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Abstract : 

We examine a class of heuristics for maintaining a 

sequential list in approximately optimal order with 

respect to the average time required to search for a 

specified element, assuming that we search for each 

element with a fixed probability independent of pre

vious searches performed. The "move to front" and 
"transposition" heuristics are shown to be optimal to 

within a constant factor, and the transposition rule is 

shown to be the more efficient of the two. Empirical 

evidence suggests that transposition is in fact optimal 

for any distribution of search probabilities. 

Keywords : searching, self-organizing, list-processing, 

heuristics. 

We consider heuristics for maintaining a sequential 

list in approximately optimal order, prove that the 

"transposition" heuristic is more efficient that the 

"move to front" heuristic analyzed by Knuth [2,pp. 398 -

399), and present experimental evidence that the 

transposition heuristic is in fact optimal. 

Suppose we have a set of n records RI,R2, • • • , Rn 
which we list in an arbitrary order n, so that Ri is 

in position n(i) for IsiSn. At each instant of time 
we are presented with a key Ki and asked to retrieve 
the associated record R . •  We do so by examining in turn 

1 
each position of the list until Ri is found in position 

n(i). This search costs n(i) units of time to perform. 

Let us assume that eac.h key Ki is presented indepen

dently with probability Pi' The expected cost (average 

search length) for a permutation n is then 

cost(n) = :E Pin(i) 
ISisn 

(I) 

We assume without loss of generality throughout that 

Pi �Pi+1 for Isisn. Thus cost(n) is minimized when n 

is the identity permutation, since the records are 

then in order of decreasing probability of being 

requested. 
In practice the relevant probabilities p. are seldom 

1 
known a priori, so that the optimal ordering can not be 

arranged in advance. A random 'initia1 arrangement can be 

be expected to perform poorly, so we consider "se1f
organizing" schemes by which the initial ordering is 
gradually transformed on the basis of experience into 
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a hopefully less costly arrangement. 

A "counter" scheme immediately springs to mind, 

whereby we record the frequency fi of. requests for each 

record R., and maintain the records in order of 
1 

dec�easing frequency. By the strong law of large numbers, 

f. > f. to hold for at most a if p. > p. we can expect 
1 J J 1 

finite number of steps. Thus the counter scheme will 

stabilize on the optimal ordering. 

The asymptotically optimal counter scheme requires 

extra memory space which, as Knuth remarks. could 

perhaps be better used by employing npnsequentia1 search 

techniques. If using extra memory for counters is 
undesirable or not feasible, other self-organizing 

heuristics are available which tend to keep the list 

in near-optimal order. 
The "move to front" heuristic is apparently of 

unknown origin, although Schay and Dauer studied a 

similar scheme [3). Using this heuristic. whenever a 

record Ri is found in position n(i). the list is 

rearranged by moving Ri to the front of the list and 
moving the records in positions I • • • •• n(i)-I each down 

one position. The permutation n becomes (I 2 • • • n(i»n. 
the product of the cyclic permutation on the first n(i) 

positions and n. Thus the records which are accessed 

frequently will tend to stay near the front of the list. 

while records infrequently accessed will drift towards 

the end. While no stable ordering is achieved. we can 

expect near-optimal orderings to occur with high 

probability. 

The average search time for this heuristic is 
easily calculated. Let b(i.j) denote the asymptotic 

probability that Ri is before Rj in the list. This will 
be true at any time for which the most recent request 

for Ri has occurred since the most recent request for 
R . •  In this case there exists a unique k such that the 

J 
preceding k requests have been a request for Rjfollowed 

by k-I requests for records other than R. or R . • 
1 J 

Thus 

The 

the 

b(i.j) = Pi '  :E 
I!!:k<co 

k-I (I-p.-p.) 
1 J 

Pi = ---
Pi + Pj 

(2) 

average search time is then 
L " p.p. (3) . p (I + :E b(i.j»= 1+2 � 1 J 

ISJsn j' I '  . . p. + p. SlSn IS1<JSn 1 J 'f' 
result obtained 5yJKnuth [2. equation 6.1(17»). 



