
ON HASH-CODING ALGORITHMS FOR PARTIAL-MATCH RETRIEVAL

(Extended Abstract)
by

Ronald L. Rivest
IRIA, 78 Rocquencourt, -France.

Summary

We examine the efficiency of generalized hash-coding
algorithms for performing partial-match searches of a
random--access file of binary words. A precise charac
terization is given of those hash functions which

minimize the average number of buckets examined for a

search ; and a new class of combinatorial designs is
introduced which permits the construction of hash
functions with worst-case behavior approaching the
best achievable average behavior in many cases.

I. The partial-match retrieval problem

We restrict our attention here to files F of k-bit
binary words ; the non-binary case is also treated in
the author's thesis [II]. A partial match query is
just a string in {O,I, *}k. Here the * 's are used as
place-holding "don't-care" characters. The problem is
to retrieve from F all words agreeing with the query
in those positions where the query specifies a bit.

Exampl�

Let k = 3 and F = {OOO, 001, 010, 101, III }, Then
the response to the query q = *0 * is {OOO, 001, 101}
while the response to the query q = *01 is {001,101 }.

Historical background
The partial-match retrieval problem is a paradigm

for "associative" search problems. Minker gives an
excellent survey [7] of the hardware solutions to this
problem. As large associative memories are currently
economically impractical, we examine here search
algorithms using conventional random-access storage
devices. Since, as we shall see, there exist reason -

ably efficient hash-coding algorithms for the problem,
we expect large hardw�red associative memories to be
economically feasible only for applications which
have very tight real-time constraints (such as air
traffic controlling).

lbe partial-match retrieval problem is also
interesting because it is really the next unsolved
problem in the list of "intersection search" problems.
A search problem is of the intersection type if the
response, q (F), to a query q is merely the intersection

95

of the file F with some predetermined set of records
k of interest which we denote by q({ 0, J}). Thus we

write
k q(F) = Fn q({ O,I}) (I)

for any intersection type query q. (Note that this
notation is consistent when F =C 0, I} k). The list of
intersection search problems, in order of increasing
complexity, is

I) Exact match queries. Each set q({O,I}
k) is just

a single record in { O, J} k ; we want to know if that
record appears in F. Hash-coding algorithms work well
here.

2) Single-key queries. Here q({O,nk) is all records
having a single bit value for a specified position.
Inverted-list algorithms work well here, since there
are only 2k distinct queries.

3) Partial-Match queries. Here q({O,I}k) is the set
of all records in {O, J} k agreeing with the query q
in its specified positions.

4) Boolean queries. Here each q({ O,I}k) is an
arbitrary subset of {O, I} k.

To date the published algorithms for the partial
match problem either involve exorbitant amounts of
storage to represent the file F, or they involve a
modification of the inverted-list scheme. The latter
is unappealing because as the number of bits specified
in the query increases, the work necessary to perform
the intersection of the appropriate inverted lists
also increases, while the expected size of the response
q(F) decreases. A survey of these algorithms is given
in [II], together with an extensive bibliography. Of
particular note are [1,2,3,4,10 and 12]. This problem
is also discussed in [6,8].

2. Hash-coding algorithms

We consider hash-coding schemes which divide the
file F into b disjoint buckets, or lists : LI ,L2,·· .Lb•

A record �F will be stored on list Lh(x)' where
h is an auxiliary "hash function" mapping {O, I}k onto

-I the set {1,2, ••. ,b}. We denote h (i) (the set of
record �{O,J}k with hash value i) by B. , and call

1

this "block i" (of the partition of {O,nk induced by h) .

Thus L� � B� for 15i5b ; in fact, L. = B. n F .
L L � � k To calculate the response q(F) = q({O,I}) n F to a

partial match query q, the retrieval algorithm must
examine every list L. whose index i is in the set

�

h(q) = def {jl (Bj n q ({o,nk» " 0)} (2)

If i � h(q), then L. need not be examined, since
�

Li n q({O,I}k) � Bi n q({ O,I}k) = I/J in this case.
Thus the retrieval algorithm can be described by

the equation
q (F) = u

i€h(q)

k (L. n q({O,n » .
�

(3)

We will measure the complexity of calculating the
response q(F) to a query q by Ih(q) I, the number of
buckets examined . To avoid consideration of the degene
rate hash function mapping all records into a single
bucket, we shall require that our hash functions be
balanced in the sense that Bi has the same size for

any i, 15 i5b. If each record xd 0, I} k is equally likely

to appear in F, then the expected length of each list

L. will then be the same, so that the number of buckets
�

examined is an accurate measure of the work performed .
In cases where the time to access a single bucket may
usually exceed the time to read it (as for example with
a disk unit) the number of buckets examined will again
be an accurate measure. A more precise analysis will of
course be necessary initially in order to determine the
optimal number b of buckets to use (see [IIJ).

