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Summary 

We examine the efficiency of generalized hash-coding 
algorithms for performing partial-match searches of a 
random--access file of binary words. A precise charac
terization is given of those hash functions which 

minimize the average number of buckets examined for a 

search ; and a new class of combinatorial designs is 
introduced which permits the construction of hash 
functions with worst-case behavior approaching the 
best achievable average behavior in many cases. 

I. The partial-match retrieval problem 

We restrict our attention here to files F of k-bit 
binary words ; the non-binary case is also treated in 
the author's thesis [II]. A partial match query is 
just a string in {O,I, *}k. Here the * 's are used as 
place-holding "don't-care" characters. The problem is 
to retrieve from F all words agreeing with the query 
in those positions where the query specifies a bit. 

Exampl� 

Let k = 3 and F = {OOO, 001, 010, 101, III }, Then 
the response to the query q = *0 * is {OOO, 001, 101} 
while the response to the query q = *01 is {001,101 }. 

Historical background 
The partial-match retrieval problem is a paradigm 

for "associative" search problems. Minker gives an 
excellent survey [7] of the hardware solutions to this 
problem. As large associative memories are currently 
economically impractical, we examine here search 
algorithms using conventional random-access storage 
devices. Since, as we shall see, there exist reason -

ably efficient hash-coding algorithms for the problem, 
we expect large hardw�red associative memories to be 
economically feasible only for applications which 
have very tight real-time constraints (such as air
traffic controlling). 

lbe partial-match retrieval problem is also 
interesting because it is really the next unsolved 
problem in the list of "intersection search" problems. 
A search problem is of the intersection type if the 
response, q (F), to a query q is merely the intersection 
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of the file F with some predetermined set of records 
k of interest which we denote by q({ 0, J} ). Thus we 

write 
k q(F) = Fn q({ O,I} ) ( I) 

for any intersection type query q. (Note that this 
notation is consistent when F =C 0, I} k). The list of 
intersection search problems, in order of increasing 
complexity, is 

I) Exact match queries. Each set q({O,I}
k) is just 

a single record in { O, J} k ; we want to know if that 
record appears in F. Hash-coding algorithms work well 
here. 

2) Single-key queries. Here q({O,nk) is all records 
having a single bit value for a specified position. 
Inverted-list algorithms work well here, since there 
are only 2k distinct queries. 

3) Partial-Match queries. Here q({O,I}k) is the set 
of all records in {O, J} k agreeing with the query q 
in its specified positions. 

4) Boolean queries. Here each q({ O,I}k) is an 
arbitrary subset of {O, I} k. 

To date the published algorithms for the partial 
match problem either involve exorbitant amounts of 
storage to represent the file F, or they involve a 
modification of the inverted-list scheme. The latter 
is unappealing because as the number of bits specified 
in the query increases, the work necessary to perform 
the intersection of the appropriate inverted lists 
also increases, while the expected size of the response 
q(F) decreases. A survey of these algorithms is given 
in [II], together with an extensive bibliography. Of 
particular note are [1,2,3,4,10 and 12]. This problem 
is also discussed in [6,8]. 

2. Hash-coding algorithms 

We consider hash-coding schemes which divide the 
file F into b disjoint buckets, or lists : LI ,L2,·· .Lb• 

A record �F will be stored on list Lh(x)' where 
h is an auxiliary "hash function" mapping {O, I}k onto 

-I the set {1,2, ••. ,b}. We denote h (i) (the set of 
record �{O,J}k with hash value i) by B. , and call 
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this "block i" (of the partition of {O,nk induced by h) . 

Thus L� � B� for 15i5b ; in fact, L. = B. n F .  
L L � � k To calculate the response q(F) = q({O,I} ) n F to a 

partial match query q, the retrieval algorithm must 
examine every list L. whose index i is in the set 

� 

h(q) = def {jl (Bj n q ({o,nk» "  0)} (2) 

If i � h(q), then L. need not be examined, since 
� 

Li n q({O,I}k) � Bi n q({ O,I}k) = I/J in this case. 
Thus the retrieval algorithm can be described by 

the equation 
q (F) = u 

i€h(q) 

k (L. n q({O,n » .  
� 

(3) 

