
On Auditing Elections When Precincts Have Different Sizes

Ronald L. Rivest
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

rivest@mit.edu

Draft of April 29, 2007∗

Abstract

We address the problem of auditing an elec-
tion when precincts may have different sizes,
and suggest methods for picking a sample of
precincts to audit that precinct size into ac-
count. One method yields optimal auditing
strategies together with an exact measure of
its effectiveness (probability of detecting corrup-
tion of a given size).

We restrict attention to basic auditing strate-
gies, in which each precinct Pi is audited inde-
pendently with some probability pi determined
by the auditor. The auditing probability for a
precinct will depend on the size of the precinct,
with larger precincts audited more frequently;
when all precincts have the same size they will
have the same probability of being audited.

We first show how, given the auditor’s sim-
pel auditing strategy, how to efficiently compute
an optimal strategy for the adversary, using dy-
namic programming. This also yields the exact
probability that the auditor will detect the ad-
versary’s corruption in one or more precincts.

We then show how to embed the above proce-
dure in an efficient iterative optimization com-
putation that appears to always converge upon
the optimal auditing strategy.

Finally, we present the “logistic auditing

∗The latest version of this paper can al-
ways be found at http://theory.csail.mit.edu/~rivest/
Rivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf

strategy,” which is very easy to compute and
appears to yield optimal or nearly optimal au-
diting strategies when the amount of corruption
being sought is noticeably larger than the max-
imum precinct size.

In the logistic approach, the auditor picks
each precinct to be audited independently with
a probability p that depends on the size v of the
precinct (in votes), as follows:

p = 1− exp(−v/w) (1)

where w is an adjustable globabl parameter
that can be chosen to achieve a given confi-
dence level (aka statistical power), to achieve
a given expected number of precincts audited,
or to achieve a given expected auditing work-
load. We call this approach a “logistic audit”
since equation (1) is an instance of the familiar
“logistic function” [11].

As a precinct gets larger, the probability that
it is audited increases; as the precinct size passes
the threshold w the probability of being audited
passes 1− 1/e ≈ 63%.

The logistic approach also enables estimation
of the probability of detecting fraud: if the ad-
versary corrupts precincts containing a total of
at least C votes, then the auditor will detect
fraud with probability at least

1− exp(−C/w) .

1

http://theory.csail.mit.edu/~rivest/Rivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf
http://theory.csail.mit.edu/~rivest/Rivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf


For example, by choosing w ≈ C/3, the auditor
will detect fraud of magnitude C with probabil-
ity at least 95%; choosing w ≈ C/4.605 gives a
99% confidence level (statistical power).

1 Introduction

Suppose we have an election with n precincts,
P1, . . . , Pn.

Suppose the number of voters who voted in
precinct Pi is vi; we call vi the “size” of precinct
Pi. Let the total number of such voters be V =∑

i vi. Assume without loss of generality that
v1 ≥ v2 ≥ · · · ≥ vn.

Suppose further that in precinct Pi we have
both electronic records and paper records for
each voter. The electronic records are easy to
tally.

For the purposes of this paper, the paper
records are used only as a source of authorita-
tive information when the electronic records are
audited. They may be considered more author-
itative since the voters may have verified them
directly.

Auditing is desirable since a malicious party
(the “adversary”) may have manipulated some
of the electronic tallies so that a favored can-
didate wins the election. (It is also possible
that a simple software bug caused the electronic
tallies to be inaccurate. However, in this note
we are concerned primarily with detecting ma-
licious adversarial behavior, as that is the more
challenging task.)

A precinct can be “audited” by re-counting
by hand the paper records of that precinct, to
confirm that they match the electronic totals
for that precinct. (We ignore here the fact that
hand-counting may be inaccurate, and assume
that any discrepancies are due to fraud on the
part of the adversary. In practice, the discrep-
ancy might have to be larger than some prespec-
ified threshold to trigger a conclusion of fraud
in that precinct.)

See the overview [6] for information about
current election auditing procedures. In this pa-

per we ignore many of the complexities of real
elections, in order to focus on our central issue
here: how to select a sample of precincts to au-
dit when the precincts have different sizes.

This situation is closely related to the clas-
sic notion of an “inspection game”, with an
“inspector” (the auditor) and an “inspectee”
(the adversary). Inspection games fit within
the standard framework of game theory. With
optimal play, both auditor and adversary use
randomized strategies. See Avenhaus et al. [2]
for discussion. (In our case, the adversary may
choose to use a deterministic strategy, so inspec-
tion games have a bit more generality than we
need.)

1.1 Auditing objectives and costs

After the election is over, the auditor selects a
sample of precincts in which to perform a post-
election audit. In each selected precinct the pa-
per ballots are counted by hand, and the totals
compared with the electronic tallies.

The auditor wishes to assure himself (and ev-
eryone else) that the level of error and/or fraud
in the election is likely to be low or nonexistant.

If the audit finds no (significant) discrepan-
cies between the electronic and paper tallies, the
auditor announces that no fraud was discovered,
and the election results may be certified by the
appropriate election official.

If, on the other hand, significant discrepan-
cies are discovered between the electronic and
paper tallies, then additional investigations may
be needed to determine the nature and extent of
the problem. For example, state or federal law
may require a full recount of the paper ballots.