We will consider both the average and worst-case
number of buckets examined. Note that these measures
depend only on the hash-function h and not on the
particular file F in question, by (2). Let Q denote
the set of all partial match queries of length k, and
let Qs denote the set of all partial match queries of
length k having exactly s bits specified, so that
I QI = 3k and I Q I = (k)2s . Then the average and worst-s s
case number of buckets examined are calculated by the
respective formulas

A(h) def I QI-I 2: I h(q)1 , and (4)
q €Q

W(h) def max I h(q)1 (5)
Cl'Q

We use the measures As(h) and Ws(h), defined simi
larly, if Qs rather than Q is used (Note that W(h) = b
tr ivially because of q = * k.) •

We would like to find balanced hash functions h
which minimize the average and/or worst-case numbers
of buckets examined .

96

3. The average number of buckets searched.

The folloWing theorem gives a precise characteriza
tion of which balanced hash functions h minimize A(h),
the average number of buckets examined.

k Theorem I . Let h : {O.l} + {l • • • .• b} be a ba�anced

hash fUnction with b = 2
w

buckets fop some integep w.

15W5k. Then A(h) is minima� if and only if each bZock

B
i

is a q({O.l}
k

) fop some quepy q€Q
w

'

The geometry of the sets q({O,I}k) thus is reflec
ted in an appealing fashion in the optimal shape for
the blocks B . • The set of records in each optimal B.

� �
can be described by a string in {O,I,*}k containing
exactly w bits and k-w *'s.

Corollary I .
The hash function which extracts the first w bits

k of each record x€{O,I} to use as a bucket address,
has a minimal A(h) .

The proof of theorem I is unfortunately somewhat
lengthy, although interesting in that we prove a
little more than is claimed.

Let B. c {O,I}k be any block . Then by Q(B.) we
� k �

denote I {q€QI (q({O,I}) n Bi) " ¢} I, the number of
queries q€Q which examine list L . • Denote by 0 . (x,k)

� 11l1n
the minimal value of Q(B.) for any B. of size x,

k � �
Bi c {O,I} • We now note that

A(h) = IQ I-I . 2: Ih(q)1
q€Q

k
1{(Bi,q) 1 (q({O,I}) n B.) " I/J} I • I Q I

-I
�

2: Q(B.) . IQI-I
� 15i5b

k-w -I b . O . (2 ,k) . IQI 'nun

To finish the proof of the theorem we need only show
k-w that Q(B.) = 0 . (2 ,k) if and only if B. is of the

� k 11l1n �
form q({O,I}) for some q€�. The rest of the proof
involves four parts : calculation of Q(B.) for B. of

k-b �
the proper form, calculation of 0 . (2 ,k), the 1un
demonstration of equality, and then the demonstration
of the "only if" portion .

Calculation of Q(Bil.

For simplicity of notation we use the symbols x,y,z
to denote either a positive or their k-bit binary
representation. Occasionally we may wish to explicity
indicate that some number t of bits are to be used ;
we denote this string by x : t (so that 9: 5 = 01001).
The length of a string x in {O,I}* we denote by Ixl .
Concatenation of strings is represented by concatena
tion of their symbols ; Ox denotes a zero followed

by the string x. A string of t ones we denote by It.
If x is a string, we denote by � (x underlined) the

set of those x+1 strings of length Ixl which denote
integers not greater than x. For example

k-w 011 = {OOO,OOI,OIO,OII}. If x = 2 -I, then x : k des-
cribes the set q({O,I} k) for q = Ow*k-w, which is in
�. Furthermore, Q(q({O,I}k» does not depend on which
q�� is chosen ; this is always 2w3k-w (since each *
in q can be replaced by 0,1 or *, and each specified
position optionally replaced
counted in Q(q({O,I} k»).

w k-w

by a *, to obtain a query

Thus Q(Bi) = 2 3 for B. = x : k with x = 2k-w_I. �
To show this is optimal, it is necessary to calculate
Q(�) for arbitrary strings x.

