Thoughts On Appropriate Technologies for Voting

Ronald L. Rivest

Viterbi Professor of EECS
MIT, Cambridge, MA

Princeton CITP E-voting Workshop
2012-11-01
Is Voting “Keeping Up with Technology”?

- We live in an age of marvelous technology: cellphones, man on the moon, the web, cars that drive themselves.
Is Voting “Keeping Up with Technology”?

- We live in an age of marvelous technology: cellphones, man on the moon, the web, cars that drive themselves.
- Many technology wishes come true—wish it, and you can have it.
Is Voting “Keeping Up with Technology”?

- We live in an age of marvelous technology: cellphones, man on the moon, the web, cars that drive themselves.
- Many technology wishes come true—wish it, and you can have it.
- Is voting being “left behind”?
Is Voting “Keeping Up with Technology”?

- We live in an age of marvelous technology: cellphones, man on the moon, the web, cars that drive themselves.
- Many technology wishes come true—wish it, and you can have it.
- Is voting being “left behind”?
- Why are many of us voting on paper ballots?
Is Voting “Keeping Up with Technology”?

- We live in an age of marvelous technology: cellphones, man on the moon, the web, cars that drive themselves.
- Many technology wishes come true—wish it, and you can have it.
- Is voting being “left behind”?
- Why are many of us voting on paper ballots?
- Why not voting, say, over the Internet?
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...

- Technology introduces design options. You don't have to take them. Sometimes low tech is better! (esp. for security)
- My students prefer chalk/blackboard to powerpoint.
- When hiking, it may be better to carry a map than to use a GPS. (What could go wrong?)
- Manual car window may be safer than power window.
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces *design options*.
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces *design options*.
- You don’t have to take them.
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces design options.
- You don’t have to take them.
- Sometimes low tech is better! (esp. for security)
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces *design options*.
- You don’t have to take them.
- Sometimes low tech is better! (esp. for security)
- My students prefer chalk/blackboard to powerpoint.
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces *design options*.
- You don’t have to take them.
- Sometimes low tech is better! (esp. for security)
- My students prefer chalk/blackboard to powerpoint.
- When hiking, it may be better to carry a map than to use a GPS. (What could go wrong?)
Choosing Appropriate Technology for Voting

- Voting tech has often followed other tech innovations: paper ballot, lever machine, punch card, opscan ballot, DRE, ...
- Technology introduces *design options*.
- You don’t have to take them.
- Sometimes low tech is better! (esp. for security)
- My students prefer chalk/blackboard to powerpoint.
- When hiking, it may be better to carry a map than to use a GPS. (What could go wrong?)
- Manual car window may be safer than power window.
Epigrams

I offer 11 “epigrams” that may help frame the discussion...
A voting system must determine the winner and convince the losers they really lost.
A voting system must determine the winner \textit{and} convince the losers they really lost.

- VS is not a “trusted party,” but must justify its conclusions.
A voting system must determine the winner and convince the losers they really lost.

- VS is not a “trusted party,” but must justify its conclusions.
- VS must produce credible evidence that the stated outcome is correct.
A voting system must determine the winner and convince the losers they really lost.

- VS is not a “trusted party,” but must justify its conclusions.
- VS must produce credible evidence that the stated outcome is correct.
- Key question to ask about any VS: “What evidence does it produce about the outcome, and why is it credible?”
A voting system must determine the winner and convince the losers they really lost.

- VS is not a “trusted party,” but must justify its conclusions.
- VS must produce credible evidence that the stated outcome is correct.
- Key question to ask about any VS: “What evidence does it produce about the outcome, and why is it credible?”
- VS should include a (risk-limiting) audit to ensure that (with high probability) the evidence really does support the stated outcome.
The need for *secret ballots* makes voting system design both unique and hard.
The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.

(Mandatory privacy!)
The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.
- Voters should not be coerced or bribed (they must be protected from their own temptations).

2

The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.
- Voters should not be coerced or bribed (they must be protected from their own temptations).
The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.
- Voters should not be coerced or bribed (they must be protected from their own temptations).
- No one should know how a voter voted, *even if the voter wants it.* (*Mandatory* privacy!)
The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.
- Voters should not be coerced or bribed (they must be protected from their own temptations).
- No one should know how a voter voted, *even if the voter wants it*. *(Mandatory privacy!)*
- Separation of voter identification from ballot makes good *chain of custody* very important.
2 The need for *secret ballots* makes voting system design both unique and hard.