When beginning the audit, the auditor knows
the size vi of each precinct Pi.

The auditor also knows the margin of victory
m of the winning candidate over the runner-
up—this is the extra fraction of voters who
voted (according to the electronic tallies) for the
apparently victorious candidate over the runner-
up. As we shall see, the smaller the margin, the
more auditing may be appropriate.

2



We consider three distinct scenarios for the
auditing objective depending on the level of ef-
fort to be undertaken by the auditor:

• The auditor may have a legal requirement
on the number u of precincts to be audited.
For example, state law may require that 1%
of the precincts be audited. (This number
may also be mandated as a certain function
of the margin of victory.) (See Section 8.)

• The auditor may have a
budgetary constraint on the
number A of votes to be recounted. The
workload and cost of auditing is more-or-
less proportional to the total number A of
votes recounted, rather than to the number
u of precincts audited.) (See Section 5.3.)

• The auditor may wish to achieve a certain
confidence level that the declared election
result is correct—that is, that the true level
of error or fraud is unlikely to have affected
the election outcome. (Section 5.1). (Our
term “confidence level” is equivalent to the
notion of “statistical power” in the statis-
tics literature; it is the probability of reject-
ing a false null hypothesis.)

The logistic approach suggested here can han-
dle all three of the above scenarios.

As a function of the precinct sizes, the mar-
gin of victory, and the auditing objective, the
auditor will determine how to randomly select
an appropriately-sized sample of the precincts
to be audited.

1.2 Adversarial Objectives

We assume the adversary wishes to corrupt (or
has corrupted) a set of precincts whose total size
is at least a given value C, where 0 < C ≤ V .

We now outline the assumptions first sug-
gested by Dopp and Stenger [5] for determining
a lower bound on the value of C that would have
sufficed to have changed the election outcome.

Let us assume the reported margin of vic-
tory is mV (votes), for some margin value m,

0 ≤ m ≤ 1. Thus, the reported vote total for
the adversary’s candidate (the apparent winner)
minus the reported vote total for the next pos-
sible real winner (the runner-up) needs to have
been manipulated by an amount mV , for the
adversary’s candidate to “win” the election.

We assume that the adversary is willing to
“flip” up to s = 20% of the votes in each
precinct chosen for corruption. (If the adver-
sary changes more votes than that within a cor-
rupted precinct, too much suspicion would be
generated.) If precinct Pi is corrupted, the ad-
vantage gained for the adversary’s candidate is
then 2svi = 0.4vi (the margin of victory changes
by two votes for each vote switched).

In this way, the total net improvement (from
the adversary’s point of view) in the margin
of victory for the adversary’s candidate is 2sC.
Thus, the adversary must have chosen C so that
2sC ≥ mV if the election result was actually af-
fected. In general, a corruption level

C =
mV

2s
(2)

votes (sum of the sizes of the corrupted
precincts) would give the adversary enough
leverage to have changed the election outcome.
(Equation (2) is due to Dopp and Stenger [5].)
Of course, this reasoning applies whether the
precincts all have the same size or whether they
have different sizes.

We may also assume that the adversary knows
the general form of the auditing strategy. In-
deed, the auditing strategy may be mandated
by law, or described in public documents. While
the adversary may not know which specific
precincts will be chosen for auditing, he is as-
sumed to know the method by which those
precincts will be chosen, and to know the proba-
bility that any particular precinct will be chosen
for auditing.

In this situation, the adversary can be as-
sumed to use a deterministic strategy, and to
pick the precincts to be corrupted in a way that
is a deterministic function of the margin m of
victory, the vote-shift fraction s, and the public

3



details of the auditing strategy. For example,
if it is known that the auditing strategy will
pick precincts uniformly at random, then the
adversary may do best by corrupting a few of
the largest precincts only, in order to be able
to achieve his goal of corrupting precincts to-
talling C votes while corrupting as few precincts
as possible. (The dynamic programming algo-
rithm of Section 2 gives the general solution
to this problem of picking the precincts to be
corrupted, both for the case that precincts are
picked uniformly at random by the auditor, and
for the case that the auditing probabilities are
non-uniform.)

We assume here that the adversary wishes to
corrupt precincts totalling C votes while min-
imizing the probability of detection—that is,
while minimizing the chance that one or more
of the precincts chosen to be audited will be one
that has been corrupted.

Once C is determined, we then assume that
each precinct size is “trimmed” to be at most C:
that is, vi is adjusted downwards as necessary so
that it is at most C:

vi ← min(vi, C) for 1 ≤ i ≤ n . (3)

A large precinct having C > vi is sufficiently
large so that all of the corruption can be hidden
within it; the excess of vi over C is not needed
by the adversary, and should be ignored in
the computations—two precincts of size greater
than C should have the same probability of be-
ing audited. The above trimming procedure en-
sures this.

1.3 Auditing Strategy

How should the auditor select precincts to au-
dit?

The auditor wishes to maximize the probabil-
ity of detection: the probability that the auditor
audits at least one precinct that has been cor-
rupted.

The auditor’s strategy should of course be
randomized, as is usual in game theory. (If the

adversary knew exactly which precincts would
be audited, then the game is not interesting.)

We first review the case that all precincts have
the same size, and then proceed to handle the
case of interest in this paper, when precincts
have a variety of sizes.