We will measure the complexity of calculating the 
response q(F) to a query q by Ih(q) I, the number of 
buckets examined . To avoid consideration of the degene
rate hash function mapping all records into a single 
bucket, we shall require that our hash functions be 
balanced in the sense that Bi has the same size for 

any i, 15 i5b. If each record xd 0, I} k is equally likely 

to appear in F, then the expected length of each list 

L. will then be the same, so that the number of buckets 
� 

examined is an accurate measure of the work performed . 
In cases where the time to access a single bucket may 
usually exceed the time to read it (as for example with 
a disk unit) the number of buckets examined will again 
be an accurate measure. A more precise analysis will of 
course be necessary initially in order to determine the 
optimal number b of buckets to use (see [ IIJ ). 

We will consider both the average and worst-case 
number of buckets examined. Note that these measures 
depend only on the hash-function h and not on the 
particular file F in question, by (2). Let Q denote 
the set of all partial match queries of length k, and 
let Qs denote the set of all partial match queries of 
length k having exactly s bits specified, so that 
I QI = 3k and I Q I = (k)2s . Then the average and worst-s s 
case number of buckets examined are calculated by the 
respective formulas 

A(h) def I QI-I 2: I h(q)1 , and (4) 
q €Q 

W(h) def max I h(q)1 (5) 
Cl'Q 

We use the measures As(h) and Ws(h), defined simi
larly, if Qs rather than Q is used (Note that W(h) = b 
tr ivially because of q = * k. )  • 

We would like to find balanced hash functions h 
which minimize the average and/or worst-case numbers 
of buckets examined . 
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3. The average number of buckets searched. 

The folloWing theorem gives a precise characteriza
tion of which balanced hash functions h minimize A(h), 
the average number of buckets examined. 

k Theorem I .  Let h : {O.l} + {l • • • .• b} be a ba�anced 

hash fUnction with b = 2
w 

buckets fop some integep w. 

15W5k. Then A(h) is minima� if and only if each bZock 

B
i 

is a q({O.l}
k

) fop some quepy q€Q
w

' 

The geometry of the sets q({O,I}k) thus is reflec
ted in an appealing fashion in the optimal shape for 
the blocks B . •  The set of records in each optimal B. 

� � 
can be described by a string in {O,I,*}k containing 
exactly w bits and k-w *'s. 

Corollary I .  
The hash function which extracts the first w bits 

k of each record x€{O,I} to use as a bucket address, 
has a minimal A(h) . 

The proof of theorem I is unfortunately somewhat 
lengthy, although interesting in that we prove a 
little more than is claimed. 

Let B. c {O,I}k be any block . Then by Q(B.) we 
� k � 

denote I {q€QI (q({O,I} ) n Bi) " ¢} I, the number of 
queries q€Q which examine list L . •  Denote by 0 . (x,k) 

� 11l1n 
the minimal value of Q(B.) for any B. of size x, 

k � � 
Bi c {O,I} • We now note that 

A(h) = IQ I-I . 2: Ih(q)1 
q€Q 

k 
1{(Bi,q) 1 (q({O,I} ) n B. ) " I/J} I • I Q I

-I 
� 

2: Q(B.) . IQI-I 
� 15i5b 

k-w -I b . O . (2 ,k) . IQI 'nun 

To finish the proof of the theorem we need only show 
k-w that Q(B.) = 0 . (2 ,k) if and only if B. is of the 

� k 11l1n � 
form q({O,I} ) for some q€�. The rest of the proof 
involves four parts : calculation of Q(B. ) for B. of 

k-b � 
the proper form, calculation of 0 . (2 ,k), the 1un 
demonstration of equality, and then the demonstration 
of the "only if" portion . 

Calculation of Q(Bil. 

For simplicity of notation we use the symbols x,y,z 
to denote either a positive or their k-bit binary 
representation. Occasionally we may wish to explicity 
indicate that some number t of bits are to be used ; 
we denote this string by x : t  (so that 9: 5 = 01001). 
The length of a string x in {O,I}* we denote by Ixl . 
Concatenation of strings is represented by concatena
tion of their symbols ; Ox denotes a zero followed 



by the string x. A string of t ones we denote by It. 
If x is a string, we denote by � (x underlined) the 

set of those x+1 strings of length Ixl which denote 
integers not greater than x. For example 

k-w 011 = {OOO,OOI,OIO,OII}. If x = 2 -I, then x : k des-
cribes the set q({O,I} k) for q = Ow*k-w, which is in 
�. Furthermore, Q(q({O,I}k» does not depend on which 
q�� is chosen ; this is always 2w3k-w (since each * 
in q can be replaced by 0,1 or *, and each specified 
position optionally replaced 
counted in Q(q({O,I} k» ). 

w k-w 

by a *, to obtain a query 

Thus Q(Bi) = 2 3 for B. = x : k  with x = 2k-w_I. � 
To show this is optimal, it is necessary to calculate 
Q(�) for arbitrary strings x. 

