Learning Learning Curves

Ron Rivest
MIT
rivest@mit.edu

November 3, 2023

Happy Birthday, Rob!

Overview

(1) Goal: to give you a nice "open problem"
(2) Learning Curves (aka "experience curves")
(3) Learning one learning curve
(4) Learning multiple learning curves (multi-armed bandit formulation)
(5) Open problem

Learning Curves

- For most things, producing twice as many units yields a per-unit cost reduction of 10-30\%. (See "Wright's Law" in The Big Fix: Seven Practical Steps to Save Our Planet, Harvey \& Gillis, 2022)

Learning Curves

- For most things, producing twice as many units yields a per-unit cost reduction of 10-30\%. (See "Wright's Law" in The Big Fix: Seven Practical Steps to Save Our Planet, Harvey \& Gillis, 2022)
- Let $X=$ number of units produced so far. Let $C(X)=$ cost of producing X-th unit

Learning Curves

- For most things, producing twice as many units yields a per-unit cost reduction of $10-30 \%$. (See "Wright's Law" in The Big Fix: Seven Practical Steps to Save Our Planet, Harvey \& Gillis, 2022)
- Let $X=$ number of units produced so far. Let $C(X)=$ cost of producing X-th unit
- $C(2 X)=C(X) \cdot(1-\lambda)$ where $\lambda=$ learning rate (e.g. $\lambda=0.20$)

PV Solar Learning Curve

Data: Lafond et al. (2017) and IRENA Database; the reported learning rate is an average over several studies reported by de La Tour et al (2013) in Energy. The rate has remained very similar since then. OurWorldinData.org - Research and data to make progress against the world's largest problems.

Energy Learning Curves

Electricity from renewables became cheaper as we increased Our World capacity - electricity from nuclear and coal did not
Price per megawatt hour of electricity
This is the global weighted-average of the
levelized costs of energy (LCOEI, without subsidies
logmithmic avis and adiusted for inflation
5300

Source IRENA 2020 for al dati on renewatie wources Lazed for the price of electricity from nuclear and cod - LAEA for nuclear capacity and Cabal Energy Martar for caal
 avalabie. The price of electricity frum gas has talen aver tis decade. but over the longer run it is not followirg a leaming carve.
OurWeridinDota ore - Research and data to make profews apaint the worid's legest problems.
Lermsed under CC. BY

Learning a learning curve

- Logarithms: $x=\ln (X) ; c=\ln (C)$.

Learning a learning curve

- Logarithms: $x=\ln (X) ; c=\ln (C)$.
- Given a number n of (x, c) pairs, where

$$
c=\alpha+\beta x+\epsilon
$$

infer α, β, and σ^{2}, where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ assumed.
Assume $n \geq 2$. Typically $\beta<0$.

Learning a learning curve

- Logarithms: $x=\ln (X) ; c=\ln (C)$.
- Given a number n of (x, c) pairs, where

$$
c=\alpha+\beta x+\epsilon
$$

infer α, β, and σ^{2}, where $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$ assumed.
Assume $n \geq 2$. Typically $\beta<0$.

- This is standard simple linear regression problem. (Use least-squares; details omitted.)

Learning multiple learning curves

- Like multi-armed bandit problem: which technology to use at time t $(t=1,2, \ldots, T)$?

Learning multiple learning curves

- Like multi-armed bandit problem: which technology to use at time t $(t=1,2, \ldots, T)$?
- Classic "exploration / exploitation" tradeoff.

Learning multiple learning curves

- Like multi-armed bandit problem: which technology to use at time t $(t=1,2, \ldots, T)$?
- Classic "exploration / exploitation" tradeoff.
- At time t,
- "explore" with probability $p(t)$ (use a least-used technology)
- "exploit" with probability $1-p(t)$ (use "best" technology).

