
Reflections on SDSI

Ronald L. Rivest

Vannevar Bush Professor of EECS
MIT, Cambridge, MA

Lampson Fest

February 13, 2014



Context 1970–1990

I Invention of public-key cryptography (Diffie & Hellman
1976, RSA 1977)

I Invention of public-key certificate (Kohnfelder, MIT
B.S. thesis, 1978). Binds name to public key.

I X.509 hierarchical public-key infrastructure and
certificates (1988). Envisions strict hierarchy of
certificate authorities.

I Invention of World Wide Web (TBL, first browser
1990) – causing explosive growth of digital
communications and e-commerce.



Context 1970–1990

I Invention of public-key cryptography (Diffie & Hellman
1976, RSA 1977)

I Invention of public-key certificate (Kohnfelder, MIT
B.S. thesis, 1978). Binds name to public key.

I X.509 hierarchical public-key infrastructure and
certificates (1988). Envisions strict hierarchy of
certificate authorities.

I Invention of World Wide Web (TBL, first browser
1990) – causing explosive growth of digital
communications and e-commerce.



Context 1970–1990

I Invention of public-key cryptography (Diffie & Hellman
1976, RSA 1977)

I Invention of public-key certificate (Kohnfelder, MIT
B.S. thesis, 1978). Binds name to public key.

I X.509 hierarchical public-key infrastructure and
certificates (1988). Envisions strict hierarchy of
certificate authorities.

I Invention of World Wide Web (TBL, first browser
1990) – causing explosive growth of digital
communications and e-commerce.



Context 1970–1990

I Invention of public-key cryptography (Diffie & Hellman
1976, RSA 1977)

I Invention of public-key certificate (Kohnfelder, MIT
B.S. thesis, 1978). Binds name to public key.

I X.509 hierarchical public-key infrastructure and
certificates (1988). Envisions strict hierarchy of
certificate authorities.

I Invention of World Wide Web (TBL, first browser
1990) – causing explosive growth of digital
communications and e-commerce.



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?
I What’s in a name?
I Do we really need CRL’s?
I ...much discussion and unhappiness with existing

framework and tools...



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?
I What’s in a name?
I Do we really need CRL’s?
I ...much discussion and unhappiness with existing

framework and tools...



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?

I What’s in a name?
I Do we really need CRL’s?
I ...much discussion and unhappiness with existing

framework and tools...



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?
I What’s in a name?

I Do we really need CRL’s?
I ...much discussion and unhappiness with existing

framework and tools...



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?
I What’s in a name?
I Do we really need CRL’s?

I ...much discussion and unhappiness with existing
framework and tools...



Inquiring minds wanted to know:

I How can public-key technology best be used to
secure the Internet?

I Can’t we invent something simpler and better than
X.509 and ASN.1 ?

I What do we really need?
I What’s in a name?
I Do we really need CRL’s?
I ...much discussion and unhappiness with existing

framework and tools...



SPKI begins

I Feb ’96: Perry Metzger begins SPKI (Simple Public
Key Infrastructure) mailing list.

I Carl Ellison gives many “use cases” not yet well
handled, such as granting of permissions.

I Inspired by earlier work by Lampson, Ellison also
argues for elimination of names in favor of using
public-keys as the only handles (identifiers) for
principals.



SPKI begins

I Feb ’96: Perry Metzger begins SPKI (Simple Public
Key Infrastructure) mailing list.

I Carl Ellison gives many “use cases” not yet well
handled, such as granting of permissions.

I Inspired by earlier work by Lampson, Ellison also
argues for elimination of names in favor of using
public-keys as the only handles (identifiers) for
principals.



SPKI begins

I Feb ’96: Perry Metzger begins SPKI (Simple Public
Key Infrastructure) mailing list.

I Carl Ellison gives many “use cases” not yet well
handled, such as granting of permissions.

I Inspired by earlier work by Lampson, Ellison also
argues for elimination of names in favor of using
public-keys as the only handles (identifiers) for
principals.



Lampson/Rivest start thinking about names

I March 1996: Lampson and Rivest begin discussions
with Ellison, other SPKI folks, and with each other, on
these issues, especially names.

I Lampson emails (1 mar 96):
“So my belief is that anything people have to look at
should be stated in terms of meaningful names, not
keys. The keys should be kept internal to the system.
Of course you can say that you’ll have extra
certificates linking names to keys, but the names will
still be the "real" thing. It’s true that the system takes
action based on messages being signed by keys, but
the configuration, which is the important thing, is
established in terms of names, since that’s the only
way people can describe it. So it must be that the
names are the real thing and the keys just an internal
mechanism. ”



Lampson/Rivest start thinking about names

I March 1996: Lampson and Rivest begin discussions
with Ellison, other SPKI folks, and with each other, on
these issues, especially names.

I Lampson emails (1 mar 96):
“So my belief is that anything people have to look at
should be stated in terms of meaningful names, not
keys. The keys should be kept internal to the system.
Of course you can say that you’ll have extra
certificates linking names to keys, but the names will
still be the "real" thing. It’s true that the system takes
action based on messages being signed by keys, but
the configuration, which is the important thing, is
established in terms of names, since that’s the only
way people can describe it. So it must be that the
names are the real thing and the keys just an internal
mechanism. ”



Names

Names want simultaneously to be:
I Short, memorable.

I Meaningful and easy to use.
I Local (non-hierarchical; bottom-up).
I Globally unique.

These are not compatible!



Names

Names want simultaneously to be:
I Short, memorable.
I Meaningful and easy to use.