- Different than banking or other information-processing applications.
- Voters should not be coerced or bribed (they must be protected from their own temptations).
- No one should know how a voter voted, *even if the voter wants it*. *(Mandatory privacy!)*
- Separation of voter identification from ballot makes good *chain of custody* very important.
- VBM (vote-by-mail) and unsupervised remote voting are defective approaches.
3 Beware of the “myth of the machine”!

Myth = We can build infallible machines that always work as specified.
Even when attacked!
Ideal machine is equivalent to its specification.
Real machine is what you get.
Rarely are these the same.
Even good commercial software has several serious undiscovered errors per 1000 lines of code. These are frequently security vulnerabilities.
Even worse, deployed implementation may have additional changes.
Properties of system derive from properties of deployed system, not those of original spec.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.

Even when attacked!

Ideal machine is equivalent to its specification.

Real machine is what you get.

Rarely are these the same.

Even good commercial software has several serious undiscovered errors per 1000 lines of code. These are frequently security vulnerabilities.

Even worse, deployed implementation may have additional changes.

Properties of system derive from properties of deployed system, not those of original spec.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
- Real machine is what you get.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
- Real machine is what you get.
- Rarely are these the same.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
- Real machine is what you get.
- Rarely are these the same.
- Even *good* commercial software has several serious undiscovered errors per 1000 lines of code. These are frequently security vulnerabilities.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
- Real machine is what you get.
- Rarely are these the same.
- Even *good* commercial software has several serious undiscovered errors per 1000 lines of code. These are frequently security vulnerabilities.
- Even worse, deployed implementation may have additional changes.
3 Beware of the “myth of the machine”!

- Myth = We can build infallible machines that always work as specified.
- Even when attacked!
- Ideal machine is equivalent to its specification.
- Real machine is what you get.
- Rarely are these the same.
- Even *good* commercial software has several serious undiscovered errors per 1000 lines of code. These are frequently security vulnerabilities.
- Even worse, deployed implementation may have additional changes.
- Properties of system derive from properties of *deployed system*, not those of *original spec*.
It may help to view a complex piece of technology as like a person.
It may help to view a complex piece of technology as like a person.

- Automation / personification duality: Tasks once performed by people have been automated.
It may help to view a complex piece of technology as like a person.

- Automation / personification duality: Tasks once performed by people have been automated.
- Just like a person, complex technologies can act in unpredictable, even malicious, ways. They can say one thing and do another.
It may help to view a complex piece of technology as like a person.

- Automation / personification duality: Tasks once performed by people have been automated.
- Just like a person, complex technologies can act in unpredictable, even malicious, ways. They can say one thing and do another.
- Think of buying a voting system as you would hiring a team of workers from a temp agency.
It may help to view a complex piece of technology as like a person.

- Automation / personification duality: Tasks once performed by people have been automated.
- Just like a person, complex technologies can act in unpredictable, even malicious, ways. They can say one thing and do another.
- Think of buying a voting system as you would hiring a team of workers from a temp agency.
- Think of these workers as high-school students (earnest), elves (mischievous), or guys in ski masks (malicious).
It may help to view a complex piece of technology as like a person.

- Automation / personification duality: Tasks once performed by people have been automated.
- Just like a person, complex technologies can act in unpredictable, even malicious, ways. They can say one thing and do another.
- Think of buying a voting system as you would hiring a team of workers from a temp agency.
- Think of these workers as high-school students (earnest), elves (mischevious), or guys in ski masks (malicious).
- Imagine a voting machine, or the internet, as a “person.” Did you ever make a hiring error?
5 VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.
- Mental state of “temp worker” is at best weak or “hearsay” evidence.
- Note difference between “job listing for the person you hired” and “the person who shows up for work on election day”. For a machine, this is the difference between its specification and its actual behavior.
- Misbehavior by an insider should be detectable (and correctable if possible!).
- Helps to distinguish “wholesale” from “retail” fraud.
5 VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.

- Mental state of “temp worker” is at best weak or “hearsay” evidence.