Learning multiple learning curves

- Like multi-armed bandit problem: which technology to use at time t $(t=1,2, \ldots, T)$?
- Classic "exploration / exploitation" tradeoff.
- At time t,
- "explore" with probability $p(t)$ (use a least-used technology)
- "exploit" with probability $1-p(t)$ (use "best" technology).
- Want $\Sigma_{1}^{T} p(t) \rightarrow \infty$ with T (learn all technologies well) Want $\Sigma_{1}^{T} p(t)=o(T)$ (almost all time spent on exploitation).

Learning multiple learning curves

- Like multi-armed bandit problem: which technology to use at time t $(t=1,2, \ldots, T)$?
- Classic "exploration / exploitation" tradeoff.
- At time t,
- "explore" with probability $p(t)$ (use a least-used technology)
- "exploit" with probability $1-p(t)$ (use "best" technology).
- Want $\Sigma_{1}^{T} p(t) \rightarrow \infty$ with T (learn all technologies well)

Want $\Sigma_{1}^{T} p(t)=o(T)$ (almost all time spent on exploitation).

- For example: $p(t)=1 / \sqrt{t}$.

Learning multiple learning curves

- At each step, choose technology k (for some k):
- increase x_{k} by δ_{k}.

That is, scale up capacity of technology k by $e^{\delta_{k}}$.
(E.g. installed solar doubles every five years, so $\delta \simeq \ln (2) / 5$.

Learning multiple learning curves

- At each step, choose technology k (for some k):
- increase x_{k} by δ_{k}.

That is, scale up capacity of technology k by $e^{\delta_{k}}$.
(E.g. installed solar doubles every five years, so $\delta \simeq \ln (2) / 5$.

- Obtain actual cost c_{k}.

Learning multiple learning curves

- At each step, choose technology k (for some k):
- increase x_{k} by δ_{k}.

That is, scale up capacity of technology k by $e^{\delta_{k}}$.
(E.g. installed solar doubles every five years, so $\delta \simeq \ln (2) / 5$.

- Obtain actual cost c_{k}.
- Infer new parameters α_{k}, β_{k}, and σ_{k}^{2} using least squares on sample of size n_{k}, where n_{k} is number of times technology k has been chosen.

Choosing best technology k

- How to choose best technology k to use at time t ?
- Estimate $\hat{c}_{k}(T)=$ estimated log cost of energy at time T using only technology k from now (t) on:

$$
\hat{c}_{k}(T)=\alpha_{k}+\beta_{k}\left(x_{k}+(T-t) \delta_{k}\right)
$$

- Do this whenever technology k is used.

Learning the best technology

$\operatorname{Learn}(T, K)$:
for $k=1,2, \ldots, K$: use technology k twice.
for $t=2 K+1$ to T :
with probability $p(t)$: \# Explore
Use technology k, where $k=$ a least-used technology.
else: \# Exploit
for $k=1,2, \ldots, K$, estimate $\hat{c}_{k}(T)$ using what's been learned so far, using least-squares to get $\hat{\alpha}_{k}, \hat{\beta}_{k}$:

$$
\hat{c}_{k}(T)=\hat{\alpha}_{k}+\hat{\beta}_{k}\left(x_{k}+(T-t) \delta_{k}\right)
$$

Use technology k, where k minimizes $\hat{c}_{k}(T)$
return $\min _{k} \hat{c}_{k}(T)$

Conjecture (Open Problem)

For all sets of K learning curves and all T, LEARN returns a result $\hat{c}_{k}(T)$ such that with high probability

$$
\hat{c}_{k}(T) \text { is "not much more than" } c_{k_{*}}^{\prime}(T)
$$

where k_{*} is the value of k with minimum expected value $c_{k_{*}^{\prime}}^{\prime}(T)$ (that is, where k_{*} is always used).

Thanks!

Happy Birthday, Rob!

References

(1) Ghemawat P., Building Strategy on the Experience Curve, HBR, 1986.
(2) Harvey H. and Gillis, J. The Big Fix. (Simon \& Schuster; 2022).
(3) Roser, M., Why did renewables become so cheap so fast?, 2020. https://ourworldindata.org/cheap-renewables-growth
(9) Way, R. et al., Empirically grounded technology forecasts and the energy transition, 2021, INET Oxford Working Paper No. 2021-01.