Lemma I. (a) Q(nullstring)
(b) Q(�) 2Q(�)
(c) Q(�) 2Q(� + Q(�)

Proof : Take (a) to be true by definition. For (b), any
query examining � can be preceded by either a 0 or a *
to obtain a q�ery examining Ox. Part (c) follows from
the fact that � = O(�) u I� ; there are 2Q(6
queries starting with 0 or *, and Q(�) starting with 1.0

The preceding lemma permits Q(�) to be easily compu�
ted for abitrary strings x ; we list some particular
values

x = null 0 00 01 \0 II
Q(�) = 2 3 4 6 8 9

x = 000 001 010 Oil 100 101 IlO III
Q(�) = 8 12 16 18 22 24 26 27

If x is the string xI x2 ... � and z. denotes the �
number of zeros in xl"'xi, then lemma I implies that

Lemma 2 : Q (�)

k . z.+1
I x. 3 -� 2 �

l!d�k � (6)

Proof From (6), directly, or noting that if q is
counted in Q(�), then qa, ql, and q* will be counted
in Q(�). 0 z k Using p(x) to denote 2 (where zk is the number of
zeros in x), we have also the following.

Lemma 3 : Q(�) = Q(x-I : k) + p(x : k).

Proof The only queries counted in Q(�) but not Q(x-I)
will be those obtained by replacing an arbitrary
subset of the zeros in x by *' s • 0

NOli' that we know quite a bit about Q(q({O,I} k»
for qEQ , we turn our attention to 0 . •

w 1m�n

97

A lower bound for Q . (x-k) m1�
The following inequality holds for 0 . (x,k), the 1m�n k minimal number of queries Q(Bi) for any Bi c {a,l} ,

IBil = x.

�in(x,k) � max(2�in(xo,k-l) + �in(xl,k-I» (7)
where the maximum is taken over all pairs of non-
negative integers xo,xl such that Xo + xI = x, Xo � xI'

k-I and Xo � 2 . To show (7), let Bi contain Xo records
starting with a a and xI with a I. Then Q(Bi) must count

at least 2�in(xo,k-l) queries beginning with a zero
or a *, and at least �in(xI,k-l) which start with a I.
(Nothing is lost by assuming Xo � xI') For k = I we
have 0 . (x,l) = Q(x-I : I), by inspection. 1m�n ---

Showing Q(B.)=a . (2k-w,k) if B. = 2k-w_I : k �)n�n �

We will in fact prove the stronger statement that
Q(B.) = 0 . (x+I,k) if B. = x : k, by induction on k. � 1m�n � --
Since Q(x : k)� 0 . (x+I,k) necessarily, with equality -- 'llan
holding for k = I, as we have seen, equality can be
proved in general using (7) if we can show the
following.

Q(x : k)s max(2Q(y : k-l) + Q(z : k-I» (8)

where the maximum is taken over all pairs of non
negative integers y,z such that y+z+1 = x, Y � z, and

k-I . d . h . h h d 'd f (8) . y � 2 • By �n uct�on t e r�g t- an s� e 0 �s a
lower bound for 0 . (x+l,k). The case in (8) of x = y 1m�n
corresponding to xI = 0 in (7) is OK by Lemma I (b).
To prove (8) we consider four cases, according to
the last bits of y and z.

Case I : y : k-I = y'I, z : k-I = z' I, and x : k = x'l.
In this case (8) is true by lemma 2, since we know by

induction that Q(�) � 2Q(y') + Q(�').
Case 2 : y : k-I = y'O, z : k-I = z'I, and x : k = x'o. If
p(x') � 2p(y') then (8) is true since it is equivalent
by lemma; 2 and 3 to

3Q(x'-I) + 2p(x') � 6Q(�) + 4p(y') + 3Q(�'),

but we know by induction that Q�x'-I) � 2Q(�)+Q(�')
atherwise if p(x') > 2p(y') we use the fact that (8)
says

3Q(�') - p(x') � 6Q(y') - 2p(y') + 3Q(�')
and we know that Q(�') � 2Q(y') + Q(�') by induction.

Case 3 : y : k-I = y'lt z : k-I = Z'Ot and x : k = x'a.
Depending on the truth or falsity of p(x') � p(z')
we use induction and the fact that (8) is implied by
either

or
3Q(x'-I) + 2p(x') � 6Q(y') + 3Q(z'-I) + 2p(z')
3Q(�') - p(x') � 6Q(y') + 3Q(�') - p(z').

