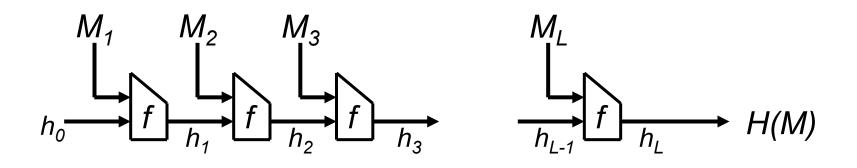
Abelian Square-Free Dithering and Recoding for Iterated Hash Functions

Ronald L. Rivest MIT CSAIL ECRYPT Hash Function Conference June 23, 2005

Outline

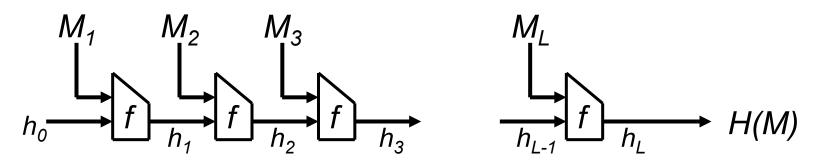
- Dean/Kelsey/Schneier Attacks
- Square-Free Sequences
 - Prouhet-Thue-Morse Sequences
 - Towers of Hanoi
- Abelian Square-Free Sequences
 - Keränen's Sequence
- Dithering and Recoding
- Open Questions
- Conclusions

Typical Iterated hashing



- Message extended with 10* & length (MD)
- f is compression function.
- h₀ is initialization vector (IV)
- *h_i* is *i*-th chaining variable
- Last chaining variable h_L is hash output H(M)

Dean/Kelsey/Schneier Attacks



- Assumes one can find fixpoint h for f,M₀:
 h = f(h,M₀)
- Can then have message expansion attacks that find second preimage by
 - Finding many fixpoint pairs (h,M)
 - Finding a fixpoint h in actual chain for given message
 - Finding another shorter path from h_0 to some chaining variable
 - Creating second preimage with this new starting path using message expansion to handle Merkle-Damgard strengthening

Dithering and Recoding

- Make hash function round dependent on round index i as well as h_{i-1} and M_i
- Dithering: include dither input d_i to compression function:

 $h_i = f(h_{i-1}, M_i, d_i)$

Recoding: Include dither input as part of *i*-th message block

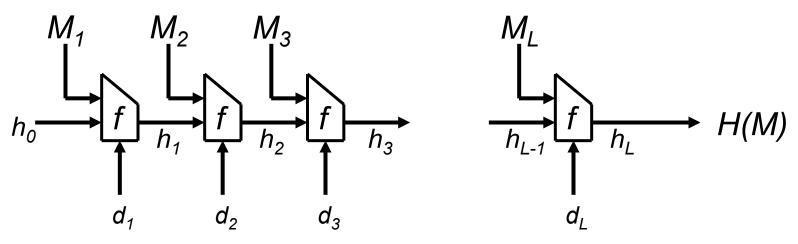
 $h_i = f(h_{i-1}, M'_i)$

where

 $M'_i = (M_i, d_i)$

(These are equivalent, of course...)

Iterated hashing with dithering



- How to choose dither input d_i ?
 - Could choose $d_i = i$
 - Could choose $d_i = r_i$ (pseudo-random)
 - Use square-free sequence d_i (repetition-free sequence; no repeated symbols or subwords.)

Square-Free Sequence

- A sequence is square-free if it contains no two equal adjacent subwords.
- Examples:

abracadabra is square-free ho<u>bb</u>it is not (repeated "b") b<u>anan</u>a is not (repeated "an")

 Dithering with a square-free sequence prevents message expansion attacks. (Would need fixpoint that works for all dither inputs.)

Infinite square-free sequences

- There exists infinite square-free sequences over 3-letter alphabet.
- Start with parity sequence:
 0110100110010110...
 - *i*-th element is parity of integer *i*. This (Prouhet-Thue-Morse, or PTM) sequence is only *cube-free*, but...
- Sequence of inter-zero gap lengths in PTM is square-free: 2102012101202102012021...

Generating infinite sf sequences

- Or:
 - Take two copies of PTM sequence;
 shift second one over by one,
 then code vertical pairs:

A = 00, B = 01, C = 10, D = 11:

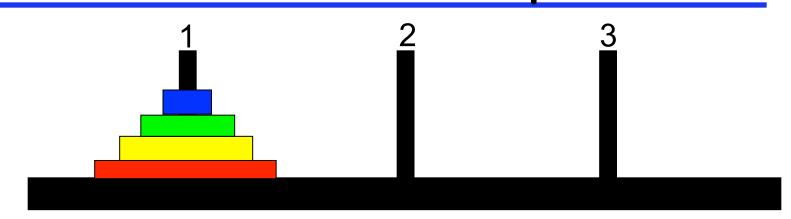
0 1 1 0 1 0 0 1 1 0 0 1 0 1 ...

