
ON SELF-ORGANIZING SEQUENTIAL SEARCH HEURISTICS

Ronald L. RIVEST.*

Abstract :

We examine a class of heuristics for maintaining a

sequential list in approximately optimal order with

respect to the average time required to search for a

specified element, assuming that we search for each

element with a fixed probability independent of pre

vious searches performed. The "move to front" and
"transposition" heuristics are shown to be optimal to

within a constant factor, and the transposition rule is

shown to be the more efficient of the two. Empirical

evidence suggests that transposition is in fact optimal

for any distribution of search probabilities.

Keywords : searching, self-organizing, list-processing,

heuristics.

We consider heuristics for maintaining a sequential

list in approximately optimal order, prove that the

"transposition" heuristic is more efficient that the

"move to front" heuristic analyzed by Knuth [2,pp. 398 -

399), and present experimental evidence that the

transposition heuristic is in fact optimal.

Suppose we have a set of n records RI,R2, • • • , Rn
which we list in an arbitrary order n, so that Ri is

in position n(i) for IsiSn. At each instant of time
we are presented with a key Ki and asked to retrieve
the associated record R . • We do so by examining in turn

1
each position of the list until Ri is found in position

n(i). This search costs n(i) units of time to perform.

Let us assume that eac.h key Ki is presented indepen

dently with probability Pi' The expected cost (average

search length) for a permutation n is then

cost(n) = :E Pin(i)
ISisn

(I)

We assume without loss of generality throughout that

Pi �Pi+1 for Isisn. Thus cost(n) is minimized when n

is the identity permutation, since the records are

then in order of decreasing probability of being

requested.
In practice the relevant probabilities p. are seldom

1
known a priori, so that the optimal ordering can not be

arranged in advance. A random 'initia1 arrangement can be

be expected to perform poorly, so we consider "se1f
organizing" schemes by which the initial ordering is
gradually transformed on the basis of experience into
* IRIA, 78150 Rocquencourt, France.

122

a hopefully less costly arrangement.

A "counter" scheme immediately springs to mind,

whereby we record the frequency fi of. requests for each

record R., and maintain the records in order of
1

dec�easing frequency. By the strong law of large numbers,

f. > f. to hold for at most a if p. > p. we can expect
1 J J 1

finite number of steps. Thus the counter scheme will

stabilize on the optimal ordering.

The asymptotically optimal counter scheme requires

extra memory space which, as Knuth remarks. could

perhaps be better used by employing npnsequentia1 search

techniques. If using extra memory for counters is
undesirable or not feasible, other self-organizing

heuristics are available which tend to keep the list

in near-optimal order.
The "move to front" heuristic is apparently of

unknown origin, although Schay and Dauer studied a

similar scheme [3). Using this heuristic. whenever a

record Ri is found in position n(i). the list is

rearranged by moving Ri to the front of the list and
moving the records in positions I • • • •• n(i)-I each down

one position. The permutation n becomes (I 2 • • • n(i»n.
the product of the cyclic permutation on the first n(i)

positions and n. Thus the records which are accessed

frequently will tend to stay near the front of the list.

while records infrequently accessed will drift towards

the end. While no stable ordering is achieved. we can

expect near-optimal orderings to occur with high

probability.

The average search time for this heuristic is
easily calculated. Let b(i.j) denote the asymptotic

probability that Ri is before Rj in the list. This will
be true at any time for which the most recent request

for Ri has occurred since the most recent request for
R . • In this case there exists a unique k such that the

J
preceding k requests have been a request for Rjfollowed

by k-I requests for records other than R. or R . •
1 J

Thus

The

the

b(i.j) = Pi ' :E
I!!:k<co

k-I (I-p.-p.)
1 J

Pi = ---
Pi + Pj

(2)

average search time is then
L " p.p. (3) . p (I + :E b(i.j»= 1+2 � 1 J

ISJsn j' I ' . . p. + p. SlSn IS1<JSn 1 J 'f'
result obtained 5yJKnuth [2. equation 6.1(17»).