Case 4 : y : k-I = y'O, z : k-I = z'o, and x : k = x'l. If
p(y') � p(z') we use induction and the fact that (8) is
implied by

3Q(�') � 6Q(y') - 2p(y') + 3Q(z'-I) + 2p(z').
Otherwise we use the fact that (8) is implied by

3Q(x') � 6Q(L2) + 4p(y') + 3Q(.!.') - p(z').

This completes the proof that Q(x : k) = �in(x+l,k).

Showing Q(Bi) = �in(2k-w,k) only if Bi = q({O,I}k) for

some qE�.

We need only that (8) holds with equality for

2k-w I 1 'f . h" l' h x - on y 1 Y = z, S1nce t 1S 1mp 1es t at
Q(B.) > 0 . (2k-w,k) if B. is not of the form q({O,I}k) 1 U1n 1
for qEO . To see this, let B. = OC u

� k-I 1
c,n c {O,I} • Then note that if Bi

ID, for
'" q ({ 0, J} k) for

some qE�l' then either Ici > 0, Inl > 0, and
Icl '" Inl ; or Ici = Inl but at least one of C, n is

k-I not of the form q({O,I}) for any qE�_I'
w k-w Now x : k = ° 1 • If Y = z, then (8) holds with

equality by Lemma I. To show (8) holds with equality
k-w-I k-w-I only if y = z, suppose y = 2 + t-I and z = 2 -t-I

for any t, O<t<2k-w-I. Then (8) holding with strict
inequality says

Q(Owlk-w) < 2Q(y : k-l) + Q(z : k-I)
or

or
k-w Q(_O_I _) < Q(y : k-w+I) + Q(z : k-w).

k-w-I Subtracting 2 from both x and y we get that (8)
means

k-w-I k-w-I Q(OI) < Q(t-I : k-w) + Q(2 -t-I : k-w).

It is simpler to note that the general statement.
Q(x : k) < Q(t-I : k) + Q(x-t : k)

is always true; in fact, it is implied directly by
(8), lemma I, and the fact that Q(x-t : k) is always
positive. This completes our proof that Q(B.)=�. (2k�k)

k 1 1n
only if Bi = q({O,I}) for some qE�, and also finishes
our proof of theorem I. 0

While theorem 1 only counted queries in Q, the same
result "holds if we count queries in Qs'
Theorem 2 : Let h and b be as in theopem 1. Then A (h)

s
is minimal fop O<s<k if and only if each block B. is

a q({o, n
k

) fop some qEQ •

1.-

w
This can't be asserted in an "iff" manner for s = 0

or s = k, for which A (h) = b and A (h) = I independent s s
of h.

98

Theorem 2 can be proved in the same manner as
theorem I. We note here the differences, using

Q (B.) and 0 , (x,k) to count queries in Qs rather s 1 'lInn, s
than Q.
Lemma 4. (a) Qo(!) = I, for

(b) Qs (nullstring)
(c) Q (Ox) s - Qs (�)

all x.

all x.
° for s;:,1.

+ Qs-I (�), for s<! I and

(d) Qs(l!) = Qs(OI Ixl) + Qs_l(x), for s;:,1
and all x.

zk Lemma 5. Qs(�)-Qs(x-I) = (k-s)' where zk denotes the
number of zeros in x and Ixl = k.
Lemma 6. Qs (�) = 2Qs_1 (�) + Qs (?!.) •

Lemma .7. O . (x,k);:,max(O . (x ,k-I)+O. (x ,k-I) u1n,s u1n,s 0 u1n,s 0

+ o . I(xl,k-I» u1n,s-
where the maximum is taken over all pairs of non
negative integers xo,xl such that xo+xl = x, Xo ;:, XI
and x � 2k-l. o

The proofs of these lemmas are omitted here (see
[10). The proof of theorem 2 then proceeds along the
same lines as that of theorem I ; with (8) being
replaced by
Qs(x : k)�max(Qs(y : k-I)+Qs_l(y : k-I)+Qs_I(�» '

We omit details here of the proof, as it varies little
from the proof of (8). The "only if" portion of the
proof is also similar, except that the inductive
hypothesis may have to be applied more than once (for
varying s values).