- Note difference between “job listing for the person you hired” and “the person who shows up for work on election day”. For a machine, this is the difference between its specification and its actual behavior.

- Misbehavior by an insider should be detectable (and correctable if possible!).

- Helps to distinguish “wholesale” from “retail” fraud.
VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.
- Mental state of “temp worker” is at best weak or “hearsay” evidence.
VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.
- Mental state of “temp worker” is at best weak or “hearsay” evidence.
- Note difference between “job listing for the person you hired” and “the person who shows up for work on election day”. For a machine, this is the difference between its specification and its actual behavior.
5 VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.
- Mental state of “temp worker” is at best weak or “hearsay” evidence.
- Note difference between “job listing for the person you hired” and “the person who shows up for work on election day”. For a machine, this is the difference between its specification and its actual behavior.
- Misbehavior by an insider should be detectable (and correctable if possible!).
5 VS must be robust against “insider attacks”!

- An insider (election official or piece of technology) should not be able to undetectably corrupt evidence so as to cause change in outcome.
- Mental state of “temp worker” is at best weak or “hearsay” evidence.
- Note difference between “job listing for the person you hired” and “the person who shows up for work on election day”. For a machine, this is the difference between its specification and its actual behavior.
- Misbehavior by an insider should be detectable (and correctable if possible!).
- Helps to distinguish “wholesale” from “retail” fraud.
6 Paper has cool properties!

▶ Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.

▶ Paper is human readable/writable, machine readable/writable, tamper-evident, and durable.

▶ A writing is a commitment – can’t be easily changed.

▶ VVPAT creates evidence—a set of facts—that can’t be ignored or altered by VS. VS can’t wander far from this set of facts.

▶ Audit is like yank on dog leash...
Paper has cool properties!

- Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.
6 Paper has cool properties!

- Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.
- Paper is human readable/writable, machine readable/writable, tamper-evident, and durable.
Paper has cool properties!

- Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.
- Paper is human readable/writable, machine readable/writable, tamper-evident, and durable.
- A writing is a commitment—can’t be easily changed.
Paper has cool properties!

- Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.
- Paper is human readable/writable, machine readable/writable, tamper-evident, and durable.
- A writing is a commitment—can’t be easily changed.
- VVPAT creates evidence—a set of facts—that can’t be ignored or altered by VS. VS can’t wander far from this set of facts.
Paper has cool properties!

- Low-tech approach to constraining complex components, just as dog leash keeps dog from wandering off.
- Paper is human readable/writable, machine readable/writable, tamper-evident, and durable.
- A writing is a commitment—can’t be easily changed.
- VVPAT creates evidence—a set of facts—that can’t be ignored or altered by VS. VS can’t wander far from this set of facts.
- Audit is like yank on dog leash...
There is a difference between a voter proxy and a voting witness.
There is a difference between a voter proxy and a voting witness.

- A voter proxy votes in your place.
- A voting witness watches you vote.
- Proxy: You tell touch-screen voting machine (guy in ski mask) which candidate you prefer. Guy says he'll remember that and vote that way on your behalf later.
- Witness: You show scanner (elf) paper ballot you have filled out. Elf makes notes, and ballot goes into ballot box.

In the first case, guy is creating the evidence of your choices. In the second case, elf is merely observing the evidence you have created.
7

There is a difference between a *voter proxy* and a *voting witness*.

- A voter *proxy* votes in your place.
- A voting *witness* watches you vote.
There is a difference between a voter proxy and a voting witness.

- A voter proxy votes in your place.
- A voting witness watches you vote.
- **Proxy:** You tell touch-screen voting machine (guy in ski mask) which candidate you prefer. Guy says he’ll remember that and vote that way on your behalf later.
There is a difference between a voter proxy and a voting witness.

- A voter *proxy* votes in your place.
- A voting *witness* watches you vote.
- **Proxy:** You tell touch-screen voting machine (guy in ski mask) which candidate you prefer. Guy says he’ll remember that and vote that way on your behalf later.
- **Witness:** You show scanner (elf) paper ballot you have filled out. Elf makes notes, and ballot goes into ballot box.
There is a difference between a voter proxy and a voting witness.