1.4 Same-size precincts

In this section we quickly review the situation
when all n of the precincts have the same size v
(so V = nv).

When all precincts have the same size, then
the auditor should pick an appropriate number
u of precincts uniformly at random to audit. See
Neff [7], Saltman [9], or Aslam et al. [1] for dis-
cussion and procedures for calculating appropri-
ate audit sample sizes.

Let us assume that b precincts have been cor-
rupted (they are “bad”), so C = bv. Then the
probability of detecting at least one corrupted
precinct is just

1−

(
n−b
u

)
(

n
u

) .

By choosing u so that

u ≥ (n− (b− 1)/2)(1− (1− c)1/b)

one achieves a confidence level (statistical
power) of c that at least one corrupted precinct
will be detected, if there are at least b corrupted
precincts (See Aslam et al. [1].)

1.5 Basic strategies for varying
precinct sizes

The question addressed in this paper is: how
should one pick a sample of precincts to audit
when the precincts have different sizes? What
then do the optimal strategies for auditor and
adversary look like?

We assume in this paper that the auditor
adopts what we will call a “basic” strategy,
wherein each precinct is audited independently

4



with a probability determined a priori by the au-
ditor. While this represents some restriction on
the flexibility of the auditor, we feel that this
restriction is not significant in practice. (Fur-
thermore, some lifting of this restriction is ex-
plored in Section 5.) Restricting attention “ba-
sic” strategies will make the math easier.

We thus assume that the auditor will au-
dit each precinct Pi independently with some
probability pi, where each pi satisfies 0 ≤
pi ≤ 1. Thus, the auditor’s auditing strategy
is completely determined by the vector p =
(p1, p2, . . . , pn).

We assume that vectors p = (p1, p2, . . . , pn)
and v = (v1, v2, . . . , vn) are public knowledge
and known to everyone, including the adversary.

We note that the sum u(p) of the pi’s is the
expected number of precincts to be audited,
which is typically greater than 1.

The expected workload for the auditor (in
terms of the expected number of votes to be
counted) is

v(p) =
∑

i

pivi . (4)

2 Optimal Adversarial

strategy against a ba-

sic auditing strategy

How should the adversary best counter a basic
auditing strategy?

The adversary wishes to corrupt precincts
with a total of C votes, while minimizing the
probability of detection.

When the adversary corrupts precinct Pi, he
gains vi towards his goal of corrupting C votes,
but takes a chance pi of being detected. The
adversary succeeds with Pi (i.e., is undetected)
with probability 1− pi. For convenience, we let

qi = 1− pi

denote that probability that Pi will not be au-
dited.

If the adversary corrupts a set Q of precincts,
then the total gain, in terms of the number of

votes in the corrupted precincts, is

v(Q) =
∑
i∈Q

vi

while the overall chance of escaping detection,
assuming that each precinct is audited indepen-
dently, is

e(Q) =
∏
i∈Q

qi .

We let d(Q) denote the corresponding detection
probability:

d(Q) = 1− e(Q) .

Each precinct Pi for i in Q contributes vi to the
vote total corrupted, and contributes ln(qi) to
ln(e(Q)), the logarithm of the escape probability
e(Q).

We now describe a simple dynamic program-
ming [4, Chapter 15] algorithm for computing
an optimal strategy for the adversary; that is,
for computing a set of precincts Q to be cor-
rupted with total size at least C that maximizes
the chance of escaping detection.

While the adversary’s problem is NP-hard (it
is a variant of the NP-hard 0-1 knapsack prob-
lem), the adversary can take advantage of the
fact that the total number V of voters isn’t so
large in practice. (Perhaps several million at
most.) Thus, it is OK to use an algorithm whose
running time is polynomial in both n and V .

Here is a sketch of a dynamic programming
algorithm for computing exactly an optimal set
Q of precincts for the adversary to corrupt, and
the corresponding optimal detection probability
d(Q).

We let Zij for 0 ≤ i ≤ n and 0 ≤ j ≤ V
denote the maximum of ln(e(Q)) where Q ⊆
{1, 2, . . . , i} and v(Q) = j. Then

Z0,0 = 0 ,

Z0,j = −∞ for j > 0,

for i > 0 and j < vi we have:

Zi,j = Zi−1,j

5



and for i > 0 and j ≥ vi we have:

Zi,j = max{Zi−1,j, Zi−1,j−vi
+ ln(qi)} . (5)

Then the optimal Q is determined by finding
the j ≥ C maximizing Znj (which is ln(e(Q)))
by iteratively backtracking through the Z com-
putation to figure out how this maximum escape
probability was derived. (This is just like com-
puting the optimal longest-common substring in
[4, Step 4, page 354]; it depends only on the in-
formation as to which argument was the “max”
in the relevant steps of equation (5) as you work
backwards.) Code for this computation is avail-
able from the author.

This dynamic programming computation is in
fact very efficient, taking a mere fraction of a
second, even for large jurisdictions.

So, it is easy for the adversary to compute
an optimal set Q of precincts to corrupt (and
thus also its corresponding minimized detection
probability d(Q)), given the vectors v and p.

Let Qopt(p, C) be the Q determined by the
optimal adversary, and let dopt(p, C) denote the
corresponding detection probability.