Calculation of A (h).
s

Now that theorems I and 2 tell us what the optimal
balanced hash functions h : {O,I}k +{I, . • • ,b 2w} are
like, we can calculate As(h) easily, using the optimal
h from Corollary I to theorem 1 (using the first w bits

k of xE{O,I} as the hash value). We get

A (h) = (k)-I I (�)(k�) 2w-i ;:, bl-s/k
s s . 1 S-1 Ol!:1�S

where the first sum considers the ways in which i of
the s specified bits fall in the first w positions

w-i when this happens 2 buckets must be searched. The
inequality is a special case of a mean value theorem

) I-s/k . (theorem 59 of [5 J • In fact, b 1S a very good
approximation for A (h), as long as w is not too small. s
Thus, for example, whenever half of the bits are
specified in the partial match query, we would expect
to examine about � buckets.

This work performed decreases exponentially with the

number of bits s specified in the query. We conjecture
that no search algorithm utilizing the same amount of
storage space for representing the file F can do
signif ic.antly better. This conj ecture is supported by
an analysis of a digital-tree search algorithm for the
same problem EIIJ.

4. The worst-case number of buckets searched

The worst-case behavior of the hash function of
Corollary I is obviously poor ; if none of the specified
bits occur in the first w positions then every bucket
must be searched. In this section we fi nd that other
optimal average-time hash functions exist which have
much improved worst-case behavior, often approximately
equal to the average behavior. We also consider a
simpler strategy involving storing each record in
several locations.

To obtain good worst-case behavior W (h) for s
h: {O,L·k

-+ {I, ... , b = 2w}, the hash function hex)
must depend on all of the bits of x, so that each
specified bit contributes approximately equally and
independently towards decreasing the number of buckets
searched. We shall also restrict our attention to hash
functions satisfying the conditions of theorems I and 2
so that optimal average time behavior is ensured. While
we have no proof that these block shapes are necessary
for optimal worst-case behavior, the fact that Ws(h) is
bounded below by As(h) makes it desirable to keep As(h)
minimal.
An example

Let us consider by way of introduction an example
with k ,= 4, w = 3. The following table describes an
interesting hash function h ; row i describes the

4 query qEQ3 such that B. = q({O,I}). Thus h(OIIO) = 6
1 { }4 . d . . and h(llI0) = 4, each x€ 0,1 1S store 1n a un1que

bucket.

Bit posi don

2 3 4

0 0 * 0
2 0 0 *

3 * 0 0
Bucket 4 0 *
address 5 *

6 0 *

7 * 0
8 0 * 0

Table 1. A hash function 4 h : {O,J} -+ {I, . .. , 8}

99

This can be interpreted as a perfect matching on
the Boolean 4-cube, as indicated in Figure I, since
each block contains two adjacent points and distinct
blocks are disjoint. In general we have the problem
of packing {O, I}k with k-w dimensional subspaces.

Whereas the hash function of Corollary I would
have all it's *'s in the fou�th column, here the *'s
are divided equally among the four columns. As: a
result we have WI(h) = 5 instead of 8. For example,
we need only examine buckets 1,4,5,6 and 7 for the
query **1*. Table 2 lists W (h) and rA (h)l for s s
0�s�4 ; we see that we have reduced Ws(h) so that
W (h) =rA (h)1 no further reduction is possible. s s

OlIO

0000

s o 2 3 4

8 5 3 2

8 5 3 2

Table 2. W (h) and fA (h)l.
s s --

Definition and characteristics of ABD's.

0001

0111

Let us call a table such as table I an "associative
block design of type (k,w)", or an ABD(k,w) for short.
To be precise, an ABD(k,w) is a table with b = 2w rows
and k columns with entries from {O,I,*} such that

(i) each row has w digits and k-w *'s,
(ii) the rows represent disjoint subsets of {O,I}k.

That is, given any two rows there exists a column in
which they contain differing digits.
(iii) each column contains the same number b.(k-w)/k
of *'s.

Conditions (i) and (ii) ensure that As(h) is minimal,

by theorem 2. Condition (iii) attempts to restrict the
class of ABD's to those hash functions with good worst
case behavior Ws(h) by requiring a certain amount of
uniformity in the utilization of each bit by h. In fact,
(iii) implies that W1(h) is minimal. More stringent
uniformity conditions are conceivable, perhaps involving
the distribution of t-tuples within each t-subset of
columns, but (iii) alone is enough to make the construc
tion of ABD's a difficult combinatorial problem.