Lemma I. (a) Q(nullstring) 
(b) Q(�) 2Q(�) 
(c) Q(�) 2Q(� + Q(�) 

Proof : Take (a) to be true by definition. For (b), any 
query examining � can be preceded by either a 0 or a * 
to obtain a q�ery examining Ox. Part (c) follows from 
the fact that � = O(�) u I� ; there are 2Q(6 
queries starting with 0 or *, and Q(�) starting with 1.0 

The preceding lemma permits Q(�) to be easily compu� 
ted for abitrary strings x ; we list some particular 
values 

x = null 0 00 01 \0 II 
Q(�) = 2 3 4 6 8 9 

x = 000 001 010 Oil 100 101 IlO III 
Q(�) = 8 12 16 18 22 24 26 27 

If x is the string xI x2 ... � and z. denotes the � 
number of zeros in xl"'xi, then lemma I implies that 

Lemma 2 : Q (�) 

k . z.+1 
I x. 3 -� 2 � 

l!d�k � (6) 

Proof From (6), directly, or noting that if q is 
counted in Q(�), then qa, ql, and q* will be counted 
in Q(�). 0 z k Using p(x) to denote 2 (where zk is the number of 
zeros in x), we have also the following. 

Lemma 3 : Q(�) = Q(x-I : k) + p(x : k). 

Proof The only queries counted in Q(�) but not Q(x-I) 
will be those obtained by replacing an arbitrary 
subset of the zeros in x by *' s • 0 

NOli' that we know quite a bit about Q(q({O,I} k» 
for qEQ , we turn our attention to 0 . • 

w 1m�n 
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A lower bound for Q . (x-k) m1� 
The following inequality holds for 0 . (x,k), the 1m�n k minimal number of queries Q(Bi) for any Bi c {a,l} , 

IBil = x. 

�in(x,k) � max(2�in(xo,k-l) + �in(xl,k-I» (7) 
where the maximum is taken over all pairs of non-
negative integers xo,xl such that Xo + xI = x, Xo � xI' 

k-I and Xo � 2 . To show (7), let Bi contain Xo records 
starting with a a and xI with a I. Then Q(Bi) must count 

at least 2�in(xo,k-l) queries beginning with a zero 
or a *, and at least �in(xI,k-l) which start with a I. 
(Nothing is lost by assuming Xo � xI') For k = I we 
have 0 . (x,l) = Q(x-I : I), by inspection. 1m�n ---

Showing Q(B.)=a . (2k-w,k) if B. = 2k-w_I : k  � )n�n � 

We will in fact prove the stronger statement that 
Q(B.) = 0 . (x+I,k) if B. = x : k, by induction on k. � 1m�n � --
Since Q(x : k)� 0 . (x+I,k) necessarily, with equality -- 'llan 
holding for k = I, as we have seen, equality can be 
proved in general using (7) if we can show the 
following. 

Q(x : k)s max(2Q(y : k-l) + Q(z : k-I» (8) 

where the maximum is taken over all pairs of non
negative integers y,z such that y+z+1 = x, Y � z, and 

k-I . d . h . h h d 'd f (8) . y � 2 • By �n uct�on t e r�g t- an s� e 0 �s a 
lower bound for 0 . (x+l,k). The case in (8) of x = y 1m�n 
corresponding to xI = 0 in (7) is OK by Lemma I (b). 
To prove (8) we consider four cases, according to 
the last bits of y and z. 