When all precincts have different sizes but
are equally likely to be audited, we have the
case studied by Dopp [5] and by Stanislevic [10];
they gave heuristic (“greedy”) approximations
for computing the optimal adversarial strategy.

(The cost of computing an (nearly) optimal
adversarial strategy can be reduced by choosing
some factor k > 1, replacing each vi by bvi/kc,
and replacing C by dC/ke. This will speed up
the computation by a factor of k, and give an op-
timal solution to this “rounded” problem, which
can either by used as is, or used as a starting
point for a search for the optimal strategy to
the original problem.)

3 Computing an optimal

basic auditing strategy

Now we turn to the question of computing an
optimal auditing strategy p, given v.

We first note, for the record, that the opti-
mal auditing strategy has a simple monotonic-
ity property, given that expected number of
precincts to be audited is fixed.

Lemma 1 Let v = (v1, v2, . . . , vn) be a non-
increasing vector of precinct sizes, and let p =
(p1, p2, . . . , pn) be the corresponding optimal au-
dit probabilities, for some fixed target u =

∑
i pi

for the expected number of precincts to be au-
dited. Then, without loss of generality, vi > vj

implies pi ≥ pj for all i, j.

Proof: Otherwise switch pi and pj. We
now argue that this (obviously) preserves

∑
i pi

and doesn’t affect the detection probability for
any adversarial attack (where the attack also
switches i and j when possible). Consider a
subset Q of precincts that might be attacked.
If Q doesn’t involve either i or j, then d(Q).
If Q involved only j, then a modified attack
Q′ = Q− {j} ∪ {i} has d(Q′) = d(Q), and still
has v(Q′) ≥ C since vi ≥ vj. If Q involved only
i, then d(Q) has increased. Replacing i by j in
the attack may not preserve v(Q′) ≥ C, so the
adversary may not be able to compensate. If Q
involves both i and j, then d(Q) is unchanged.
In all cases, the detection probability for the op-
timum attack has not decreased.

We note for the record, however, that vi =
vj does not imply that pi = pj in the optimal
strategy.
Example: Let v = (10, 10, 1, 1), C = 31, and
u = 1. Then there is no optimal basic audit
strategy with p1 = p2; an optimal audit strategy
will have one of p1, p2 equal to 1 and all other
probabilities equal to 0.

The preceding example can be used to show
that there may be multiple “local maxima”
when searching for a globally optimal audit
strategy. It also shows that an iterative opti-
mization procedure may need to include some
“symmetry breaking” method.

We also note that the above lemma only ap-
plies when the auditor’s constraint is the num-
ber u of precincts audited (rather than, say,

6



the expected number of votes in the audited
precincts).

Since we have determined an optimal adver-
sarial strategy, we can view this as a “search”
problem for the auditor.

We assume here that the auditor is searching
for the best way to audit u precincts, on the
average. That is, the auditor wishes to find a
probability vector p with

∑
i pi = u and which

is as effective as possible against the optimal
adversary—that is, which maximizes dopt(p, C).

Since the auditor can also compute dopt(p, C),
he can use any one of a variety of search or op-
timization techniques to compute (or approxi-
mate) an optimal p.

The following heuristic technique seems to be
quite effective as a search strategy; it determines
pi to be proportional to the product of vi and
the number of times ti that the adversary has
corrupted Pi in the search so far.

1. Initialize counter ti = 1 for 1 ≤ i ≤ n.

2. Choose pi’s so that they are proportional to
product of ti and vi. Let T =

∑
i tivi, and

Let pi = tiviu/T .

3. Ensure that all pi’s satisfy 0 ≤ pi ≤ 1, by
shifting “excess” from all positions i where
pi > 1.0 to places j where pj < 1.0, favor-
ing those places j with minimum positive
values of 1.0− pj to “top off” first.

4. Determine dopt(p, C) and the correspond-
ing Qopt, using the dynamic programming
algorithm given above.

5. For each i ∈ Qopt, increment ti by 1.

6. Return to step 2.

This loop can be iterated until the algorithm
appears to have converged.

In testing, this loop often converges to an
optimal auditing strategy reasonably rapidly.
There are of course many other constrained op-
timization methods that could be employed in-
stead of the heuristic method outlined above,

once you are given the ability to compute the
“quality” dopt(p, C) of a candidate solution p.
(I note that dopt is a continuous function of p,
although the derivatives may be discontinuous.)

The search can be considerably sped up by
finding a good approximate solution by using a
“greedy” adversary rather than the optimal ad-
versary. The greedy adversary takes precincts

in order of decreasing value q
1/vi

i , until precincts
with total size C or more hav been taken. The
greedy adversary is easier to compute, so the
optimization run considerably quicker for com-
puting the optimal auditing strategy against the
greedy adversary. Then one can use that strat-
egy as a starting point for computing the opti-
mal strategy against the optimal adversary.

The logistic strategy (see Section 4 next), is
an excellent way to initialize the search for an
optimal auditing strategy; it appears to fre-
quently actually be optimum, and may often be
reasonably used in practice instead of the opti-
mal auditing strategy.

Various other improvements can be made to
make this iterative search technique more robust
and efficient; the above is just an initial attempt
at getting good results in a reasonable amount
of time.

One very nice thing about such an itera-
tive improvement technique is that for each ba-
sic strategy p considered, one obtains an exact
lower bound on the chance of detecting fraud of
size C or greater. Thus, one can stop the search
at any time, and have in hand a reasonably good
basic strategy p, as well as an exact measure of
how good it is.

