exists infinite square-free

sequences over 3-letter alphabet.
 Start with parity sequence:

 0110100110010110…
i-th element is parity of integer i.
This (Prouhet-Thue-Morse, or PTM)
sequence is only cube-free, but…

 Sequence of inter-zero gap lengths in
PTM is square-free:
 2102012101202102012021…

Generating infinite sf sequences

 Or:
–  Take two copies of PTM sequence;

shift second one over by one,
then code vertical pairs:
A = 00, B = 01, C = 10, D = 11:
 0 1 1 0 1 0 0 1 1 0 0 1 0 1 …
 - 0 1 1 0 1 0 0 1 1 0 0 1 0 …
 - C D B C B A C D B A C B C …

 Result is also square-free.

Towers of Hanoi Sequence

  Optimal play moves small disk on odd moves
cyclically 1->2->3->1->2->3…; even moves are
then forced.

  Code moves with six letters as
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]

  Optimal sequence is square-free! (Shallit &c)

1 2 3

Towers of Hanoi Sequence

  Code moves with six letters as
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]

  Optimal play:

1 2 3

A D B A E F A B D C…
  Easy to generate sequence for infinitely many

disks…

Abelian square-free sequences
  An even stronger notion of “repetition-

free” than (ordinary) square-free.
  A sequence is abelian square-free if it

contains no two adjacent subwords yy’
where y’ is a permutation of y (possibly
identity permutation).

  Example:
 abelianalien
is square-free but not abelian square-free,
since “alien” is a permutation of “elian”.

Infinite ASF sequences exist
 Thm (Keränen). There exists infinite

ASF sequences on four letters.
 Keränen’s sequence based on “magic

sequence” S of length 85:
abcacdcbcdcadcdbdabacabadbabc
bdbcbacbcdcacbabdabacadcbcdca
cdbcbacbcdcacdcbdcdadbdcbca

 Let σ(w) denote word w with all
letters shifted one letter cyclically:
 σ(abcacd) = bcdbda

Generating infinite asf sequence(I)
 Start with Keränen’s magic sequence

 S = abcac…dcbca (length 85)
 Apply morphism:

 a → S = abcac…dcbca
 b → σ(S) = bcdbd…adcdb
 c → σ2(S) = cdaca…badac
 d → σ3(S) = dabdb…cbabd
simultaneously to all letters.

 Repeat to taste (each sequence is prefix
of next, and of infinite limit sequence).

Generating infinite asf sequence(II)

 Count i = 0 to infinity in base 85
 Apply simple four-state machine to

base-85 representation of i
(high-order digit processed first).

 Output a/b/c/d is last state.
 Requires constant (amortized) time per

output symbol.

Dithering with ASF sequence
 Since Keränen’s ASF sequence on

four letters is so easy to generate
efficiently, we propose using it to
dither an iterated hash function.

 This add negligible computational
overhead, and only two new bits of
input to compression function.

Recoding with ASF sequence
 Can also recode message using given

ASF sequence. (This is essentially
equivalent to dithering, just viewed
another way…)

Open Questions
  Can Dean/Kelsey/Schneier attacks be

adapted to defeat use of ASF sequences in
hash function?

  Does ASF really add anything over SF?
  Are there generalizations of ASF that could

be used? (“Even more” pattern-free?)
  Where else in cryptography can ASF

sequences be used?

Conclusions
 Abelian square-free sequences seem

to be a very inexpensive way to
prevent repetitive inputs from
causing vulnerabilities in hash
functions.

  (Thanks to Jeff Shallit and Veikko
Keränen for teaching me about
square-free and abelian square-free
sequences.)

 (The End)

Iterated hashing
 

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’ hL’-1

M’1 M’2 M’3 M’L’

H(M)

Iterated hashing with dithering

 

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’ hL’-1

M’1 M’2 M’3 M’L’

H(M)

d1 d2 d3 dL’