Case I : y : k-I = y'I, z : k-I = z' I, and x : k = x'l. 
In this case (8) is true by lemma 2, since we know by 

induction that Q(�) � 2Q(y') + Q(�'). 
Case 2 : y : k-I = y'O, z : k-I = z'I, and x : k  = x'o. If 
p(x') � 2p(y') then (8) is true since it is equivalent 
by lemma; 2 and 3 to 

3Q(x'-I) + 2p(x') � 6Q(�) + 4p(y') + 3Q(�'), 

but we know by induction that Q�x'-I) � 2Q(�)+Q(�') 
atherwise if p(x') > 2p(y') we use the fact that (8) 
says 

3Q(�') - p(x') � 6Q(y') - 2p(y') + 3Q(�') 
and we know that Q(�') � 2Q(y') + Q(�') by induction. 

Case 3 : y : k-I = y'lt z : k-I = Z'Ot and x : k  = x'a. 
Depending on the truth or falsity of p(x') � p(z') 
we use induction and the fact that (8) is implied by 
either 

or 
3Q(x'-I) + 2p(x') � 6Q(y') + 3Q(z'-I) + 2p(z') 
3Q(�') - p(x') � 6Q(y') + 3Q(�') - p(z'). 



Case 4 : y : k-I = y'O, z : k-I = z'o, and x : k  = x'l. If 
p(y') � p(z') we use induction and the fact that (8) is 
implied by 

3Q(�') � 6Q(y') - 2p(y') + 3Q(z'-I) + 2p(z'). 
Otherwise we use the fact that (8) is implied by 

3Q(x') � 6Q(L2) + 4p(y') + 3Q(.!.') - p(z'). 

This completes the proof that Q(x : k) = �in(x+l,k). 

Showing Q(Bi) = �in(2k-w,k) only if Bi = q({O,I}k) for 

some qE�. 

We need only that (8) holds with equality for 

2k-w I 1 'f . h" l' h x - on y 1 Y = z, S1nce t 1S 1mp 1es t at 
Q(B. ) > 0 . (2k-w,k) if B. is not of the form q({O,I}k) 1 U1n 1 
for qEO . To see this, let B. = OC u 

� k-I 1 
c,n c {O,I} • Then note that if Bi 

ID, for 
'" q ( { 0, J} k) for 

some qE�l' then either Ici > 0, Inl > 0, and 
Icl '" Inl ; or Ici = Inl but at least one of C, n is 

k-I not of the form q({O,I} ) for any qE�_I' 
w k-w Now x : k  = ° 1 • If Y = z, then (8) holds with 

equality by Lemma I. To show (8) holds with equality 
k-w-I k-w-I only if y = z, suppose y = 2 + t-I and z = 2 -t-I 

for any t, O<t<2k-w-I. Then (8) holding with strict 
inequality says 

Q(Owlk-w) < 2Q(y : k-l) + Q(z : k-I) 
or 

or 
k-w Q(_O_I _) < Q(y : k-w+I) + Q(z : k-w). 

k-w-I Subtracting 2 from both x and y we get that (8) 
means 

k-w-I k-w-I Q(OI ) < Q(t-I : k-w) + Q(2 -t-I : k-w). 

It is simpler to note that the general statement. 
Q(x : k) < Q(t-I : k) + Q(x-t : k) 

is always true; in fact, it is implied directly by 
(8), lemma I, and the fact that Q(x-t : k) is always 
positive. This completes our proof that Q(B.)=�. (2k�k) 

k 1 1n 
only if Bi = q({O,I} ) for some qE�, and also finishes 
our proof of theorem I. 0 

While theorem 1 only counted queries in Q, the same 
result "holds if we count queries in Qs' 
Theorem 2 : Let h and b be as in theopem 1. Then A (h) 

s 
is minimal fop O<s<k if and only if each block B. is 

a q({o, n
k

) fop some qEQ • 

1.-

w 
This can't be asserted in an "iff" manner for s = 0 

or s = k, for which A (h) = b and A (h) = I independent s s 
of h. 
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Theorem 2 can be proved in the same manner as 
theorem I. We note here the differences, using 

Q (B.) and 0 ,  (x,k) to count queries in Qs rather s 1 'lInn, s 
than Q. 
Lemma 4. (a) Qo(!) = I, for 

(b) Qs (nullstring) 
(c) Q (Ox) s - Qs (�) 

all x. 

all x. 
° for s;:,1. 

