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Typical Iterated hashing 

f f f f h0 h1 h2 h3 hL hL-1 
H(M) 

M1 M2 ML M3 

  Message extended with 10* & length (MD) 
  f  is  compression function. 
  h0  is  initialization vector (IV) 
  hi  is i-th chaining variable 
  Last chaining variable hL is hash output H(M) 



Dean/Kelsey/Schneier Attacks 

  Assumes one can find fixpoint h  for f,M0: 
            h = f(h,M0) 

  Can then have message expansion attacks that find 
second preimage by 
–  Finding many fixpoint pairs (h,M) 
–  Finding a fixpoint h in actual chain for given message 
–  Finding another shorter path from h0 to some chaining variable 
–  Creating second preimage with this new starting path using 

message expansion to handle Merkle-Damgard strengthening 
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Dithering and Recoding 
  Make hash function round dependent on 

round index i  as well as hi-1 and Mi 
  Dithering: include dither input di  to 

compression function: 
        hi = f(hi-1,Mi,di) 

  Recoding:  Include dither input as part of  
i-th message block 
        hi = f(hi-1,M’i) 
where  
        M’i = (Mi,di) 

  (These are equivalent, of course…) 



Iterated hashing with dithering 

 How to choose dither input di?  
–  Could choose  di = i 
–  Could choose  di = ri  (pseudo-random) 
–  Use square-free sequence di  

(repetition-free sequence; no repeated 
symbols or subwords.) 

d1 d2 d3 dL 
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Square-Free Sequence 
 A sequence is square-free if it 

contains no two equal adjacent 
subwords. 

 Examples:  
    abracadabra is square-free 
    hobbit  is not (repeated “b” ) 
    banana  is not (repeated “an” ) 

 Dithering with a square-free sequence 
prevents message expansion attacks. 
(Would need fixpoint that works for 
all dither inputs.) 



Infinite square-free sequences 
 There exists infinite square-free 

sequences over 3-letter alphabet. 
 Start with parity sequence: 

    0110100110010110… 
i-th element is parity of integer i. 
This (Prouhet-Thue-Morse, or PTM) 
sequence is only cube-free, but… 

 Sequence of inter-zero gap lengths in 
PTM is square-free: 
    2102012101202102012021… 



Generating infinite sf sequences 

 Or: 
–  Take two copies of PTM sequence;  

shift second one over by one,  
then code vertical pairs: 
A = 00, B = 01, C = 10, D = 11: 
   0 1 1 0 1 0 0 1 1 0 0 1 0 1 … 
    - 0 1 1 0 1 0 0 1 1 0 0 1 0 … 
  -  C D B C B A C D B A C B C … 

 Result is also square-free. 



Towers of Hanoi Sequence 

  Optimal play moves small disk on odd moves 
cyclically 1->2->3->1->2->3…; even moves are 
then forced. 

  Code moves with six letters as  
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2] 

  Optimal sequence is square-free! (Shallit &c) 

1 2 3 



Towers of Hanoi Sequence 

  Code moves with six letters as  
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2] 

  Optimal play: 

1 2 3 

A D B A E F A B D C… 
  Easy to generate sequence for infinitely many 

disks… 



Abelian square-free sequences 
  An even stronger notion of “repetition-

free” than (ordinary) square-free. 
  A sequence is abelian square-free if it 

contains no two adjacent subwords yy’ 
where y’  is a permutation of y  (possibly 
identity permutation). 

  Example: 
    abelianalien 
is square-free but not abelian square-free, 
since “alien”  is a permutation of “elian”. 



Infinite ASF sequences exist 
 Thm (Keränen).  There exists infinite 

ASF sequences on four letters. 
 Keränen’s sequence based on “magic 

sequence” S of length 85:    
abcacdcbcdcadcdbdabacabadbabc
bdbcbacbcdcacbabdabacadcbcdca
cdbcbacbcdcacdcbdcdadbdcbca 

 Let σ(w) denote word  w  with all 
letters shifted one letter cyclically: 
 σ(abcacd) = bcdbda 



Generating infinite asf sequence(I) 
 Start with Keränen’s magic sequence  

    S = abcac…dcbca   (length 85) 
 Apply morphism: 

    a  →  S       = abcac…dcbca 
    b  → σ(S)     = bcdbd…adcdb 
    c  → σ2(S)   = cdaca…badac 
    d  → σ3(S)   = dabdb…cbabd 
simultaneously to all letters. 

 Repeat to taste (each sequence is prefix 
of next, and of infinite limit sequence). 



Generating infinite asf sequence(II) 

 Count i = 0  to infinity in base 85 
 Apply simple four-state machine to 

base-85 representation of i   
(high-order digit processed first). 

 Output  a/b/c/d   is last state. 
 Requires constant (amortized) time per 

output symbol. 



Dithering with ASF sequence 
 Since Keränen’s ASF sequence on 

four letters is so easy to generate 
efficiently, we propose using it to 
dither an iterated hash function. 

 This add negligible computational 
overhead, and only two new bits of 
input to compression function. 



Recoding with ASF sequence 
 Can also recode message using given 

ASF sequence.  (This is essentially 
equivalent to dithering, just viewed 
another way…) 



Open Questions 
  Can Dean/Kelsey/Schneier attacks be 

adapted to defeat use of ASF sequences in 
hash function? 

  Does ASF really add anything over SF? 
  Are there generalizations of ASF that could 

be used?  (“Even more” pattern-free?) 
  Where else in cryptography can ASF 

sequences be used? 



Conclusions 
 Abelian square-free sequences seem 

to be a very inexpensive way to 
prevent repetitive inputs from 
causing vulnerabilities in hash 
functions. 

  (Thanks to Jeff Shallit and Veikko 
Keränen for teaching me about 
square-free and abelian square-free 
sequences.) 



               (The End) 



Iterated hashing 
    
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Iterated hashing with dithering 

    

f f f f 

Recoding 

g 

M1 M2 ML 

h0 h1 h2 h3 hL’ hL’-1 

M’1 M’2 M’3 M’L’ 

H(M) 

d1 d2 d3 dL’ 