4 Logistic auditing strategy

Although the preceding sections show how to
compute an optimal auditing strategy, we now
present a heuristic auditing strategy that is
much simpler to compute, and which often gives
extremely good results. We call it the “logistic”
strategy.

Intuitively, the auditor wants to make the

7



“value” for each precinct to the adversary
roughly the same; the value vi gained for the
adversary of each precinct should be balanced
by the risk of detection.

The auditor should set things up so that, for
example, the adversary is indifferent between
corrupting a single precinct of size v` = (vi +vj)
or corrupting two precincts of sizes vi and vj re-
spectively. The chance of escaping detection on
P` or escaping detection on both of Pi and Pj

should be the same.
This implies that the auditor should not audit

each Pi with probability:

qi = exp(−vi/w) (6)

where w is some fixed constant. Thus

q` = qiqj

as desired if v` = vi + vj.

This is the same as saying that q
1/vi

i is con-
stant. so that the (e.g. greedy) adversary
doesn’t really prefer one precinct over another.
The auditor won’t be wasting effort auditing
precincts the adversary doesn’t care about.

Our logistic auditing strategy thus yields

pi = 1− exp(−vi/w) (7)

Thus, we propose here that the auditor should
use the “logistic” auditing strategy of equa-
tion (7), where w may be chosen to satisfy con-
straints on auditing cost or confidence level.

As vi increases, the probability of auditing Pi

increases, starting off at 0 for vi = 0 and in-
creasing in an s-shaped curve as vi increases,
and levelling off approaching 1 asymptotically
for large vi. The chance of auditing Pi passes
(1− 1/e) ≈ 63% as vi exceeds w.

The value w can be thought of as approximat-
ing a “threshold” value: precincts larger than
w have a fairly high probability of being au-
dited, while those smaller than w have a smaller
chance of being audited.

As w decreases, the auditing gets more strin-
gent: more precincts are likely to be audited.

As w increases, auditing becomes less stringent:
fewer precincts are likely to be audited.

One can use any of several standard packages
for root-finding to find a value of w that meets
given constraints, such as that

∑
i pi is a given

value u. (We used the routine brentq from the
Python library scipy.optimize.)

An important and very convenient property
of the logistic audit is that for any set Q of
precincts that the adversary may choose to cor-
rupt satisfying

s(Q) =
∑
i∈Q

vi ≥ C ,

the chance of detection is at least

1−
∏
i∈Q

exp(−vi/w) ≥ 1− exp(−C/w) . (8)

This holds no matter what strategy the adversary
uses.

In particular, we note that if the adversary
can not find a set of precincts whose size to-
tals exactly C votes, then he will choose a set
of precincts with size C ′ where C ′ is somewhat
larger than C, but then the detection probabil-
ity also becomes larger, since

1− exp(−C ′/w) > 1− exp(−C/w) .

4.1 Relation to picking precincts
uniformly

As the amount C of corruption being sought
becomes smaller and smaller, the logistic strat-
egy devolves into a strategy of picking precincts
uniformly. The reason is that the initial “trim-
ming” of the vi’s given by equation (3) makes
all of the vi’s equal (to each other and to C) in
the limit. When all of the vi’s are equal, then
their auditing probabilities are equal, giving the
uniform auditing strategy.

8



4.2 Relation to picking precincts
with probability proportional
to size (pps)

An earlier draft of this paper explored a related
strategy, whereby precincts were selected for au-
diting with probability proportional to their size
(pps). This had some problems to deal with, as
the probabilities computed sometimes exceeded
1 and had to be trimmed. The logistic approach,
by contrast, never has audit probabilities ex-
ceeding 1. The pps strategy was motivated not
by probability of detection, but by the magni-
tude of the corruption detected; the logistic au-
dit seems better motivated. But the logistic and
pps strategies are closely related, since

pi = 1− exp(−vi/w) ≈ vi/w

when vi is small relative to w, so that the pps
scheme can be viewed as an approximation to a
logistic audit.

4.3 Relation to the optimal au-
diting strategy

Given the strong motivation behind the logis-
tic strategy, it is perhaps not surprising that it
performs exceptionally well in practice.

Empirically, when C is at least two or three
times larger than the size of the largest precinct,
the logistic strategy often gives essentially opti-
mal results.

It is only in cases where C is not so large rel-
ative to the precinct sizes that that the logistic
strategy appears to fail.

As one example, with n = 3, v = (3, 4, 5),
C = 8, u = 2, the logistic strategy gives p =
(0.5698, 0.6753, 0.7549) with detection probabil-
ity d = 0.8946, while an optimal auditing strat-
egy is p = (0.5, 0.5, 1.0) with detection proba-
bility 1.0. (Note that the adversary must attack
P3 in order to achieve C = 8 corrupted votes.

Thus, in practice, one can either just use the
logistic strategy as an effective heuristic by itself
for computing an auditing strategy p, or one
can use it as an extremely good way of getting

a starting value for the iterative improvement
strategy for computing the optimal p; the latter
only seems to be necessary when some precincts
are large compared to C.

Either way, don’t forget that given p, we have
from Section 2 a method for computing the ex-
act confidence level (statistical power) for p.