- A voter proxy votes in your place.
- A voting witness watches you vote.
- **Proxy:** You tell touch-screen voting machine (guy in ski mask) which candidate you prefer. Guy says he’ll remember that and vote that way on your behalf later.
- **Witness:** You show scanner (elf) paper ballot you have filled out. Elf makes notes, and ballot goes into ballot box.
- In first case, guy is creating the evidence of your choices. In the second case, elf is merely observing the evidence you have created.
Avoid Internet Voting, for security reasons.
8 Avoid Internet Voting, for security reasons.

- Why vote over the Internet? Why? Why?
Avoid Internet Voting, for security reasons.

Why vote over the Internet? Why? Why? Why?
8 Avoid Internet Voting, for security reasons.

Avoid Internet Voting, for security reasons.

Avoid Internet Voting, for security reasons.

 Don’t you have a better approach?
8 Avoid Internet Voting, for security reasons.

- Would you connect your toaster to a high-tension power line?
8 Avoid Internet Voting, for security reasons.

- Would you connect your toaster to a high-tension power line?
- Would you invest your pension in credit default swaps?
8 Avoid Internet Voting, for security reasons.

- Would you connect your toaster to a high-tension power line?
- Would you invest your pension in credit default swaps?
- Vendors who claim to have solved internet security problem are misleading you. (Like authors who write books on “How to make a million in real estate”—Why are they trying to make a buck writing how-to books?)
Avoid Internet Voting, for security reasons.

 Don’t you have a better approach?
- Would you connect your toaster to a high-tension power line?
- Would you invest your pension in credit default swaps?
- Vendors who claim to have solved internet security problem are misleading you. (Like authors who write books on “How to make a million in real estate”—Why are they trying to make a buck writing how-to books?)
- Internet is useful in elections, but fails as an “channel of evidence for voter intent”.

CSAIL
Cryptography can help.

- Good for privacy and for commitments.
- With "end-to-end" (E2E) voting systems, voters cast encrypted ballots onto public "bulletin board." Voters can verify encryption, without getting "receipt"(!).
- Bulletin board enables "verifiable chain of custody.
- Authorities can produce tally without violating secret ballot.
- Anyone can verify tally of encrypted ballots.
- Scantity nicely integrates both paper ballots and crypto (for poll-site voting).
- Helios embodies similar ideas for remote voting (assuming that client is malware-free!).
9 Cryptography can help.

- Good for privacy and for *commitments*.
9 Cryptography can help.

- Good for privacy and for *commitments*.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
9 Cryptography can help.

- Good for privacy and for *commitments*.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
- Voters can verify encryption, without getting “receipt”(!).

Scantegrity nicely integrates both paper ballots and crypto (for poll-site voting).

Helios embodies similar ideas for remote voting (assuming that client is malware-free!).
Cryptography can help.

- Good for privacy and for *commitments*.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
- Voters can verify encryption, without getting “receipt”(!).
- Bulletin board enables “verifiable chain of custody.”
Good for privacy and for *commitments*.

With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”

Voters can verify encryption, without getting “receipt”(!).

Bulletin board enables “verifiable chain of custody.”

Authorities can produce tally without violating secret ballot.
Cryptography can help.

- Good for privacy and for *commitments*.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
- Voters can verify encryption, without getting “receipt”(!).
- Bulletin board enables “verifiable chain of custody.”
- Authorities can produce tally without violating secret ballot.
- Anyone can verify tally of encrypted ballots.
Cryptography can help.

- Good for privacy and for commitments.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
- Voters can verify encryption, without getting “receipt”(!).
- Bulletin board enables “verifiable chain of custody.”
- Authorities can produce tally without violating secret ballot.
- Anyone can verify tally of encrypted ballots.
- Scantegrity nicely integrates both paper ballots and crypto (for poll-site voting).
Cryptography can help.

- Good for privacy and for *commitments*.
- With “end-to-end” (E2E) voting systems, voters cast encrypted ballots onto public “bulletin board.”
- Voters can verify encryption, without getting “receipt”(!).
- Bulletin board enables “verifiable chain of custody.”
- Authorities can produce tally without violating secret ballot.
- Anyone can verify tally of encrypted ballots.
- *Scantegrity* nicely integrates both paper ballots and crypto (for poll-site voting).
- *Helios* embodies similar ideas for remote voting (assuming that client is *malware-free!*).
10 Beware wishful thinking!