+ Qs-I (�), for s<! I and 

(d) Qs(l!) = Qs(OI Ixl) + Qs_l(x), for s;:,1 
and all x. 

zk Lemma 5. Qs(�)-Qs(x-I) = (k-s)' where zk denotes the 
number of zeros in x and Ixl = k. 
Lemma 6. Qs (�) = 2Qs_1 (�) + Qs (?!.) • 

Lemma .7. O .  (x,k);:,max(O . (x ,k-I)+O. (x ,k-I) u1n,s u1n,s 0 u1n,s 0 

+ o .  I(xl,k-I» u1n,s-
where the maximum is taken over all pairs of non
negative integers xo,xl such that xo+xl = x, Xo ;:, XI 
and x � 2k-l. o 

The proofs of these lemmas are omitted here (see 
[10 ). The proof of theorem 2 then proceeds along the 
same lines as that of theorem I ; with (8) being 
replaced by 
Qs(x : k)�max(Qs(y : k-I)+Qs_l(y : k-I)+Qs_I(�» '  

We omit details here of the proof, as it varies little 
from the proof of (8). The "only if" portion of the 
proof is also similar, except that the inductive 
hypothesis may have to be applied more than once (for 
varying s values). 

Calculation of A (h). 
s 

Now that theorems I and 2 tell us what the optimal 
balanced hash functions h : {O,I}k +{I, . • •  ,b 2w} are 
like, we can calculate As(h) easily, using the optimal 
h from Corollary I to theorem 1 (using the first w bits 

k of xE{O,I} as the hash value). We get 

A (h) = (k)-I I (�)(k�) 2w-i ;:, bl-s/k 
s s . 1 S-1 Ol!:1�S 

where the first sum considers the ways in which i of 
the s specified bits fall in the first w positions 

w-i when this happens 2 buckets must be searched. The 
inequality is a special case of a mean value theorem 

) I-s/k . (theorem 59 of [5 J • In fact, b 1S a very good 
approximation for A (h), as long as w is not too small. s 
Thus, for example, whenever half of the bits are 
specified in the partial match query, we would expect 
to examine about � buckets. 



This work performed decreases exponentially with the 

number of bits s specified in the query. We conjecture 
that no search algorithm utilizing the same amount of 
storage space for representing the file F can do 
signif ic.antly better. This conj ecture is supported by 
an analysis of a digital-tree search algorithm for the 
same problem EIIJ. 

4. The worst-case number of buckets searched 

The worst-case behavior of the hash function of 
Corollary I is obviously poor ; if none of the specified 
bits occur in the first w positions then every bucket 
must be searched. In this section we fi nd that other 
optimal average-time hash functions exist which have 
much improved worst-case behavior, often approximately 
equal to the average behavior. We also consider a 
simpler strategy involving storing each record in 
several locations. 

To obtain good worst-case behavior W (h) for s 
h: {O,L·k 

-+ {I, ... , b = 2w}, the hash function hex) 
must depend on all of the bits of x, so that each 
specified bit contributes approximately equally and 
independently towards decreasing the number of buckets 
searched. We shall also restrict our attention to hash 
functions satisfying the conditions of theorems I and 2 
so that optimal average time behavior is ensured. While 
we have no proof that these block shapes are necessary 
for optimal worst-case behavior, the fact that Ws(h) is 
bounded below by As(h) makes it desirable to keep As(h) 
minimal. 
An example 

Let us consider by way of introduction an example 
with k ,= 4, w = 3. The following table describes an 
interesting hash function h ; row i describes the 

4 query qEQ3 such that B. = q({O,I} ). Thus h(OIIO) = 6 
1 { }4 . d . . and h(llI0) = 4, each x€ 0,1 1S store 1n a un1que 

bucket. 

Bit posi don 

2 3 4 

0 0 * 0 
2 0 0 * 

3 * 0 0 
Bucket 4 0 * 
address 5 * 

6 0 * 

7 * 0 
8 0 * 0 

Table 1. A hash function 4 h : {O,J} -+ {I, . .. , 8} 
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This can be interpreted as a perfect matching on 
the Boolean 4-cube, as indicated in Figure I, since 
each block contains two adjacent points and distinct 
blocks are disjoint. In general we have the problem 
of packing {O, I}k with k-w dimensional subspaces. 