5 Practice

We discuss here how to use the logistic auditing
strategy in practice.

5.1 Sampling to achieve a given
level of confidence

How can an auditor audit enough to achieve a
given confidence level?

The relationship of equation (8) gives a very
nice way for the auditor to choose w: by choos-
ing

w =
C

− ln(1− c)
(9)

the auditor achieves confidence of at least c in
catching fraud of size at least C, no matter what
the adversary’s strategy is. For example, by
choosing w ≈ C/3, the auditor achieves con-
fidence level 95% of detecting fraud of size C or
greater.

If the auditor starts with the margin of vic-
tory, then by using equation (2), the auditor can
choose

w =
mV

−2s ln(1− c)
(10)

to determine w in terms of the margin m of
victory, the vote-shift amount s per precinct,
and the desired confidence level c. For example:
for a m = 1% margin of victory with s = 0.20
and confidence level c = 0.95, the auditor may
choose

w =
0.01V

−2 ∗ 0.20 ∗ (−3)
= 0.0083V

(w just under one percent of V ) to obtain the
desired level of confidence.

9



5.2 Sampling for a given ex-
pected number of precincts
to be sampled

Once u is determined in this manner, the au-
ditor can either sample the precincts indepen-
dently with the logistically determined proba-
bilities, or he can use the procedure of Section 8
to actually select exactly u precincts to be au-
dited.

5.3 Sampling to achieve a given
workload

In this section, we’ll assume that the auditor
also starts with an auditing work target A.

The simplest way to proceed is then to just
pick each precinct independently with probabil-
ity pi. Then the auditing budget will be correct,
but only on the average.

It is not clear how to proceed if you want
the actual workload (number of votes audited)
to be (approximately) A, rather than having
the expected workload be A. (In the same way
that the Appendix shows how to pick exactly u
precincts instead of having an expected value of
u precincts sampled. Getting the actual work-
load exactly right is a difficult problem; it is
effectively an instance of the well-known NP-
complete “knapsack” problem.

Perhaps it would be OK in practice to repeat
the drawing of sampling according to the above
procedure until auditing budget and the actual
auditing work from the strategy chosen are close
enough. But the effect of such a procedure on
the probability of detecting fraud seems hard to
calculate.

5.3.1 Experiment

Mark Lindeman supplied a dataset of 640
precinct sizes (vote counts) for the Ohio con-
gressional district 5 race (OH-05) in 2004, rang-
ing from 1637 (largest) to 132 (smallest), a dif-
ference in size by a factor of more than 12.

Let us assume an audit of this district, when
the margin of victory is m = 1%. Assume that
the adversary will change at most s = 20% of
the votes in a precinct.

Let us assume that an audit of 3% is made:
19 precincts.

With a logistic strategy, the chance of detect-
ing fraud sufficient to have changed the election
result is at least 38.31%.

With a uniform strategy for picking 19
precincts, the chance of detecting fraud suffi-
cient to have changed the election result is only
18.08%, less than half as large as for the logistic
strategy.

Even with a uniform strategy with the same
expected workload (number of votes counted),
auditing 21.42 precincts on the average, the
chance of detecting fraud sufficient to have
changed the election result is only 20.13%.

Thus, we see that for real elections, using a
logistic audit can sometimes double the effec-
tiveness of the audit in terms of the chance of
detecting outcome-changing fraud.

It is interesting that when we tried our it-
erative improvement method, we did not find
any improvement over the logistic audit for this
problem; it may be that for this example the
logistic approach is optimal or extremely close
to it.

(The dataset and Python program
for this experiment are available at
http://theory.csail.mit.edu/~rivest/

pps/oh5votesonly.txt and http://theory.

csail.mit.edu/~rivest/pps/diff.py.)

6 Related and Prior Work

See Stanislevic [10] for some discussion of this
problem, including a conservative way of han-
dling precincts of different sizes when the au-
ditor is constrained to sampling precincts ac-
cording to a uniform distribution. This ap-
proach was developed independently by Dopp
et al. [5]. The idea is to assume that the adver-
sary corrupts the larger precincts first, in order

10

http://theory.csail.mit.edu/~rivest/pps/oh5votesonly.txt
http://theory.csail.mit.edu/~rivest/pps/oh5votesonly.txt
http://theory.csail.mit.edu/~rivest/pps/diff.py
http://theory.csail.mit.edu/~rivest/pps/diff.py


to determine a good lower bound on the number
of precincts that must be corrupted, and then
to use an approach for auditing that samples
precincts uniformly.

See Avenhaus et al. [2] for an excellent sur-
vey of “Inspection Games,” of which the present
problem is an example.

See Neff [7], Cordero et al. [3], Saltman [9],
Dopp et al. [5], Rivest [8] for additional discus-
sion of the mathematics of auditing, and addi-
tional references to the literature.

7 Discussion

It would be preferable in general, rather than
having to deal with precincts of widely differ-
ing sizes, if one could some divide the records
for the larger precincts into “bins” for “pseudo-
precincts” of some smaller standard size. (You
can do this for say paper absentee ballots, by di-
viding the paper ballots into nominal standard
precinct-sized batches before scanning them.) It
is harder to do this if you have DRE’s with wide
disparities between the number of voters voting
on each such machine.

