
Abelian Square-Free
Dithering and Recoding

for Iterated Hash Functions
Ronald L. Rivest

MIT CSAIL
ECRYPT Hash Function Conference

 June 23, 2005

Outline
 Dean/Kelsey/Schneier Attacks
 Square-Free Sequences

–  Prouhet-Thue-Morse Sequences
–  Towers of Hanoi

 Abelian Square-Free Sequences
–  Keränen’s Sequence

 Dithering and Recoding
 Open Questions
 Conclusions

Typical Iterated hashing

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

  Message extended with 10* & length (MD)
  f is compression function.
  h0 is initialization vector (IV)
  hi is i-th chaining variable
  Last chaining variable hL is hash output H(M)

Dean/Kelsey/Schneier Attacks

  Assumes one can find fixpoint h for f,M0:
 h = f(h,M0)

  Can then have message expansion attacks that find
second preimage by
–  Finding many fixpoint pairs (h,M)
–  Finding a fixpoint h in actual chain for given message
–  Finding another shorter path from h0 to some chaining variable
–  Creating second preimage with this new starting path using

message expansion to handle Merkle-Damgard strengthening

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

Dithering and Recoding
  Make hash function round dependent on

round index i as well as hi-1 and Mi
  Dithering: include dither input di to

compression function:
 hi = f(hi-1,Mi,di)

  Recoding: Include dither input as part of
i-th message block
 hi = f(hi-1,M’i)
where
 M’i = (Mi,di)

  (These are equivalent, of course…)

Iterated hashing with dithering

 How to choose dither input di?
–  Could choose di = i
–  Could choose di = ri (pseudo-random)
–  Use square-free sequence di

(repetition-free sequence; no repeated
symbols or subwords.)

d1 d2 d3 dL

f f f f h0 h1 h2 h3 hL hL-1
H(M)

M1 M2 ML M3

Square-Free Sequence
 A sequence is square-free if it

contains no two equal adjacent
subwords.

 Examples:
 abracadabra is square-free
 hobbit is not (repeated “b”)
 banana is not (repeated “an”)

 Dithering with a square-free sequence
prevents message expansion attacks.
(Would need fixpoint that works for
all dither inputs.)

Infinite square-free sequences
 There exists infinite square-free

sequences over 3-letter alphabet.
 Start with parity sequence:

 0110100110010110…
i-th element is parity of integer i.
This (Prouhet-Thue-Morse, or PTM)
sequence is only cube-free, but…

 Sequence of inter-zero gap lengths in
PTM is square-free:
 2102012101202102012021…

Generating infinite sf sequences

 Or:
–  Take two copies of PTM sequence;

shift second one over by one,
then code vertical pairs:
A = 00, B = 01, C = 10, D = 11:
 0 1 1 0 1 0 0 1 1 0 0 1 0 1 …
 - 0 1 1 0 1 0 0 1 1 0 0 1 0 …
 - C D B C B A C D B A C B C …

 Result is also square-free.

Towers of Hanoi Sequence

  Optimal play moves small disk on odd moves
cyclically 1->2->3->1->2->3…; even moves are
then forced.

  Code moves with six letters as
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]

  Optimal sequence is square-free! (Shallit &c)

1 2 3

Towers of Hanoi Sequence

  Code moves with six letters as
A[1->2], B[1->3],C[2->1],D[2->3],E[3->1],F[3->2]

  Optimal play:

1 2 3

A D B A E F A B D C…
  Easy to generate sequence for infinitely many

disks…

Abelian square-free sequences
  An even stronger notion of “repetition-

free” than (ordinary) square-free.
  A sequence is abelian square-free if it

contains no two adjacent subwords yy’
where y’ is a permutation of y (possibly
identity permutation).

  Example:
 abelianalien
is square-free but not abelian square-free,
since “alien” is a permutation of “elian”.

Infinite ASF sequences exist
 Thm (Keränen). There exists infinite

ASF sequences on four letters.
 Keränen’s sequence based on “magic

sequence” S of length 85:
abcacdcbcdcadcdbdabacabadbabc
bdbcbacbcdcacbabdabacadcbcdca
cdbcbacbcdcacdcbdcdadbdcbca

 Let σ(w) denote word w with all
letters shifted one letter cyclically:
 σ(abcacd) = bcdbda

Generating infinite asf sequence(I)
 Start with Keränen’s magic sequence

 S = abcac…dcbca (length 85)
 Apply morphism:

 a → S = abcac…dcbca
 b → σ(S) = bcdbd…adcdb
 c → σ2(S) = cdaca…badac
 d → σ3(S) = dabdb…cbabd
simultaneously to all letters.

 Repeat to taste (each sequence is prefix
of next, and of infinite limit sequence).

Generating infinite asf sequence(II)

 Count i = 0 to infinity in base 85
 Apply simple four-state machine to

base-85 representation of i
(high-order digit processed first).

 Output a/b/c/d is last state.
 Requires constant (amortized) time per

output symbol.

Dithering with ASF sequence
 Since Keränen’s ASF sequence on

four letters is so easy to generate
efficiently, we propose using it to
dither an iterated hash function.

 This add negligible computational
overhead, and only two new bits of
input to compression function.

Recoding with ASF sequence
 Can also recode message using given

ASF sequence. (This is essentially
equivalent to dithering, just viewed
another way…)

Open Questions
  Can Dean/Kelsey/Schneier attacks be

adapted to defeat use of ASF sequences in
hash function?

  Does ASF really add anything over SF?
  Are there generalizations of ASF that could

be used? (“Even more” pattern-free?)
  Where else in cryptography can ASF

sequences be used?

Conclusions
 Abelian square-free sequences seem

to be a very inexpensive way to
prevent repetitive inputs from
causing vulnerabilities in hash
functions.

  (Thanks to Jeff Shallit and Veikko
Keränen for teaching me about
square-free and abelian square-free
sequences.)

 (The End)

Iterated hashing
 

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’ hL’-1

M’1 M’2 M’3 M’L’

H(M)

Iterated hashing with dithering

 

f f f f

Recoding

g

M1 M2 ML

h0 h1 h2 h3 hL’ hL’-1

M’1 M’2 M’3 M’L’

H(M)

d1 d2 d3 dL’