Whereas the hash function of Corollary I would 
have all it's *'s in the fou�th column, here the *'s 
are divided equally among the four columns. As: a 
result we have WI(h) = 5 instead of 8. For example, 
we need only examine buckets 1,4,5,6 and 7 for the 
query **1*. Table 2 lists W (h) and rA (h)l for s s 
0�s�4 ; we see that we have reduced Ws(h) so that 
W (h) =rA (h)1 no further reduction is possible. s s 

OlIO 

0000 

s o 2 3 4 

8 5 3 2 

8 5 3 2 

Table 2. W (h) and fA (h)l. 
s s --

Definition and characteristics of ABD's. 

0001 

0111 

Let us call a table such as table I an "associative 
block design of type (k,w)", or an ABD(k,w) for short. 
To be precise, an ABD(k,w) is a table with b = 2w rows 
and k columns with entries from {O,I,*} such that 

(i) each row has w digits and k-w *'s, 
(ii) the rows represent disjoint subsets of {O,I}k. 

That is, given any two rows there exists a column in 
which they contain differing digits. 
(iii) each column contains the same number b.(k-w)/k 
of *'s. 



Conditions (i) and (ii) ensure that As(h) is minimal, 

by theorem 2. Condition (iii) attempts to restrict the 
class of ABD's to those hash functions with good worst
case behavior Ws(h) by requiring a certain amount of 
uniformity in the utilization of each bit by h. In fact, 
(iii) implies that W1(h) is minimal. More stringent 
uniformity conditions are conceivable, perhaps involving 
the distribution of t-tuples within each t-subset of 
columns, but (iii) alone is enough to make the construc
tion of ABD's a difficult combinatorial problem. 

The following lemma follows more or less directly 
from the definition. 
Lemma S. An ABD(k,w) 

(i) has exactly b.w/2k O's (or I's) in each column, 
(ii) has exactly (w) rows which agree in exactly in u u k positions with any record x€{O,I} , for osusw, 

(iii) requires that k,w satisfy 

or 

k(b .w) 
2 

� (b) 
2k 

2 

k < w(b ) 
W - 2" b-I . (9) 

Part (i) implies that bw/2k must be integral, part 
(ii) (taking x = Ok) tells us how many rows have exactly 
u zeros, and part (iii) implies that to achieve large 
record length/bucket address length ratios k/w we must 
have relatively large values for w. The lemma implies 
that for ks20 the possible values of (k,w), k # w, for 
which an ABD might exist are : 
(4,3),(S,w) for 4sws7, (10,5),(12,6),(12,9),(14,7), 
(16,w) for 6swsl5, (IS,3t) for 2sts5, (20,10) and 
(20,15). An ABD(S,4) has been shown not to exist by 
extending lemma S (iii) slightly. 

ABD Construction techniques. 
While ABD's closely resemble balanced incomplete 

b lock des igns and other combin:a tor ial s truc tureS, it 
appears that the existence of ABD's is not implied by 
the existence of these other objects in any straight
forward manner. We therefore present here several direct 
construction techniques which provide infinite classes 
of ABD's. The general question of the existence of an 
ABD of arbitrary type (k,w) seems to be extremely 
difficult ; the positive nature of the very partial 
results obtained here suggests however that ABD's are 
not scarce. 

We first present a simple infinite class of ABD's. 
The construction here is due to Ronald Graham. Franco 
Preparata has discovered another construction for a 
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class of the same parameters, based on cyclic BCH 
error-correcting codes [9J. 

Theorem 3. An ABD(2
t

.2
t

-l) exists for t�2. 

Proof. We extend our notation for an ABD : a row 
containing r "-"'s will represent 2r rows of the actual 
ABD obtained by independently replacing each - with 
a 0 or I: The construction has two parts : 

(i) Rows 1 to t+1 have -'s in positions t+2 to k. 
Row i for ISist+ 1 has its star in column i ; the 
remaining columns contain digits. (For example, 
columns I to t+1 of these rows might contain cyclic 

t-I shifts of *10 .). 
(ii) Row i for m+2sis2k-m-1 contains digits in columns 

1 to m+I, a * in column m+I+L(i-m)/2J, and -'s else-
where. The digits used are arbitrary except they must 
satisfy part (ii) of the ABD definition. It is easy 
to check that this is an ABD. 

We present in table 3 an ABD(S,7) (t=3) constructed 
this way. 

