The “Taint” Leakage Model

Ron Rivest

Crypto in the Clouds Workshop, MIT
Rump Session Talk

August 4, 2009

Taint

Common term in software security
Any external input is tainted.

A computation with a tainted input produces
tainted output.

Think tainted = “controllable” by adversary

Untainted values are private inputs, random

values you generate, and functions of untainted
values.

E.g. what values in browser depend on user
input?

III

Proposed “Taint Leakage Mode

Z
Only computations with tainted inputs leak information.

Adversary learns output and all inputs (even untainted ones)
of a computation with a tainted input.

Define a valued as spoiled if it is untainted but X
input to a computation with a tainted input.

Examples: tainted values in red, 7
spoiled values in purple
clean values in black (untainted and unspoiled)

— z=f(x,y) No leakage; clean inputs gives clean outputs

— z=f(x,y) xtainted so ztainted & y spoiled

— z=1f(x,y) xclean &y spoiled so z clean X
Leakable iff tainted or spoiled 7
Adversary can learn all tainted and spoiled values.

Leakage may be unbounded or bounded.

Motivating Sample

What attacks motivate this model?

Various forms of chosen-input attacks, such as
timing attacks or differential attacks.

C=E(M)

Here K is spoiled, and thus leakable; this
models timing attacks on K using adversary-
controlled probes via control of M.

Model useful in building systems

€€ adversary

Spoiled Tainted
zone zone

Private inputs

Zones can be implemented separately
-- e.g. untainted on a TPM (or remote!)
-- clean zone may include a random source, and
can do computations (e.g. keygen)
-- output could even be stored when independent
of adversarial input (ref Dodis talk in this workshop)

Example

Encrypting (tainted) message M with key K :
— C=E((M)
* Kis spoiled and thus leaks (since M is tainted)
— C=(R,S) where S=MxorY and Y =E(R))
* K is not tainted or spoiled, thus protected
* S is tainted (since M is tainted)
* R is spoiled (since paired with tainted S) (but known anyway)
* Y s spoiled (since M is tainted)
Protect long-term keys by using random ephemeral
working keys. (Can do similarly for signatures)

Taint model more-or-less distinguishes between chosen-
plaintext and known-plaintext attacks.

Related to “on-line/off-line” primitives...

Relation to other models

Incomparable...

Adversary is weaker with taint model than with
computational leakage, since values not
depending on adversarial input don’t leak.

Adversary is stronger than with bounded leakage
models, since it is OK to leak all inputs and
output of computation with tainted input.

Taint model doesn’t capture all attacks (e.g.
power-analysis, memory remanence attacks, ...)

Discussion

Contribution here is probably mostly
terminology; model presumably implicit (or
explicit?) in prior work.

Results in taint leakage model may be easy in

some cases (e.g. using empheral keys). (ref
Dodis talk in this workshop)

Goals typically should be that leakage does at
most temporary damage....

What can be done securely in this model?

The End