This counts only the search time, we should approximately Proof : Consider the probability distribution p. = I/ k --- 1
double this if we wish to include the time to permute for I�i�k and Pi = 0 for k<i�n, for some k < n. Any set

the elements after each search. A linked-list represen- of permutations T satisfying (i) and (ii) above will

tation would allow these permutations to be made effi- have an asymptotic cost of (k+J)/ 2 since all of the

ciently, but the space used for pointers might better records with zero probability will move to the end of

be used for counters. the list and stay there. Any set of permutations T which

Let us consider how this scheme compares with the violates (i) will occasionally move a record with zero

optimal ordering. Under our assumption that Pi�Pi+1 probability in front of one with non-zero probability,

for I�i�n, the minimal cost is

L p . • j
I�j�n J

The ratio of (3) to (4) is then

1 + 2

+

I�j�n

I
I�j�n

+ 2 x

+ x

p . • J I�i<j

p. • (j - I) J

where x

Pi
p. + p.

1 J

I
I�j�n

I n-I 2 (I - --) since x < -2- .
n+1

p. • (j - I) J

(4)

(5)

(6)

(7)

Thus the "move to front" scheme never does more than

twice the work done with the optimal ordering. This

can be a considerable savings over a "random" initial

ordering (average cost = (n+I)/ 2) for typical proba

bility distributions.For example, the optimal average
.-1 -I cost for Zipf's distribution Pi = 1 Hn (where Hn

is the n-th harmonic number) is just n H-I, so that n
searching is O(ln(n» times faster that with a random

orderil�. For Zipf's law Knuth shows in addition that

with the "move to front" heuristic approximately 1 . 38 6

times the optimal cost i s incurred asymptotically as

n -+ 00.

We would like to know if we can do better. The

generalized version of the above heuristic is to apply

some permutation T. to the list after finding the J
desired record in position j. I s there a better choice

for the T'S ? We show that there is. We conjecture that

the "transposition" heuristic is in fact optimal (that

is, the best choice of T'S for any probability distri

bution). The transposition heuristic exchanges the

desired record with the immediately preceding record

if the desired record heads the list nothing is done.

The following theorem gives a partial characterization

of an optimal set of T'S.

�em I. An optimaZ set of permutations Tj for

l�j�n n'OA.st have the property that each T
j :

(i) Zeaves positions j+l to n of the list fixed, and

(ii) mcwes the record in position j to some position

jl' < j.

and thus have greater average cost. Any set of permuta

tions T which satisfies (i) but not (ii) will not be

able to move any records out of positions j such that

T.(j) = j, so that the optimal ordering for our parti-J
cular probability distribution can not be reached, again

incurring a higher cost. 0
Note that we have not shown that an optimal set of

permutations exist (that is. optimal for any probability

distribution). but only what it must be like if it does.

The above theorem also implies that under an optimal

set of permutations every possible ordering of the

records which have non-zero probability will in fact

occur with non-zero probability.

The analysis of the average cost of an arbitrary set

of permutations T is a straightforward if tedious task

for any given set of probabilities p., We consider the
1

finite Markov chain where each state is one of the n!

possible orderings of the set of records. The transi

tion probabilities t .. for the Markov chain are deter-lJ
mined by the particular set of probabilities p and the

permutations T used ; each t . • will either be zero or lJ
else one of the p's. The stationary (asymptotic) pro-

babilities of each state are the elements of the

eigenvector of the matrix T = {t . . l I�i�n! and I�j�n!} lJ
corresponding to the eigenvalue I (see [IJ). The cost

is then easily calculated from the formula

I Prob('II) . I p (') • i
states'll I� i� n 'II 1 (8)

As an example. consider a file of three records RI = A.

R2
= B, and R 3 = C with respective probabilities of

being requested of a. b. and c. Figure I shows the

state diagram for the Markov system which results from

using the transposition heuristic.

1 2 3

a

a

Figure I.

T=

The transition matrix T for this system is then

a a - - - b

b b a -

- c b b

c c b -

- a c c

c - a a

(9)

The eigenvector of T correspondipg to the eigenvalue

gives the stationary probabilities of this system.

While these probabilities are difficult to compute

symbolically as explicit functions of the variables a,

b, and c, for any particular values the eigenvector is

easily calculated. For example, if we take a =.6, b =. 3,

and c =. I we obtain

Prob (A B C) 0.5

Prob (A C B) 0. 1 67

Prob (B A C) 0.2 5

b

(II)

Prob(R. R. • • • R. R. • • • R
i) �I �2 �j+1 �j n

for l�j<n if Pk I 0 for l�k�n.