The following lemma follows more or less directly
from the definition.
Lemma S. An ABD(k,w)

(i) has exactly b.w/2k O's (or I's) in each column,
(ii) has exactly (w) rows which agree in exactly in u u k positions with any record x€{O,I} , for osusw,

(iii) requires that k,w satisfy

or

k(b .w)
2

� (b)
2k

2

k < w(b)
W - 2" b-I . (9)

Part (i) implies that bw/2k must be integral, part
(ii) (taking x = Ok) tells us how many rows have exactly
u zeros, and part (iii) implies that to achieve large
record length/bucket address length ratios k/w we must
have relatively large values for w. The lemma implies
that for ks20 the possible values of (k,w), k # w, for
which an ABD might exist are :
(4,3),(S,w) for 4sws7, (10,5),(12,6),(12,9),(14,7),
(16,w) for 6swsl5, (IS,3t) for 2sts5, (20,10) and
(20,15). An ABD(S,4) has been shown not to exist by
extending lemma S (iii) slightly.

ABD Construction techniques.
While ABD's closely resemble balanced incomplete

b lock des igns and other combin:a tor ial s truc tureS, it
appears that the existence of ABD's is not implied by
the existence of these other objects in any straight
forward manner. We therefore present here several direct
construction techniques which provide infinite classes
of ABD's. The general question of the existence of an
ABD of arbitrary type (k,w) seems to be extremely
difficult ; the positive nature of the very partial
results obtained here suggests however that ABD's are
not scarce.

We first present a simple infinite class of ABD's.
The construction here is due to Ronald Graham. Franco
Preparata has discovered another construction for a

100

class of the same parameters, based on cyclic BCH
error-correcting codes [9J.

Theorem 3. An ABD(2
t

.2
t

-l) exists for t�2.

Proof. We extend our notation for an ABD : a row
containing r "-"'s will represent 2r rows of the actual
ABD obtained by independently replacing each - with
a 0 or I: The construction has two parts :

(i) Rows 1 to t+1 have -'s in positions t+2 to k.
Row i for ISist+ 1 has its star in column i ; the
remaining columns contain digits. (For example,
columns I to t+1 of these rows might contain cyclic

t-I shifts of *10 .).
(ii) Row i for m+2sis2k-m-1 contains digits in columns

1 to m+I, a * in column m+I+L(i-m)/2J, and -'s else-
where. The digits used are arbitrary except they must
satisfy part (ii) of the ABD definition. It is easy
to check that this is an ABD.

We present in table 3 an ABD(S,7) (t=3) constructed
this way.

2 3 4 5 6 7 S

* 0 0
2 0 * 0
3 0 0 *
4 0 0 *
5 0 0 0 0 *
6 0 0 *
7 0 *
S 0 0 *
9 0 *

10 0 *
II 0 *
12 *

Table 3. An ABD(S,7).

Graham has also constructed an ABD(16,13) with a
similar two-part method.

The ABD's of theorem 3, while interesting as a
solution to a combinatorial problem, are essentially
useless as hash functions since the number of buckets
is unacepptably large. We wish to have ABD's such that
the ratio k/w does not tend to I. The following
theorem does just that.
Theorem 4. Given an ABD(k.w) and an ABD(k'.w') such

that k/w = k'/w'. one can constpuct an ABD(k+k'.w+w').

Proof : For each possible pair of rows (R I,R2) with
RI €ABD(k,w), R2 ABD(k',w') let the concatenation
RI R2 be a row of the ABD(k+k',w+w·). This is easily
shown to be a legal ABD. 0

Theorem 4 allows us to construct an infinite family
of ABD's of type (4t,3t), for t�I, using the ABD of
table I. This is approaching utility (an ABD(16,12) is
conceivably useful, say) but we need "starting" designs
with large k/w to obtain a family with large k/w. On
the other hand we know by lemma 8 (iii) that designs
with large k/w must have k at least 2(k/w)2 approxima
tely. Unfortunately, these tables get rapidly unmana
geable by hand. Computer searches for an ABD(8,5) or an
ABD(IO,5) also ran out of time before finding any. The
question as to whether ABD(k,w)'s existed with k/w>4/3
thus remained open until the following theorem, showing
that k/w can be arbitrarily large, was discovered.

