Learning Learning Curves

Ron Rivest

MIT

rivest@mit.edu

November 3, 2023

3)) J

Happy Birthday, Rob!

æ

D Goal: to give you a nice "open problem"

2 Learning Curves (aka "experience curves")

3 Learning one learning curve

4 Learning multiple learning curves (multi-armed bandit formulation)

5 Open problem

• For most things, producing twice as many units yields a per-unit cost reduction of 10-30%. (See "Wright's Law" in *The Big Fix: Seven Practical Steps to Save Our Planet*, Harvey & Gillis, 2022)

- For most things, producing twice as many units yields a per-unit cost reduction of 10-30%. (See "Wright's Law" in *The Big Fix: Seven Practical Steps to Save Our Planet*, Harvey & Gillis, 2022)
- Let X = number of units produced so far.
 Let C(X) = cost of producing X-th unit

- For most things, producing twice as many units yields a per-unit cost reduction of 10-30%. (See "Wright's Law" in *The Big Fix: Seven Practical Steps to Save Our Planet*, Harvey & Gillis, 2022)
- Let X = number of units produced so far.
 Let C(X) = cost of producing X-th unit

•
$$C(2X) = C(X) \cdot (1 - \lambda)$$

where λ = learning rate (e.g. λ = 0.20)

PV Solar Learning Curve

э

Energy Learning Curves

Ron Rivest (MIT)

November 3, 2023 6 / 14

イロト イヨト イヨト イヨト

• Logarithms: $x = \ln(X)$; $c = \ln(C)$.

문 문 문

• Logarithms:
$$x = \ln(X)$$
; $c = \ln(C)$.

• Given a number n of (x, c) pairs, where

$$\boldsymbol{c} = \alpha + \beta \boldsymbol{x} + \boldsymbol{\epsilon}$$

infer α , β , and σ^2 , where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ assumed. Assume $n \geq 2$. Typically $\beta < 0$.

- Logarithms: $x = \ln(X)$; $c = \ln(C)$.
- Given a number n of (x, c) pairs, where

$$\mathbf{c} = \alpha + \beta \mathbf{x} + \epsilon$$

infer
$$\alpha$$
, β , and σ^2 , where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ assumed.
Assume $n \geq 2$. Typically $\beta < 0$.

• This is standard *simple linear regression* problem. (Use least-squares; details omitted.)

• Like multi-armed bandit problem: which technology to use at time t (t = 1, 2, ..., T)?

- Like multi-armed bandit problem: which technology to use at time t (t = 1, 2, ..., T)?
- Classic "exploration / exploitation" tradeoff.

- Like multi-armed bandit problem: which technology to use at time t (t = 1, 2, ..., T)?
- Classic "exploration / exploitation" tradeoff.
- At time t,
 - "explore" with probability p(t) (use a least-used technology)
 - "exploit" with probability 1 p(t) (use "best" technology).

- Like multi-armed bandit problem: which technology to use at time t (t = 1, 2, ..., T)?
- Classic "exploration / exploitation" tradeoff.
- At time t,
 - "explore" with probability p(t) (use a least-used technology)
 - "exploit" with probability 1 p(t) (use "best" technology).
- Want $\Sigma_1^T p(t) \to \infty$ with T (learn all technologies well) Want $\Sigma_1^T p(t) = o(T)$ (almost all time spent on exploitation).

- Like multi-armed bandit problem: which technology to use at time t (t = 1, 2, ..., T)?
- Classic "exploration / exploitation" tradeoff.
- At time t,
 - "explore" with probability p(t) (use a least-used technology)
 - "exploit" with probability 1 p(t) (use "best" technology).
- Want $\Sigma_1^T p(t) \to \infty$ with T (learn all technologies well) Want $\Sigma_1^T p(t) = o(T)$ (almost all time spent on exploitation).
- For example: $p(t) = 1/\sqrt{t}$.

- At each step, choose technology k (for some k):
 - increase x_k by δ_k .

That is, scale up capacity of technology k by e^{δ_k} .

(E.g. installed solar doubles every five years, so $\delta \simeq \ln(2)/5$.

- At each step, choose technology k (for some k):
 - increase x_k by δ_k. That is, scale up capacity of technology k by e^{δ_k}. (E.g. installed solar doubles every five years, so δ ≃ ln(2)/5.
 Obtain actual cost c_k.

- At each step, choose technology k (for some k):
 - increase x_k by δ_k .
 - That is, scale up capacity of technology k by e^{δ_k} .
 - (E.g. installed solar doubles every five years, so $\delta \simeq \ln(2)/5.$
 - Obtain actual cost c_k .
 - Infer new parameters α_k , β_k , and σ_k^2 using least squares on sample of size n_k , where n_k is number of times technology k has been chosen.

- How to choose best technology k to use at time t?
- Estimate ĉ_k(T) = estimated log cost of energy at time T using only technology k from now (t) on:

$$\hat{c}_k(T) = \alpha_k + \beta_k(x_k + (T-t)\delta_k)$$

• Do this whenever technology k is used.

LEARN(T, K): for $k = 1, 2, \ldots, K$: use technology k twice. for t = 2K + 1 to T: with probability p(t): # Explore Use technology k, where k = a least-used technology. else: # Exploit for k = 1, 2, ..., K, estimate $\hat{c}_k(T)$ using what's been learned so far, using least-squares to get $\hat{\alpha}_k$, $\hat{\beta}_k$: $\hat{c}_{k}(T) = \hat{\alpha}_{k} + \hat{\beta}_{k}(x_{k} + (T-t)\delta_{k})$ Use technology k, where k minimizes $\hat{c}_k(T)$ **return** min_k $\hat{c}_k(T)$

Conjecture (Open Problem)

For all sets of K learning curves and all T, LEARN returns a result $\hat{c}_k(T)$ such that with high probability

 $\hat{c}_k(T)$ is "not much more than" $c'_{k_*}(T)$

where k_* is the value of k with minimum expected value $c'_{k_*}(T)$ (that is, where k_* is always used).

Thanks! Happy Birthday, Rob!

э

References

- Ghemawat P., Building Strategy on the Experience Curve, HBR, 1986.
- I Harvey H. and Gillis, J. The Big Fix. (Simon & Schuster; 2022).
- Soser, M., Why did renewables become so cheap so fast?, 2020. https://ourworldindata.org/cheap-renewables-growth
- Way, R. et al., Empirically grounded technology forecasts and the energy transition, 2021, INET Oxford Working Paper No. 2021-01.