Perhaps legislation should express mandatory
lower bounds on the amount of auditing that
needs to be performed in terms of the fraction
of votes in the audited precincts, rather than
merely in terms of the fraction of the number of
precincts.

But the best approach for legislation is prob-
ably merely to mandate a lower bound on the
confidence level that must be achieved in terms
of the probability that fraud of sufficient magni-
tude to have changed the election outcome will
be detected.

8 Conclusions

We have presented algorithms for computing an
optimal auditing strategy, as well as a powerful
“logistic” approach to computing an auditing
strategy.

Acknowledgments

Thanks to Mark Lindeman for helpful discus-
sions and the Ohio dataset of precinct sizes, and
to Christos Papadimitriou for referring me to
the literature on “inspection games.” Thanks
also to Kathy Dopp, Silvio Micali, and Howard
Stanislevic for constructive suggestions.

References

[1] Javed Aslam, Raluca Popa, and
Ronald L. Rivest. On estimating
the size and confidence of a statisti-
cal audit, 2007. Available at: http:

//theory.csail.mit.edu/~rivest/

AslamPopaRivest-OnEstimatingTheSize

AndConfidenceOfAStatisticalAudit.

pdf.

[2] Rudolf Avenhaus, Bernhard Von Stengel,
and Shmuel Zamir. Inspection games. In
R. J. Aumann and S. Hart, editors, Hand-
book of Game Theory, volume III. January
30 1998. Available at: http://citeseer.

ist.psu.edu/212144.html.

[3] Arel Cordero, David Wagner, and David
Dill. The role of dice in election audits —
extended abstract, June 16 2006. To appear
at IAVoSS Workshop on Trustworthy Elec-
tions (WOTE 2006). Preliminary version
available at: http://www.cs.berkeley.

edu/~daw/papers/dice-wote06.pdf.

[4] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms (Second Edition).
MIT Press / McGraw-Hill, 2003.

[5] Kathy Dopp and Frank Stenger.
The election integrity audit, 2006.
http://electionarchive.org/

ucvAnalysis/US/paper-audits/

ElectionIntegrityAudit.pdf.

[6] ElectionLine.org. Case study: Audit-
ing the vote, March 2007. Available

11

http://theory.csail.mit.edu/~rivest/AslamPopaRivest-OnEstimatingTheSize
http://theory.csail.mit.edu/~rivest/AslamPopaRivest-OnEstimatingTheSize
http://theory.csail.mit.edu/~rivest/AslamPopaRivest-OnEstimatingTheSize
AndConfidenceOfAStatisticalAudit.pdf
AndConfidenceOfAStatisticalAudit.pdf
http://citeseer.ist.psu.edu/212144.html
http://citeseer.ist.psu.edu/212144.html
http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://electionarchive.org/ucvAnalysis/US/paper-audits/ElectionIntegrityAudit.pdf
http://electionarchive.org/ucvAnalysis/US/paper-audits/ElectionIntegrityAudit.pdf
http://electionarchive.org/ucvAnalysis/US/paper-audits/ElectionIntegrityAudit.pdf


at: http://electionline.org/Portals/

1/Publications/EB17.pdf.

[7] C. Andrew Neff. Election confidence—
a comparison of methodologies and their
relative effectiveness at achieving it (re-
vision 6), December 17 2003. Available
at: http://www.votehere.net/papers/

ElectionConfidence.pdf.

[8] Ronald L. Rivest. On estimating
the size of a statistical audit, 2006.
Unpublished. Available at: http:

//theory.csail.mit.edu/~rivest/

Rivest-OnEstimatingTheSizeOfA

StatisticalAudit.pdf.

[9] Roy G. Saltman. Effective use of comput-
ing technology in vote-tallying. Technical
Report NBSIR 75–687, National Bureau
of Standards (Information Technology
Division), March 1975. Available at:
http://csrc.nist.gov/publications/

nistpubs/NBS_SP_500-30.pdf.

[10] Howard Stanislevic. Random audit-
ing of e-voting systems: How much is
enough?, revision August 16, 2006. Avail-
able at: http://www.votetrustusa.org/

pdfs/VTTF/EVEPAuditing.pdf.

[11] Wikipedia. Logistic function. Available
at: http://en.wikipedia.org/wiki/

Logistic_function.

Appendix. Sampling a fixed

number of precincts

In this section we consider the question of how
to sample a given number u of precincts, but do-
ing so with given probabilities for each precinct.
(The number u of precincts to be audited may
result, for example, from a legal requirement.)

Thus, we consider the case that∑
i

pi = u .

We would like a sampling procedure that
given a vector p of probabilities that sum to u,
returns each time with a subset of the precincts,
such that the subset always has size exactly u,
and such that precinct Pi is sampled with prob-
ability pi.

We assume that p1 ≥ p2 ≥ . . . ≥ pn, without
loss of generality.

There are several approaches one might take
to solving this problem; the solution we describe
here attempts to maximize the independence of
the choices to select each precinct.

We assume that we have already available
two procedures: one for generating random real
numbers in the interval [0, 1], and one for se-
lecting uniformly at random a set of u elements
from a given set of n elements. (See Cordero et
al. [3] for a discussion of practical procedures for
doing so, given the available of ten-sided dice.)

Here is the procedure. Let M be initialized
to the empty set of precincts.