This counts only the search time, we should approximately Proof : Consider the probability distribution p. = I/ k --- 1 
double this if we wish to include the time to permute for I�i�k and Pi = 0 for k<i�n, for some k < n. Any set 

the elements after each search. A linked-list represen- of permutations T satisfying (i) and (ii) above will 

tation would allow these permutations to be made effi- have an asymptotic cost of (k+J)/ 2 since all of the 

ciently, but the space used for pointers might better records with zero probability will move to the end of 

be used for counters. the list and stay there. Any set of permutations T which 

Let us consider how this scheme compares with the violates (i) will occasionally move a record with zero 

optimal ordering. Under our assumption that Pi�Pi+1 probability in front of one with non-zero probability, 

for I�i�n, the minimal cost is 

L p . •  j 
I�j�n J 

The ratio of (3) to (4 ) is then 

1 + 2 

+ 

I�j�n 

I 
I�j�n 

+ 2 x 

+ x 

p . •  J I�i<j 

p. • (j - I) J 

where x 

Pi 
p. + p. 

1 J 

I 
I�j�n 

I n-I 2 (I - --) since x < -2- . 
n+1 

p. • (j - I) J 

(4) 

(5) 

(6) 

(7) 

Thus the "move to front" scheme never does more than 

twice the work done with the optimal ordering. This 

can be a considerable savings over a "random" initial 

ordering (average cost = (n+I)/ 2 )  for typical proba

bility distributions.For example, the optimal average 
.-1 -I cost for Zipf's distribution Pi = 1 Hn (where Hn 

is the n-th harmonic number) is just n H-I, so that n 
searching is O(ln(n» times faster that with a random 

orderil�. For Zipf's law Knuth shows in addition that 

with the "move to front" heuristic approximately 1 . 38 6  

times the optimal cost i s  incurred asymptotically as 

n -+ 00. 

We would like to know if we can do better. The 

generalized version of the above heuristic is to apply 

some permutation T. to the list after finding the J 
desired record in position j. I s  there a better choice 

for the T'S ? We show that there is. We conjecture that 

the "transposition" heuristic is in fact optimal (that 

is, the best choice of T'S for any probability distri

bution). The transposition heuristic exchanges the 

desired record with the immediately preceding record 

if the desired record heads the list nothing is done. 

The following theorem gives a partial characterization 

of an optimal set of T'S. 

�em I. An optimaZ set of permutations Tj for 

l�j�n n'OA.st have the property that each T
j : 

(i) Zeaves positions j+l to n of the list fixed, and 

(ii) mcwes the record in position j to some position 

jl' < j. 

and thus have greater average cost. Any set of permuta

tions T which satisfies (i) but not (ii) will not be 

able to move any records out of positions j such that 

T.(j) = j, so that the optimal ordering for our parti-J 
cular probability distribution can not be reached, again 

incurring a higher cost. 0 
Note that we have not shown that an optimal set of 

permutations exist (that is. optimal for any probability 

distribution). but only what it must be like if it does. 

The above theorem also implies that under an optimal 

set of permutations every possible ordering of the 

records which have non-zero probability will in fact 

occur with non-zero probability. 

The analysis of the average cost of an arbitrary set 

of permutations T is a straightforward if tedious task 

for any given set of probabilities p., We consider the 
1 

finite Markov chain where each state is one of the n! 

possible orderings of the set of records. The transi

tion probabilities t .. for the Markov chain are deter-lJ 
mined by the particular set of probabilities p and the 

permutations T used ; each t . •  will either be zero or lJ 
else one of the p's. The stationary (asymptotic) pro-

babilities of each state are the elements of the 

eigenvector of the matrix T = {t . . l I�i�n! and I�j�n!} lJ 
corresponding to the eigenvalue I (see [IJ). The cost 

is then easily calculated from the formula 

I Prob('II) .  I p ( ' ) • i 
states'll I� i� n 'II 1 (8 ) 

As an example. consider a file of three records RI = A. 

R2 
= B, and R 3 = C with respective probabilities of 

being requested of a. b. and c. Figure I shows the 

state diagram for the Markov system which results from 

using the transposition heuristic. 

1 2 3 



a 

a 

Figure I. 

T= 

The transition matrix T for this system is then 

a a - - - b 

b b a -

- c b b 

c c b -

- a c c 

c - a a 

(9) 

The eigenvector of T correspondipg to the eigenvalue 

gives the stationary probabilities of this system. 

