Election Security

Ronald L. Rivest
MIT

2019 D.C. Circuit Judicial Conference
June 26, 2019
Outline

• Security Requirements
 – Evidence-based Elections
 – Software Independence
• Auditing of Paper Ballots
• Remote (Internet) Voting
Have we made progress since 2000?

Hanging chads (2000)

Voting Machines at Risk (2015)
Nov. 2016 – Who Really Won?
How do we vote?
Paper Ballots, mostly
1893 – “Australian” Paper Ballot
About 80% of voters use paper ballots
Optical scanners are used for efficient tabulation
(Concern:) Scanners may introduce systematic errors
Causes of scanner errors

- Differences in interpretation between machine interpretation, and hand interpretation based on “voter intent” rules.
- Stray marks (e.g. caused by folds)
- Configuration errors
- Programming errors
- Hacking (adversarial attack)
How *should* we vote?
Security Requirements
Security Requirements

• Only eligible voters may vote, and each eligible voter votes at most once.
• Each cast vote is secret, even if voter wishes otherwise!
 -- No vote-selling!
 -- No receipt showing how you voted!
• Final outcome is verifiably correct.
• No ``trusted parties’’ – all are suspect!
 Vendors, voters, election officials, candidates, spouses, other nation-states, ...
Evidence-Based Elections

An election system should not only

accurately figure out who won,

but should also

provide convincing evidence
that the winner really won.

(Stark & Wagner 2012)
Software Independence

(Rivest & Wack, 2006)
And Who Do You Hope You Voted For?
Software Independence

• Software is *not* to be trusted!
• A voting system is *software independent* if an undetected error in the software can *not* cause an undetectable change in the election outcome.
• *Strongly software-independent* if it is possible to correct any such outcome error
• Example: Paper ballots (with hand recount)
NASEM Report (9/6/18)

National Academies issued report on "Securing the Vote"

www.nap.edu/futureofvoting

(159 pages; free pdf)

41 recommendations
Use *voter verifiable paper ballots* everywhere by 2020
Recommendations 5.7—5.9

Audit election outcomes!
Recommendations 5.7—5.9

Audit election outcomes!

A risk-limiting audit (RLA) uses manual interpretation of randomly chosen cast paper ballots to verify with high probability the reported election outcome (or correct it, if wrong).
Election Process (paper ballots)

• Print ballots; setup
• Mark Choices; **Verify Vote**; Cast Vote!
• Optical scanners give initial ("reported") outcome
• **Statistical audit of cast paper ballots**
 by hand to confirm/disprove reported outcome
 – “Brush your teeth; eat your spinach;
 audit your elections!” -- Poorvi Vora
Auditing of Paper Ballots
Audits

• Sample cast paper ballots at random

• Figuring out what the sampled ballots tell you about the reported election results
 – Risk-Limiting audits
Who is audit for?

• **Losing candidates** – to convince them that “they lost fair and square”

• **The winner** – to provide a mandate

• **The public** – to assuage doubts about “rigged elections”

• **Election officials** – to help them provide accurate and efficiently-verified results
What a RLA does not do

• A RLA does not address:
 – correctness of the *tally* (as opposed to the outcome)
 – voter eligibility
 – voter authentication
 – usability
 – privacy
 – chain of custody of paper ballots
Audit Rochester Hills MI (12/3/2018)

• Reported results for Proposition:
 22,999 Yes
 12,343 No
 1,324 Other

• Sample results for Proposition:
 50 Yes
 26 No
 0 Other

• So... ???
Risk-Limiting Audit

• **RLA Question:**
 What is current ``risk’’? (Probability that if reported winner is incorrect, audit would nonetheless accept it if audit stopped now.)
Results

• RLA results:
 Risk measured at 2.1 %
 (Kellie Ottoboni using SUITE tool)

• Reported outcome confirmed (accepted by audit) after only 76 ballots sampled!
Recommendation 5.11

No *Internet* voting!
When can I vote on the Internet?
(or on my phone?)

http://voteinyourpajamas.org/
• U.S. Vote Foundation 2015 Report on Internet Voting:
 – Internet voting requires solutions to many as-yet-unsolved problems:
 • Malware
 • DDOS attacks
 • Authentication
 • MITM attacks
 • Zero-day attacks on servers
 • Coercion & vote-selling
 • …
Conclusions

• We can make elections much more secure with post-election risk-limiting audits.
• We’re not yet ready for “internet voting,” and may not be for 20 years...
The End

Thanks for your attention!

(and thanks to NSF CSOI and to Verified Voting!)