1. If there are no precincts in the list, return
M as the subset generated, and stop.

2. If pn = 0, remove precinct Pn from fur-
ther consideration; it will not be included in
the u-subset generated on this run. Restart
this procedure at step 1 with the reduced
list of n− 1 precincts.

3. If p1 = 1, remove precinct P1 from the list
of precincts being considered, reduce u by
1, and add precinct P1 to M . (Precinct P1

will be “mandatory” to include in the u-
subset generated on this run.) Restart this
procedure at step 1 with the reduced list of
n− 1 precincts and the reduced value of u.

4. (Now each remaining precinct has a prob-
ability strictly greater than 0 and strictly
less than 1.) The precincts remain sorted in
order, so that 1 > p1 ≥ p2 ≥ · · · ≥ pn > 0.)
Let

x =
(1− p1)n

n− u

y =
pnn

u

12

http://electionline.org/Portals/1/Publications/EB17.pdf
http://electionline.org/Portals/1/Publications/EB17.pdf
http://www.votehere.net/papers/ElectionConfidence.pdf
http://www.votehere.net/papers/ElectionConfidence.pdf
http://theory.csail.mit.edu/~rivest/Rivest-OnEstimatingTheSizeOfA
http://theory.csail.mit.edu/~rivest/Rivest-OnEstimatingTheSizeOfA
http://theory.csail.mit.edu/~rivest/Rivest-OnEstimatingTheSizeOfA
StatisticalAudit.pdf
http://csrc.nist.gov/publications/nistpubs/NBS_SP_500-30.pdf
http://csrc.nist.gov/publications/nistpubs/NBS_SP_500-30.pdf
http://www.votetrustusa.org/pdfs/VTTF/EVEPAuditing.pdf
http://www.votetrustusa.org/pdfs/VTTF/EVEPAuditing.pdf
http://en.wikipedia.org/wiki/Logistic_function
http://en.wikipedia.org/wiki/Logistic_function


and let
z = min(x, y) .

Note that z is positive and at most 1. With
probability z select a u-subset S uniformly
at random from the set of all u-subsets of
{P1, P2, . . . , Pn}, return S ∪M (the union
of S and M), and stop.

5. Otherwise (i.e., with probability 1 − z,
which must be nonzero for us to get to this
step), for each precinct Pi, update its prob-
ability from pi to

pi − zu/n

1− z

and restart the procedure from step 1 with
this new set of probabilities. (Note that
they remain sorted in order.)

This procedure halts in at most n − u iter-
ations, and always gives the correct marginal
probabilities. (The way p is chosen ensures that
the new probabilities for the following round are
non-negative and at most one. To show termi-
nation, it suffices to show that when p < 1 the
total number of probabilities equal to 1 or equal
to 0 in a round increases by at least one going
into the next round: when p = x the number of
ones increases, and when p = y the number of
zeros increases.)

Example

Suppose we have four precincts with respective
vote counts:

v1 = 40, v2 = 30, v3 = 20, and v4 = 10 .

Suppose further we wish to pick exactly two of
them with probabilities given by the logistic ap-
proach, so we determine that w ≈ 33.4 (via nu-
merical optimization) and that

p1 = 1.0− exp(−40/33.4) ≈ 0.698069,

p2 = 1.0− exp(−30/33.4) ≈ 0.592685,

p3 = 1.0− exp(−20/33.4) ≈ 0.450517 and

p4 = 1.0− exp(−10/33.4) ≈ 0.258728 .

Running the algorithm, we develop the fol-
lowing procedure for doing the selection.

1. Pick a number r uniformly at random from
the interval 0 ≤ r ≤ 1.

2. If 0 ≤ r < 0.517458, then select two dis-
tinct precincts uniformly at random from
{P1, P2, P3, P4}, and return them as the
sample.

3. If 0.517458 < r ≤ 0.647064, then take two
of precincts {P1, P2, P3} (chosen uniformly)
and return this pair of distinct precincts as
the sample.

4. If 0.647064 < r ≤ 0.857833, then take
precinct P1 and one of precincts {P2, P3}
(chosen uniformly) and return this pair of
distinct precincts as the sample.

5. If 0.857833 < r ≤ 1.00, then return
{P1, P2} as the sample.

While the above strategy may seem a bit mag-
ical, it can be confirmed that each precinct is
selected with the correct probability. For exam-
ple, precinct P2 is selected with probability

0.592685 = 0.517458 ∗ (1/2) +

(0.647064− 0.517458) ∗ (2/3) +

(0.857833− 0.647064) ∗ (1/2) +

(1− 0.857833)

A simple program can print out the strategy
for a given set of probabilities; see the program
diff.py for such a program.

13


	Introduction
	Auditing objectives and costs
	Adversarial Objectives
	Auditing Strategy
	Same-size precincts
	Basic strategies for varying precinct sizes

	Optimal Adversarial strategy against a basic auditing strategy
	Computing an optimal basic auditing strategy
	Logistic auditing strategy
	Relation to picking precincts uniformly
	Relation to picking precincts with probability proportional to size (pps)
	Relation to the optimal auditing strategy

	Practice
	Sampling to achieve a given level of confidence
	Sampling for a given expected number of precincts to be sampled
	Sampling to achieve a given workload
	Experiment


	Related and Prior Work
	Discussion
	Conclusions