While these probabilities are difficult to compute 

symbolically as explicit functions of the variables a, 

b, and c, for any particular values the eigenvector is 

easily calculated. For example, if we take a =.6, b =. 3, 

and c =. I we obtain 

Prob (A B C) 0.5 

Prob (A C B) 0. 1 67 

Prob (B A C) 0.2 5 

b 

(II) 

Prob(R. R. • • •  R. R. • • •  R
i ) �I �2 �j+1 �j n 

for l�j<n if Pk I 0 for l�k�n. 

Proof : We note that if a set of state probabilities 

obeys (II), then it is a stationary distribution. For 

then we have 

Prob(R . . . .  R. )=p . •  (Prob(R . ... R. )+Prob(R. R . . . .  R.» l.1 l.n �I l.1 �n �2 l.1 l.n 
+ L p (12 ) 

2 . i .. Prob(R . . . .  R. R . . . .  R. ) �J<n J �I �j+1 l.j 
l.n 

which implies with (II) that p. 

I 
l.j+1 

Prob(R . . . .  R. )�. Prob(R . . • .  R. ). L p . .  --l. l.n I-p.-p. �I �n 2 �j<n �j p. � I �2 l.j 

Prob(R. . . .  Ri ). (13) �I n 

We also note that the set of inequalities (II) is 

Prob (B C A) 

Prob(C A B) 

Prob(C B A) 

0. 041 7 

0. 02 78 

0.01 39 

(1 0) consistent, since any sequence of transpositions 

leading from some ordering TI of the records to another 

ordering TI' will always yield the same ratio 

The average search time for this system is 1 . 67, compa

red to 1 . 72 for the "move to front" heuristic with the 

same record request probabilities. 

The reader may have noticed the rather remarkable 

relationship holding between the values in (1 0), given 

in the following theorem. 

Theorem 2 : Under the transposition heuristic the 

stationary probabilities obey : 
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Prob(TI) / Prob(TI'). Since (II) is consistent and 

stationary, the stationary distribution must satisfy 

(II) by the uniqueness of the stationary distribution. D 

The preceding theorem allows us to write a rather 

complicated expression for the average search time 

using the transposition heuristic. Let I denote the n 
identity permutation on n letters I (i) = i for I�i�n. 

This is the optimal ordering under our assumption that 

p(i) � p(i+l) for I�i�n. Let o(i,TI) denote the quantity 

i - TI(i) for any permutation TI and I�i�n; this is the 



number of places that R. is displaced from its optimal 
� 

position in rr. Then the cost of the transposition 

heuristic is seen to be 

(14) 

where the first sum ranges over all permutations rr of 

the n records. We also have the following formula for 

Prob(I ). n 

Prob(I ) =(I 
n rr 

1T <5 (i,IT) p. 
� 

) -I 

We can now prove the following theorem. 

(15) 

Theorem 3 : The "tr>ansposition" heuristic is aZways 

more efficient asymptoticaZZy than the "move to front" 

heuristic], except for the case n = 2 or the case where 

aZZ non-zero probabiZities p. are equaZ. 
1-

Proof: Consider the probability b'(i,j) that Ri is 

before R. under the transposition heuristic. We show 
J 

that b'(i,j) � b(i,j) for ISi<jsn, with equality holding 

only for n = 2 or p. = p., where b(i.,j) is the corres-
� J 

ponding probability for the "move to front" heuristic. 

We then have 
I Prob(Rk • • •  �Ri Rk • • • Rk R.Rk . •  Rk ) 

b' (i,j) k's 1 Z Z+I m J m+1 n-2 

b'(j,i) I Prob(Rk • • •  � R.Rk_ 
• • •  � Ri� • . .  � ) 

k's I Z J .Ot+1 m m+1 n-2 

where the sums are taken over all permutations 

k I' " ' , k
n-2 of the integer s I, 2, • . .  , i-I, i + I, • • •  , 

j - I, j + I, • • •  , n. But this gives immediately from 

theorem 2 

b' (i,j) � 

b'(j,i) 

( p .�m-Z+I 
. � 

m�n -
p. 