Proof : We note that if a set of state probabilities

obeys (II), then it is a stationary distribution. For

then we have

Prob(R R.)=p . • (Prob(R R.)+Prob(R. R R.» l.1 l.n �I l.1 �n �2 l.1 l.n
+ L p (12)

2 . i .. Prob(R R. R R.) �J<n J �I �j+1 l.j
l.n

which implies with (II) that p.

I
l.j+1

Prob(R R.)�. Prob(R . . • . R.). L p . . --l. l.n I-p.-p. �I �n 2 �j<n �j p. � I �2 l.j

Prob(R. . . . Ri). (13) �I n

We also note that the set of inequalities (II) is

Prob (B C A)

Prob(C A B)

Prob(C B A)

0. 041 7

0. 02 78

0.01 39

(1 0) consistent, since any sequence of transpositions

leading from some ordering TI of the records to another

ordering TI' will always yield the same ratio

The average search time for this system is 1 . 67, compa

red to 1 . 72 for the "move to front" heuristic with the

same record request probabilities.

The reader may have noticed the rather remarkable

relationship holding between the values in (1 0), given

in the following theorem.

Theorem 2 : Under the transposition heuristic the

stationary probabilities obey :

124

Prob(TI) / Prob(TI'). Since (II) is consistent and

stationary, the stationary distribution must satisfy

(II) by the uniqueness of the stationary distribution. D

The preceding theorem allows us to write a rather

complicated expression for the average search time

using the transposition heuristic. Let I denote the n
identity permutation on n letters I (i) = i for I�i�n.

This is the optimal ordering under our assumption that

p(i) � p(i+l) for I�i�n. Let o(i,TI) denote the quantity

i - TI(i) for any permutation TI and I�i�n; this is the

number of places that R. is displaced from its optimal
�

position in rr. Then the cost of the transposition

heuristic is seen to be

(14)

where the first sum ranges over all permutations rr of

the n records. We also have the following formula for

Prob(I). n

Prob(I) =(I
n rr

1T <5 (i,IT) p.
�

) -I

We can now prove the following theorem.

(15)

Theorem 3 : The "tr>ansposition" heuristic is aZways

more efficient asymptoticaZZy than the "move to front"

heuristic], except for the case n = 2 or the case where

aZZ non-zero probabiZities p. are equaZ.
1-

Proof: Consider the probability b'(i,j) that Ri is

before R. under the transposition heuristic. We show
J

that b'(i,j) � b(i,j) for ISi<jsn, with equality holding

only for n = 2 or p. = p., where b(i.,j) is the corres-
� J

ponding probability for the "move to front" heuristic.

We then have
I Prob(Rk • • • �Ri Rk • • • Rk R.Rk . • Rk)

b' (i,j) k's 1 Z Z+I m J m+1 n-2

b'(j,i) I Prob(Rk • • • � R.Rk_
• • • � Ri� • . . �)

k's I Z J .Ot+1 m m+1 n-2

where the sums are taken over all permutations

k I' " ' , k
n-2 of the integer s I, 2, • . . , i-I, i + I, • • • ,

j - I, j + I, • • • , n. But this gives immediately from

theorem 2

b' (i,j) �

b'(j,i)

(p .�m-Z+I
. �

m�n -
p.

� (17)

ISZ<IDSn p.
J p.

J
with equality holding only if p. = p. or n = 2. When . � J
equality holds then b'(i,j) = p . /(p . + p.), the same

� � J
as (2). Otherwise we have b' (i,j) > b(i,j) w'hich by

the first part of (3) proves our theorem. 0
The preceding theorem is the main theoretical result

presented here. We conj ecture that the transp.osi tion

heuristic is asymptotically more efficient than any

other set of permutations for any probability distri

bution for the record requests. This conjecture is

intuitively appealing since the transposition heuristic

is the closest approximation obtainable to the optimal

counter scheme, in a certain sense. Note that an

element is advanced more than one position with the

counter scheme only in the case that two or more of

the preeeding counters are equal. This is highly

unlikely to happen often if all of the Pi's are
distinct. In all other cases the counter scheme either

125

performs a simple transposition or does nothing. The

transposition heuristic is also the heuristic obeying

(i) and (ii) of theorem I which does the least damage

to the previously established order, thus preserving

the most information. We are unfortunately lacking a

proof of this conjecture, however.