You can’t always get what you want:
10 Beware wishful thinking!

You can’t always get what you want:
- non-fattening pizza

(Calling something “secure” doesn’t make it so. Maybe we should call this “wishful labeling”. This happens a lot when marketing tells engineering what to invent.)
10 Beware wishful thinking!

You can’t always get what you want:

- non-fattening pizza
- totally safe cigarette
10 Beware wishful thinking!

You can’t always get what you want:

- non-fattening pizza
- totally safe cigarette
- getting fit with 5 minutes exercise/day
10 Beware wishful thinking!

You can’t always get what you want:

- non-fattening pizza
- totally safe cigarette
- getting fit with 5 minutes exercise/day
- automobile that runs on water
10 Beware wishful thinking!

You can’t always get what you want:

- non-fattening pizza
- totally safe cigarette
- getting fit with 5 minutes exercise/day
- automobile that runs on water
- secure internet voting

(Calling something “secure” doesn’t make it so. Maybe we should call this “wishful labeling”. This happens a lot when marketing tells engineering what to invent.)
Voting system design is all about tradeoffs.
Voting system design is all about *tradeoffs*.

- Security vs. Usability vs. Cost vs. Complexity vs. Accessibility vs. ...
Voting system design is all about *tradeoffs*.

- Security vs. Usability vs. Cost vs. Complexity vs. Accessibility vs. ...
- Conflicting requirements drive up complexity.
Voting system design is all about tradeoffs.

- Security vs. Usability vs. Cost vs. Complexity vs. Accessibility vs. ...
- Conflicting requirements drive up complexity.
- High complexity makes security tough.
Voting system design is all about *tradeoffs*.

- Security vs. Usability vs. Cost vs. Complexity vs. Accessibility vs. ...
- Conflicting requirements drive up complexity.
- High complexity makes security tough.
- Evidence-based elections may reduce need or cost for certification.
Voting system design is all about tradeoffs.

- Security vs. Usability vs. Cost vs. Complexity vs. Accessibility vs. ...
- Conflicting requirements drive up complexity.
- High complexity makes security tough.
- Evidence-based elections may reduce need or cost for certification.
- Continued research needed to identify interesting new design points, with different trade-offs. Need to understand first what voting systems are possible, then to select those that are “best”.
For more information

- Overseas Vote Foundation http://www.overseasvotefoundation.org

- Brennan Center for Justice http://www.brennancenter.org/
Summary

👍 Evidence-based elections.
Summary

👍 Evidence-based elections.
👎 Complex technology.
Summary

- Evidence-based elections.
- Complex technology.
- Paper is cool. Paper is prudent.

Internet voting isn’t ready for prime time.

Auditability.

Post-election audits.

Cryptography and end-to-end voting.

Voting tech best of breed for poll-site voting seems to be:

▶ Opscan ballots with post-election auditing.
▶ End-to-end voting systems.
Summary

👍 Evidence-based elections.
👎 Complex technology.
👍 Paper is cool. Paper is prudent.
👎 Internet voting isn’t ready for prime time.
Summary

👍 Evidence-based elections.
👎 Complex technology.
👍 Paper is cool. Paper is prudent.
👎 Internet voting isn’t ready for prime time.
👍 Auditability.
Summary

👍 Evidence-based elections.
👎 Complex technology.
👍 Paper is cool. Paper is prudent.
👎 Internet voting isn’t ready for prime time.
👍 Auditability.
👍 Post-election audits.
Summary

👍 Evidence-based elections.
👎 Complex technology.
👍 Paper is cool. Paper is prudent.
👎 Internet voting isn’t ready for prime time.
👍 Auditability.
👍 Post-election audits.
👍 Cryptography and end-to-end voting.
Summary

- Evidence-based elections.
- Complex technology.
- Paper is cool. Paper is prudent.
- Internet voting isn’t ready for prime time.
- Auditability.
- Post-election audits.
- Cryptography and end-to-end voting.

Voting tech best of breed for poll-site voting seems to be:
- Opscan ballots with post-election auditing.
- End-to-end voting systems.
Thank you!

!!! Please vote !!!