Theorem 5. Given an ABD(k,w) and an A BD(k',w') one can

construct an ABD(kk',ww').

w(w'-I) .Proof : Each row R of the first ABD generates 2
rows of the··resultant ABD, as follows. The set of rows
of the ABD(k',w') is arbitrarily divided into two equal
sized subsets, Ao and AI' Each character x of R is
replaced by a string of k' characters : if x = *,x is

k' replaced hy * , otherwise x is replaced by some row
in Ax' The w digits of R are replaced independently in
all possible ways by rows from the corresponding sets
Ao and AI'

ww' This generates a table with 2 rows of length kk',
each row has (k-w)k' + w(k'-w') = kk'-ww' *'s. Any
two �ows of the resultant ABD must contain differing
digi!s in at least one column since rows replacing
differing digits must differ, or if the two rows were
generated from the same row of the first design, then
one of the digits r!,!placed will have been replaced by
two (differing) rows from the second ABD. The number

,
of *'8 in each column turns out to be 2ww (kk'-ww')/kk',
as required, so that we have created an ABD(kk',ww'). 0

The preceding theorem allows us to construct an
ABD(4t,3t) for t�l, for example, from our ABD(4,3).
While this does provide large k/w designs, they are
quite likely not the smallest designs for the given
ratio, since by (9) we might hope to have w grow linear
ly with (k/w), whereas here it grows like
(k/w)log3/4(3)

> (k/w)4. At present, however, it is
our only way of constructing large k/w designs.
Analysis of ABD search times.

Let 11S examine the worst-case number of buckets
examined Ws(h) for hash functions associated with the
ABD's of the last section.

101

Consider first the hash function h associated with
an ABD(k+k',w+w') which was created by the concatena
tion (theorem 4) of an ABD(k,w) and au ABD(k',w') (with
associated hash functions g and g', respectively). Then

max W (g).Wv(g')·
u+v=s u

for O��+k', O��, O*�'. For example, the ABD(8,6)
created from two of our ABD(4,3)'s has Ws(h) as in
table 4.

s o 2 3 4 5 6 7 8

W (h) s 64 40 25 16 10 6 4 2

64 40 25 15 9 6 4 2

Table 4. Performance of an ABD(8,6).

We see that the ABD(8,6) does nearly as well as
possib�e. One can show that if Wu(g) = Au(g) then
Ws(h) = As(h), where h is the concatenation of m copies
of the ABD of g, for m�l. So concatenation preserves
optimal and near-optimal worst-case behavior. (The
slight discrepancy of table 4 is caused by the non
convexity of 10g(Ws(h» of table 2 at s = 3.).

The corresponding worst-case analysis for those
ABD's constructed by the "insertion" operation of
theorem· 5 is much more difficult to work out.,It
seems the worst-case here occurs when the specified
bits occur together in blocks corresponding to the
digits of the first ABD (of type(k,w» used in the
construction.

Under this assumption (for which I have no proof)
the worst-case behavior of an ABD(16,9) created from
two of our ABD(4,3)'s can be calculated to be as given
in table 5.

s o 2 3 4 5 6 7 8
Ws(h) 512 368 272 224 176 116 76 56 36

fAs(h)l 512 368 263 186 131 91 63 43 30

s 9

Ws(h) 33

r As (h) 1 20

10 II

24 16

14 9

12 13 14 IS

8 5 3 2

6 4 3 2

Table 5. Performance of an ABD(16,9)

16

We see that while Ws(h) approximates As(h) reasonably
well, performance has been degraded somewhat. We
conjecture that better ABD(16,9)'s exist. (It is a
situation reminiscent of the fact that recursive or
systematic constructions of error-correcting codes
tend not to work out as well as a random code would).

While it is not too difficult to calculate W (h) for s
small ABD's constructed by insertion (assuming that our

bit records, which uses c.IFI.k bits of storage to
represent F, must examine at least (c.IFI.k)l-s/k

conjecture about the nature of the worst-case is correct), bits (approximately) of that representation in order
the asymptotic analysis seems difficult. In any case the to calculate the response to a query q€Qs' both on
ABD's so constructed yield large k/w designs with signi
ficantly improved Ws(h).

Thus ABD's are seen to permit partial-match searches
to be performed optimally (with respect to the average
retrieval time) while greatly reducing the worst-case
retrieval time. The disadvantages are that it is
difficult to construct (or even to show the existence of
of) ABD's of an arbitrary type (k,w). and also that the
calculation of the hash function h itself becomes
sufficiently complicated so that using ABD's would be
justified only when the file is stored on slower
secondary storage.

In the next section we see how the complications
of ABD's can be avoided at the cost of extra storage
utilization.