Externsive simulation results for 3snsl2 tend to

confirm this conjecture. For example, figure 2 plots

the asymptotic cost of rule Ai over the optimal cost

(4) for Zipf's distribution with n = 7 elements, where

rule A. is "move the desired record forward i places
�

in the list, or to the front of the list if it was

found in a position j<i'� Thus A
I

is the transposition

rule and A I is the move to front rule. The values n-
plotted were obtained by simulating the search and

rearrangement process for 5, 000 trials. A clear

superiority of the transposition rule over the other

rule is observed. While there are other rules possible

to consider here, we have only plotted values for

those rules which preserve the relative order of the

unrequested elements, an intuitively reasonable

feature.

For the case n = 4 all 7 2 sets of permutations T
satisfying (i) and (ii) of theorem I were examined

for several probability distributions. In every case

the transposition heuristic was the most efficient.

For example, with the geometric probability distribu

tion p : (8/15, 4/15, 2/15, 1/15) the average search

time varied between 1.94 and 2.24, with the transpo-

sition heuristic costing 1.94, the move to front

rule

T =
2

costing 2.06,

(� � � �), T 3

and the rule T I
I 23 4

= (3 2 I 4)' T4

(I 2 3 4) I 23 4
(I 2 3 4) costing 3 2 4 I

the most. The optimal cost for this system (given by

(4» is 1.73. These results were obtained by explicity

calculating the associated eigenvectors, instead of

performing a simulation, since there are only 24 states

to consider.

Conclusions.

The transposition heuristic outperforms the "move

to front" heuristic, and is perhaps the best candidate

for an optimal heuristic for any probability distribu

tion, given our assumption of the independence of

requests. (If there is high correlation between

sucessive requests, one can show that the "move to

front" heuristic is sometimes more efficient).

A potential application for this result is the

construction of list-processing systems such as LISP.

Here one typically has a large numbeL of names (atoms),

each associated witn a set of attribute-value pairs,

such as "value", "printname", "function definition",

and so on. A separate "property list" is usually

maintained for each name listing these attributes

and associated values. These property lists are

repeatedly searched for the various variable values and

function definitions during execution, and there is

often. not enough storage available to consider using a

counter scheme. A dynamic optimization heuristic such

as the transposition rule could be easily inserted

into such a system, and would hopefully reduce the

running time of an average program by a significant

percentage at no extra cost in terms of storage. Many

other similar applications are imaginable in the same

kind of system where one has chosen a sequential list

representation of the data for reasons of programming

convenience ; yet one wishes to reduce the search

time at no extra cost in storage utilization. The

transposition heuristic is an appealing choice in

these situations due to its ease of implementation

and demonstrated efficiency.

It remains to be shown that the transposition heuris

tic is in fact optimal under our independence assump

tions, or to find a counter-example to this conjecture.

Another open problem is to examine the effects of

relaxing the independence assumption upon the relative

Acknowledgement.

I would like to thank Prof. Donald E. Knuth for his

comments on an earlier version of this paper, and for

inspiring me to work on this problem. I have also

learned from Knuth that Don Coppersmith (IBM Research

at Yorktown Heights) has some unpublished independent

results of a similar nature.

References.

[I J Kemeny, John G. and J. Laurie Snell. Finite �
Chains. D. Van Nostrand Co. , Inc. Prince

ton, New Jersey (1960).

[2J Knuth, Donald E. The � of Computer Programming

(volume 3 : Sorting and Searching).

Addison-Wesley Publishing Co. Reading,

Mass. (1973).

[3J Schay, G., Jr. , and F. W. Dauer. A Probabilistic

Model of a Self-Organizing File System.

SIAM � � Math. I S (1967), 874-888.

efficiency of various heuristics.
n = 7

gf
''';
I-<
QJ

"d
I-<
o

.-<

�
''';
.j.J
P
o

"'"
o
.j.J

1.20

til 1.10
o

u
--

Zipf's distribution

Move to

� transposition rule

�
1.00 i�.-------'r-------r-------,- I I

AI A
2 A

3 A4 AS

Figure 2. Relative efficiency of rules A I
'

. . . , A6':-

126

I
A6