I Local (non-hierarchical; bottom-up).
I Globally unique.

These are not compatible!



Names

Names want simultaneously to be:
I Short, memorable.
I Meaningful and easy to use.
I Local (non-hierarchical; bottom-up).

I Globally unique.

These are not compatible!



Names

Names want simultaneously to be:
I Short, memorable.
I Meaningful and easy to use.
I Local (non-hierarchical; bottom-up).
I Globally unique.

These are not compatible!



Names

Names want simultaneously to be:
I Short, memorable.
I Meaningful and easy to use.
I Local (non-hierarchical; bottom-up).
I Globally unique.

These are not compatible!



It gets worse!

I If PKI and certificates are mostly about bindings of
names to public keys: how do you know who is
authorized to assert such a binding for a given name?

I Especially if names are non-hierarchical?
I Who is relevant “CA” for a name?



It gets worse!

I If PKI and certificates are mostly about bindings of
names to public keys: how do you know who is
authorized to assert such a binding for a given name?

I Especially if names are non-hierarchical?

I Who is relevant “CA” for a name?



It gets worse!

I If PKI and certificates are mostly about bindings of
names to public keys: how do you know who is
authorized to assert such a binding for a given name?

I Especially if names are non-hierarchical?
I Who is relevant “CA” for a name?



SDSI

Lampson and Rivest publish draft SDSI (Simple
Distributed Security Infrastructure) in June 1996:

I Innovation: Associate a name space with each public
key.

I In effect, each name now has the form of a dotted
pair consisting of a public key and an identifier.

PK.identifier
I PK is the only PK authorized to sign bindings for

PK.identifier. Certificate thus has form:
PK.identifier =⇒ PK’ (signed by PK)



SDSI

Lampson and Rivest publish draft SDSI (Simple
Distributed Security Infrastructure) in June 1996:

I Innovation: Associate a name space with each public
key.

I In effect, each name now has the form of a dotted
pair consisting of a public key and an identifier.

PK.identifier

I PK is the only PK authorized to sign bindings for
PK.identifier. Certificate thus has form:

PK.identifier =⇒ PK’ (signed by PK)



SDSI

Lampson and Rivest publish draft SDSI (Simple
Distributed Security Infrastructure) in June 1996:

I Innovation: Associate a name space with each public
key.

I In effect, each name now has the form of a dotted
pair consisting of a public key and an identifier.

PK.identifier
I PK is the only PK authorized to sign bindings for

PK.identifier. Certificate thus has form:
PK.identifier =⇒ PK’ (signed by PK)



SDSI Advantages

I Names (identifiers) can be local and meaningful to
issuer.

I Name conflicts avoided; global uniqueness OK.
I Names can naturally refer to groups.
I Extended names have a nice algebra:

PK.Microsoft.Research.ButlerLampson
chains four name spaces together to give nice indirect
handle for Butler, even if I only know public key of
Microsoft; Certificate can bind to extended name:
PK.butler=⇒PK.Microsoft.Research.ButlerLampson



SDSI Advantages

I Names (identifiers) can be local and meaningful to
issuer.

I Name conflicts avoided; global uniqueness OK.

I Names can naturally refer to groups.
I Extended names have a nice algebra:

PK.Microsoft.Research.ButlerLampson
chains four name spaces together to give nice indirect
handle for Butler, even if I only know public key of
Microsoft; Certificate can bind to extended name:
PK.butler=⇒PK.Microsoft.Research.ButlerLampson



SDSI Advantages

I Names (identifiers) can be local and meaningful to
issuer.

I Name conflicts avoided; global uniqueness OK.
I Names can naturally refer to groups.

I Extended names have a nice algebra:
PK.Microsoft.Research.ButlerLampson

chains four name spaces together to give nice indirect
handle for Butler, even if I only know public key of
Microsoft; Certificate can bind to extended name:
PK.butler=⇒PK.Microsoft.Research.ButlerLampson



SDSI Advantages

I Names (identifiers) can be local and meaningful to
issuer.

I Name conflicts avoided; global uniqueness OK.
I Names can naturally refer to groups.
I Extended names have a nice algebra:

PK.Microsoft.Research.ButlerLampson
chains four name spaces together to give nice indirect
handle for Butler, even if I only know public key of
Microsoft; Certificate can bind to extended name:
PK.butler=⇒PK.Microsoft.Research.ButlerLampson



What happened to World Domination?

Why didn’t SDSI take over?
I SDSI is great for writing ACL’s—oriented more

towards access-control than for authentication.

I Elegant naming algebra still leaves an interesting (but
solvable) search problem for finding certificate chains.
This starts with (requesting) key, and finds
explanation why it is implied by ACL.

I In practice, search problem is often vaguer: given
attributes of another principal, find their public key.



What happened to World Domination?

Why didn’t SDSI take over?
I SDSI is great for writing ACL’s—oriented more

towards access-control than for authentication.
I Elegant naming algebra still leaves an interesting (but

solvable) search problem for finding certificate chains.
This starts with (requesting) key, and finds
explanation why it is implied by ACL.

I In practice, search problem is often vaguer: given
attributes of another principal, find their public key.



What happened to World Domination?

Why didn’t SDSI take over?
I SDSI is great for writing ACL’s—oriented more

towards access-control than for authentication.
I Elegant naming algebra still leaves an interesting (but

solvable) search problem for finding certificate chains.
This starts with (requesting) key, and finds
explanation why it is implied by ACL.

I In practice, search problem is often vaguer: given
attributes of another principal, find their public key.



Thanks and Happy Birthday, Butler!