2 3 4 5 6 7 S 

* 0 0 
2 0 * 0 
3 0 0 * 
4 0 0 * 
5 0 0 0 0 * 
6 0 0 * 
7 0 * 
S 0 0 * 
9 0 * 

10 0 * 
II 0 * 
12 * 

Table 3. An ABD(S,7). 

Graham has also constructed an ABD(16,13) with a 
similar two-part method. 

The ABD's of theorem 3, while interesting as a 
solution to a combinatorial problem, are essentially 
useless as hash functions since the number of buckets 
is unacepptably large. We wish to have ABD's such that 
the ratio k/w does not tend to I. The following 
theorem does just that. 
Theorem 4. Given an ABD(k.w) and an ABD(k'.w') such 

that k/w = k'/w'. one can constpuct an ABD(k+k'.w+w'). 

Proof : For each possible pair of rows (R I,R2) with 
RI €ABD(k,w), R2 ABD(k',w') let the concatenation 
RI R2 be a row of the ABD(k+k',w+w·). This is easily 
shown to be a legal ABD. 0 



Theorem 4 allows us to construct an infinite family 
of ABD's of type (4t,3t), for t�I, using the ABD of 
table I. This is approaching utility (an ABD(16,12) is 
conceivably useful, say) but we need "starting" designs 
with large k/w to obtain a family with large k/w. On 
the other hand we know by lemma 8 (iii) that designs 
with large k/w must have k at least 2(k/w)2 approxima
tely. Unfortunately, these tables get rapidly unmana
geable by hand. Computer searches for an ABD(8,5) or an 
ABD(IO,5) also ran out of time before finding any. The 
question as to whether ABD(k,w)'s existed with k/w>4/3 
thus remained open until the following theorem, showing 
that k/w can be arbitrarily large, was discovered. 

Theorem 5. Given an ABD(k,w) and an A BD(k',w') one can 

construct an ABD(kk',ww'). 

w(w'-I) .Proof : Each row R of the first ABD generates 2 
rows of the··resultant ABD, as follows. The set of rows 
of the ABD(k',w') is arbitrarily divided into two equal
sized subsets, Ao and AI' Each character x of R is 
replaced by a string of k' characters : if x = *,x is 

k' replaced hy * , otherwise x is replaced by some row 
in Ax' The w digits of R are replaced independently in 
all possible ways by rows from the corresponding sets 
Ao and AI' 

ww' This generates a table with 2 rows of length kk', 
each row has (k-w)k' + w(k'-w') = kk'-ww' *'s. Any 
two �ows of the resultant ABD must contain differing 
digi!s in at least one column since rows replacing 
differing digits must differ, or if the two rows were 
generated from the same row of the first design, then 
one of the digits r!,!placed will have been replaced by 
two (differing) rows from the second ABD. The number 

, 
of *'8 in each column turns out to be 2ww (kk'-ww')/kk', 
as required, so that we have created an ABD(kk',ww'). 0 

The preceding theorem allows us to construct an 
ABD(4t,3t) for t�l, for example, from our ABD(4,3). 
While this does provide large k/w designs, they are 
quite likely not the smallest designs for the given 
ratio, since by (9) we might hope to have w grow linear
ly with (k/w), whereas here it grows like 
(k/w)log3/4(3) 

> (k/w)4. At present, however, it is 
our only way of constructing large k/w designs. 
Analysis of ABD search times. 

Let 11S examine the worst-case number of buckets 
examined Ws(h) for hash functions associated with the 
ABD's of the last section. 
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Consider first the hash function h associated with 
an ABD(k+k',w+w') which was created by the concatena
tion (theorem 4) of an ABD(k,w) and au ABD(k',w') (with 
associated hash functions g and g', respectively). Then 

max W (g).Wv(g')· 
u+v=s u 

for O��+k', O��, O*�'. For example, the ABD(8,6) 
created from two of our ABD(4,3)'s has Ws(h) as in 
table 4. 

s o 2 3 4 5 6 7 8 

W (h) s 64 40 25 16 10 6 4 2 

64 40 25 15 9 6 4 2 

Table 4. Performance of an ABD(8,6). 