An alternative solution.

By using moderate amounts of extra storage one
can achieve very good worst-case retrieval times. The
idea is very simple. Suppose we have enough storage to
store each record m times. Then we create m bucket
systems. Each record is divided into m fields of kim
bits each, the i-th field is used directly as the
bucket address for the record in the i-� system.

If b = 2w (where w = kim) is the number of buckets
per system, then for any query q Qs we use the bucket
system corresponding to the field of q having the most
bits specified to perform the search. Since this field
must have at least fs/ml = fws/kl bits specified,
we have

W (h) � 2w- fws/kl
s

This compares very favorably with the lower bound of
I-s/k b for As(h) for a single balanced bucket system.

The average behavior of this scheme is not easy to
compute, but A (h) approaching W (h) seems likely, s s
especially when w is large.

Variations of the scheme exist, using an ABD for
each bucket system, etc . . •

5. Conclusions.

We see that generalized hash-coding algorithms
permit partial-match searches to be performed
efficiently, both on the average and in the worst
case. We conjecture that these algorithms do about
as well as possible, in the sense that any algorithm
performing partial match searches on a file F of k

102

the average and in the worst-case.

In addition to this conjecture, many interesting
open problems remain, in particular the existence
question for ABD's of arbitrary type (k,w), and the
appropriate generalizations of theorems I and 2 for
more realistic situations where queries h�ve differing
probabilities, etc . • • Other less stringent definitions
of an ABD are also worth consideration.

The reader is referred to [II J for a more detailed
discussion of these issues, for proof details omitted
here due to lack of space, and an analysis of a
digital-tree partial-match search problem. (Also given
there is a proof of an analogue of theorems I and 2
for best-match (rather than partial-match) queries.).

Acknowledgements

I would like to thank the many people who were
particularly helpful to me while this research was
being carried out; in particular Prof. Robert Floyd,
Prof. Donald Knuth, Prof. David Klarner, Ronald
Graham N.G. de Bruijn, Malcom Newey, my parents and
Gail. I should also like to thank the National Science
Foundation, the Stanford Artificial Intelligence
Laboratory, and IRIA-Laboria for their support, and
Nicole Hornebeck for her speedy typing of this
manuscript.

Ref erences.

[IJ Abraham, C.T., S.P. Ghosh, and D.K. Ray
Chaudhuri. File Organization Schemes Based
on Finite Geometries, Information and

Control 12 (February 1968), 143-163.

[2J

[3J

[4J

Feldman, Jerome A and Paul D. Rovner. An
Algol-Based Associative Language. CACM 12
(August 1969), 439-449.

Gray. H.J. and N.S. Prywes. Outline for a
Multi-list organized system. Annual Meeting
of the ACM. Paper 41. Cambridge, Mass.
(1959). 7 pp.

Gustafson, Richard Alexander. A Randomized
Combinatorial File Structure for Storage
and Retrieval Systems. Ph.D. Thesis.
University of South Carolina (1969) 92 pp.

[5J Hardy, G.H., J.E. Littlewood, and G. Polya.
Inequalities. Cambridge University Press
(1959).

[6J Knuth, Donald E. The Art of Computer Program
ming 3 (Sorting and Searching). Addison
Wesley (1972).

[7J Minsky, Marvin and Seymour Papert. Perceptrons
An Introduction to Computational Geometry.
The MIT Press. (Cambridge, Mass. 1969).

[8J Minker, Jack. An Overview of Associative or
Content Addressable Memory Systems and a
KWIC index to the literature. Technical
Report TR-157. University of Maryland Computer
Computer Science Center. (College Park, Md:
June 197 I), 1-40 pp.

[9J Preparata, Franco Personal Communication.

[loJ Ray-Chaudhuri, D.K. Combinatorial Information
Retrieval Systems for Files. SIAM J. Appl.
Math. 16 (September 1968). 973-992.

[II] Rivest, Ronald L. Analysis of Associative
Retrieval Algorithms. Ph.D. Thesis,
Stanford University Computer Science
Report STAN-CS-74-145 (May, 1974). Also
available as IRIA Report # 54 (February
1974). A revised version to appear in
SIAM J. Computing.

[12] Welch, Terry A. Bounds on the information
Retrieval Efficiency of Static File
Structures. Project MAC Report MAC-TR-88.
MIT (June 1971). (Ph.D. Thesis) 163 pp.

103