� (17) 

ISZ<IDSn p. 
J p. 

J 
with equality holding only if p. = p. or n = 2. When . � J 
equality holds then b'(i,j) = p . /(p . + p.), the same 

� � J 
as (2). Otherwise we have b' (i,j) > b(i,j) w'hich by 

the first part of (3) proves our theorem. 0 
The preceding theorem is the main theoretical result 

presented here. We conj ecture that the transp.osi tion 

heuristic is asymptotically more efficient than any 

other set of permutations for any probability distri

bution for the record requests. This conjecture is 

intuitively appealing since the transposition heuristic 

is the closest approximation obtainable to the optimal 

counter scheme, in a certain sense. Note that an 

element is advanced more than one position with the 

counter scheme only in the case that two or more of 

the preeeding counters are equal. This is highly 

unlikely to happen often if all of the Pi's are 
distinct. In all other cases the counter scheme either 
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performs a simple transposition or does nothing. The 

transposition heuristic is also the heuristic obeying 

(i) and (ii) of theorem I which does the least damage 

to the previously established order, thus preserving 

the most information. We are unfortunately lacking a 

proof of this conjecture, however. 

Externsive simulation results for 3snsl2 tend to 

confirm this conjecture. For example, figure 2 plots 

the asymptotic cost of rule Ai over the optimal cost 

(4) for Zipf's distribution with n = 7 elements, where 

rule A. is "move the desired record forward i places 
� 

in the list, or to the front of the list if it was 

found in a position j<i'� Thus A
I 

is the transposition 

rule and A I is the move to front rule. The values n-
plotted were obtained by simulating the search and 

rearrangement process for 5, 000 trials. A clear 

superiority of the transposition rule over the other 

rule is observed. While there are other rules possible 

to consider here, we have only plotted values for 

those rules which preserve the relative order of the 

unrequested elements, an intuitively reasonable 

feature. 

For the case n = 4 all 7 2  sets of permutations T 
satisfying (i) and (ii) of theorem I were examined 

for several probability distributions. In every case 

the transposition heuristic was the most efficient. 

For example, with the geometric probability distribu

tion p : (8/15, 4/15, 2/15, 1/15) the average search 

time varied between 1.94 and 2.24, with the transpo-

sition heuristic costing 1.94, the move to front 

rule 

T = 
2 

costing 2.06, 

(� � � �), T 3 

and the rule T I 
I 23 4 

= (3 2 I 4)' T4 

(I 2 3 4) I 23 4 
(I 2 3 4) costing 3 2 4 I 

the most. The optimal cost for this system (given by 

(4» is 1.73. These results were obtained by explicity 

calculating the associated eigenvectors, instead of 

performing a simulation, since there are only 24 states 

to consider. 

Conclusions. 

The transposition heuristic outperforms the "move 

to front" heuristic, and is perhaps the best candidate 

for an optimal heuristic for any probability distribu

tion, given our assumption of the independence of 

requests. (If there is high correlation between 

sucessive requests, one can show that the "move to 

front" heuristic is sometimes more efficient). 

A potential application for this result is the 

construction of list-processing systems such as LISP. 

Here one typically has a large numbeL of names (atoms), 

each associated witn a set of attribute-value pairs, 



such as "value", "printname", "function definition", 

and so on. A separate "property list" is usually 

maintained for each name listing these attributes 

and associated values. These property lists are 

repeatedly searched for the various variable values and 

function definitions during execution, and there is 

often. not enough storage available to consider using a 

counter scheme. A dynamic optimization heuristic such 

as the transposition rule could be easily inserted 

into such a system, and would hopefully reduce the 

running time of an average program by a significant 

percentage at no extra cost in terms of storage. Many 

other similar applications are imaginable in the same 

kind of system where one has chosen a sequential list 

representation of the data for reasons of programming 

convenience ; yet one wishes to reduce the search 

time at no extra cost in storage utilization. The 

transposition heuristic is an appealing choice in 

these situations due to its ease of implementation 

and demonstrated efficiency. 

It remains to be shown that the transposition heuris

tic is in fact optimal under our independence assump

tions, or to find a counter-example to this conjecture. 

Another open problem is to examine the effects of 

relaxing the independence assumption upon the relative 
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