We see that the ABD(8,6) does nearly as well as 
possib�e. One can show that if Wu(g) = Au(g) then 
Ws(h) = As(h), where h is the concatenation of m copies 
of the ABD of g, for m�l. So concatenation preserves 
optimal and near-optimal worst-case behavior. (The 
slight discrepancy of table 4 is caused by the non
convexity of 10g(Ws(h» of table 2 at s = 3.). 

The corresponding worst-case analysis for those 
ABD's constructed by the "insertion" operation of 
theorem· 5 is much more difficult to work out.,It 
seems the worst-case here occurs when the specified 
bits occur together in blocks corresponding to the 
digits of the first ABD (of type(k,w» used in the 
construction. 

Under this assumption (for which I have no proof) 
the worst-case behavior of an ABD(16,9) created from 
two of our ABD(4,3)'s can be calculated to be as given 
in table 5. 

s o 2 3 4 5 6 7 8 
Ws(h) 512 368 272 224 176 116 76 56 36 

fAs(h)l 512 368 263 186 131 91 63 43 30 

s 9 

Ws(h) 33 

r As (h) 1 20 

10 II 

24 16 

14 9 

12 13 14 IS 

8 5 3 2 

6 4 3 2 

Table 5. Performance of an ABD(16,9) 

16 

We see that while Ws(h) approximates As(h) reasonably 
well, performance has been degraded somewhat. We 
conjecture that better ABD(16,9)'s exist. (It is a 
situation reminiscent of the fact that recursive or 
systematic constructions of error-correcting codes 
tend not to work out as well as a random code would). 



While it is not too difficult to calculate W (h) for s 
small ABD's constructed by insertion (assuming that our 

bit records, which uses c.IFI.k bits of storage to 
represent F, must examine at least (c.IFI.k)l-s/k 

conjecture about the nature of the worst-case is correct), bits (approximately) of that representation in order 
the asymptotic analysis seems difficult. In any case the to calculate the response to a query q€Qs' both on 
ABD's so constructed yield large k/w designs with signi
ficantly improved Ws(h). 

Thus ABD's are seen to permit partial-match searches 
to be performed optimally (with respect to the average 
retrieval time) while greatly reducing the worst-case 
retrieval time. The disadvantages are that it is 
difficult to construct (or even to show the existence of 
of) ABD's of an arbitrary type (k,w). and also that the 
calculation of the hash function h itself becomes 
sufficiently complicated so that using ABD's would be 
justified only when the file is stored on slower 
secondary storage. 

In the next section we see how the complications 
of ABD's can be avoided at the cost of extra storage 
utilization. 

An alternative solution. 

By using moderate amounts of extra storage one 
can achieve very good worst-case retrieval times. The 
idea is very simple. Suppose we have enough storage to 
store each record m times. Then we create m bucket 
systems. Each record is divided into m fields of kim 
bits each, the i-th field is used directly as the 
bucket address for the record in the i-� system. 

If b = 2w (where w = kim) is the number of buckets 
per system, then for any query q Qs we use the bucket 
system corresponding to the field of q having the most 
bits specified to perform the search. Since this field 
must have at least fs/ml = fws/kl bits specified, 
we have 

W (h) � 2w- fws/kl 
s 

This compares very favorably with the lower bound of 
I-s/k b for As(h) for a single balanced bucket system. 

The average behavior of this scheme is not easy to 
compute, but A (h) approaching W (h) seems likely, s s 
especially when w is large. 

Variations of the scheme exist, using an ABD for 
each bucket system, etc . . •  

5. Conclusions. 

We see that generalized hash-coding algorithms 
permit partial-match searches to be performed 
efficiently, both on the average and in the worst
case. We conjecture that these algorithms do about 
as well as possible, in the sense that any algorithm 
performing partial match searches on a file F of k 
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the average and in the worst-case. 

In addition to this conjecture, many interesting 
open problems remain, in particular the existence 
question for ABD's of arbitrary type (k,w), and the 
appropriate generalizations of theorems I and 2 for 
more realistic situations where queries h�ve differing 
probabilities, etc . • •  Other less stringent definitions 
of an ABD are also worth consideration. 

The reader is referred to [II J for a more detailed 
discussion of these issues, for proof details omitted 
here due to lack of space, and an analysis of a 
digital-tree partial-match search problem. (Also given 
there is a proof of an analogue of theorems I and 2 
for best-match (rather than partial-match) queries.). 
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