- 0 1 1 0 1 0 0 1 1 0 0 1 0 ...

- C D B C B A C D B A C B C \dots

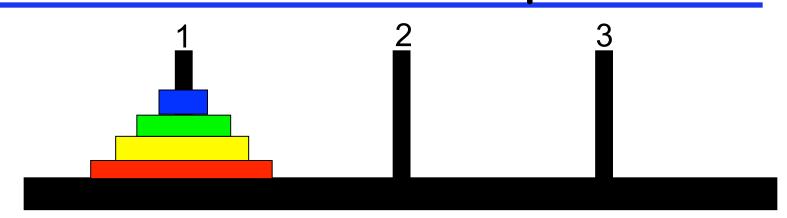
Result is also square-free.

Towers of Hanoi Sequence



- Optimal play moves small disk on odd moves cyclically 1->2->3->1->2->3...; even moves are then forced.
- Code moves with six letters as A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]
- Optimal sequence is square-free! (Shallit &c)

Towers of Hanoi Sequence



 Code moves with six letters as A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]
 Optimal play:

A B D A E F A B D C...

 Easy to generate sequence for infinitely many disks...

Abelian square-free sequences

- An even stronger notion of "repetitionfree" than (ordinary) square-free.
- A sequence is abelian square-free if it contains no two adjacent subwords yy' where y' is a permutation of y (possibly identity permutation).
- Example:

abelianalien

is square-free but not abelian square-free, since "alien" is a permutation of "elian".

Infinite ASF sequences exist

- Thm (Keränen). There exists infinite ASF sequences on four letters.
- Keränen's sequence based on "magic sequence" S of length 85: abcacdcbcdcadcdbdabacabadbabc bdbcbacbcdcacbabdabacadcbcdca
- Let σ(w) denote word w with all letters shifted one letter cyclically: σ(abcacd) = bcdbda

Generating infinite asf sequence(I)

Start with Keränen's magic sequence
 S = abcac...dcbca (length 85)

Apply morphism:

- $a \rightarrow S$ = abcac...dcbca
- b $\rightarrow \sigma(S)$ = bcdbd...adcdb
- $c \rightarrow \sigma^2(S) = cdaca...badac$
- d $\rightarrow \sigma^3(S)$ = dabdb...cbabd

simultaneously to all letters.

 Repeat to taste (each sequence is prefix of next, and of infinite limit sequence).

Generating infinite asf sequence(II)

- Count i = 0 to infinity in base 85
- Apply simple four-state machine to base-85 representation of *i* (high-order digit processed first).
- Output a/b/c/d is last state.
- Requires <u>constant</u> (amortized) time per output symbol.

Dithering with ASF sequence

- Since Keränen's ASF sequence on four letters is so easy to generate efficiently, we propose using it to dither an iterated hash function.
- This add negligible computational overhead, and only two new bits of input to compression function.

Recoding with ASF sequence

 Can also recode message using given ASF sequence. (This is essentially equivalent to dithering, just viewed another way...)

Open Questions

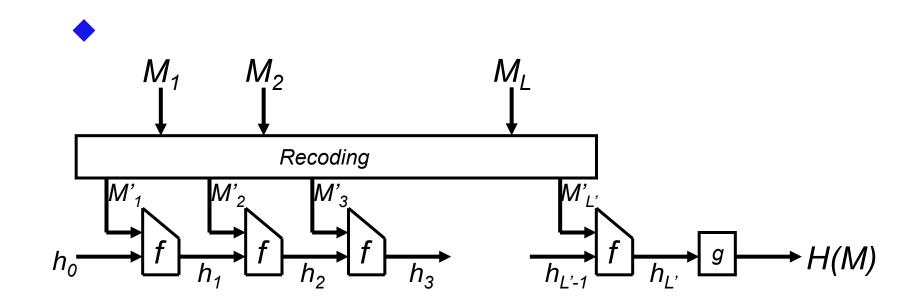
- Can Dean/Kelsey/Schneier attacks be adapted to defeat use of ASF sequences in hash function?
- Does ASF really add anything over SF?
- Are there generalizations of ASF that could be used? ("Even more" pattern-free?)
- Where else in cryptography can ASF sequences be used?

Conclusions

- Abelian square-free sequences seem to be a very inexpensive way to prevent repetitive inputs from causing vulnerabilities in hash functions.
- (Thanks to Jeff Shallit and Veikko Keränen for teaching me about square-free and abelian square-free sequences.)

(The End)

Iterated hashing



Iterated hashing with dithering

