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PARTIAL-MATCH RETRIEVAL ALGORITHMS*
RONALD L. RIVEST}

Abstract. We examine the efficiency of hash-coding and tree-search algorithms for retrieving
from a file of k-letter words all words which match a partially-specified input query word (for example,
retrieving all six-letter English words of the form S**R*H where “*” is a “don’t care” character).

We precisely characterize those balanced hash-coding algorithms with minimum average number
of lists examined. Use of the first few letters of each word as a list index is shown to be one such optimal
algorithm. A new class of combinatorial designs (called associative block designs) provides better hash
functions with a greatly reduced worst-case number of lists examined, yet with optimal average
behavior maintained. Another efficient variant involves storing each word in several lists.

Tree-search algorithms are shown to be approximately as efficient as hash-coding algorithms, on
the average.

In general, these algorithms require time about O(n*~**) to respond to a query word with s
letters specified, given a file of n k-letter words. Previous algorithms either required time O(s - n/k) or
else used exorbitant amounts of storage.

Key words. searching, associative retrieval, partial-match retrieval, hash-coding, tree-search,
analysis of algorithms

QUOTATIONS

Oh where, oh where, has my little dog gone?
Oh where, oh where can he be?
With his tail cut short, and his ears cut long,
Oh where, Oh where can he be?
[Nursery rhyme]

You must look where it is not, as well as where it is.
[Gnomologia— Adages and Proverbs, by T. Fuller (1732)]

1. Introduction. We examine algorithms for performing partial-match
searches of a direct-access file to determine their optimal forms and achievable
efficiency. First we present a model for file and query specifications, within which
we will analyze various search algorithms. Section 2 discusses the historical
development of the “associative search’ problem and reviews previously pub-
lished search algorithms. Section 3 examines generalized hash-coding search
algorithms, and § 4 studies a tree-search algorithm,

We begin with a general outline of an information retrieval system, and then
proceed to define our problem more precisely.

An information retrieval system consists of the following parts:

(i) a collection of information, called a file. An individual unit of a file is
called a record.

(ii) a storage or recording procedure by which to represent a file (in the
abstract) on a physical medium for future reference. This operation we call
encoding a file. The encoded version of a file must, of course, be distinguishable
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from the encoded versions of other files. The medium used is entirely arbitrary;
for example, punched or printed cards, ferromagnetic cores, magnetic tape or
disk, holograms or knotted ropes. There are clearly many possible encoding
functions, even for a given storage medium. To choose the best one for an
application is the encoding or data structure problem.

(iii) a method by which to access and read (or decode) an encoded file. The
access method depends only on the storage medium used, while the encoding
function determines what interpretation should be given to the accessed data. The
encoded version of the file will, in general, consist of the encodings of its
constituent records, together with the encoding of some auxiliary information. If
(the encoded version of) any particular record can be independently accessed in
(approximately) unit time, we say the file is stored on a direct-access storage
device. (Magnetic disks are direct-access, whereas magnetic tapes are not.) The
access time usually consists of two independent quantities: the physical access
time needed to move a reading head or some other mechanical unit into position,
and the transmission time required to actually read the desired data. The
transmission time is proportional to the amount of information read, while the
physical access time may depend on the relative location of the last item of
information read.

(iv) auser of the system, who has one or more queries (information requests)
to pose to the system. The response to a query is assumed to be a subset of the
file—that is, the user expects some of the file’s records to be retrieved and
presented to him. If the user presents his queries one at a time in an interactive
fashion, we say that the retrieval system is being used on-line, otherwise we say
that it is being used in batch mode. We shall only consider on-line systems.

(v) asearch algorithm. This is a procedure for accessing and reading part of
the encoded file in order to produce the response to a user’s query. It is, of course,
dependent, but not entirely, on the choice of storage medium and encoding
function. This algorithm may be performed either by a computer or some
individual who can access the file (such as a librarian).

The above broad outline of an information retrieval system needs to be
fleshed out with more detail in order to make precise the problem to be studied.
We now present some formal definitions required for the rest of this paper. These
details restrict the model’s generality somewhat, although it remains a good
approximation to a large class of practical situations.

1.1. Attributes, records and files. A record r is defined to be an ordered

k-tuple (ry, 12, - * -, ri) of values chosen from some finite set =. That is, each record
is an ordered list of k keys, or attributes. For convenience, we assume that >
={0,1,- -, v—1}, so that the set £* is the set of all k-letter words over the

alphabet =, and has size v*. We shall generally restrict our attention to the case
v =2, so that the set 2* is just the set of k-bit words. Since any record type can be
encoded as a binary string, this entails no great loss in generality. Furthermore, it
seems to be the case that binary records are the hardest type for which to design
partial-match retrieval algorithms, since the user has the greatest flexibility in
specifying queries for a given number of valid records.

A file F is defined to be any nonempty subset of X*.
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These definitions are not the most general possible; however, they do model a
significant fraction of practical applications. A more general scheme, such as that
proposed by Hsiao and Harary [25], would define a record to be an unordered
collection of (attribute, value) pairs, rather than an ordered list of values for a
predetermined set of attributes, as we have chosen here. Making realistic assump-
tions about the frequency of occurrence of each attribute, and related problems,
seems to be difficult, and we shall not pursue these questions in this paper.

1.2. Queries. Let Q denote the set of queries which the information retrieval
system is designed to handle. For a given file F, the proper response to a query
q € Q is denoted by q(F) and is assumed to be a (perhaps null) subset of F.

The following sections categorize various query types and describe the
particular query types to be considered in this paper.

1.2.1. Intersection queries. The most common query type is certainly the
intersection query, named after a characteristic of its response definition: a record
in F is to be retrieved if and only if it is in a specified subset q(2*) of =¥, so that

a(F)= FNq(s").

(This notation is consistent since F=3* implies q(F) = q(Z*).) The sets q(Z*)
completely characterize the functions q(F) for any file F by the above intersection
formula. Intersection queries enjoy the property that whether some record r € F'is
in q(F) does not depend upon the rest of the file (that is, upon F—{r}) so that no
“global” dependencies are involved. The class of intersection queries contains
many important subclasses which we present in a hierarchy of increasing
generality:

1. Exact-match queries. Each q(=*) contains just a single record of 2*. An
exact-match query thus asks whether a specific record is present in F.

2. Single-key queries. q(=*) contains all records having a particular value for
a specified attribute. For example, consider the query defined by ¢q(=*)
={reXn=1}.

3. Partial-match queries. A ‘“‘partial-match query q with s keys specified”
(for some s = k) is represented by a record 7€ R with k —s keys replaced by the
special symbol “*” (meaning ‘“unspecified”). If 7= (7, - -. /), then for k—s
values of j, we have 7 = “*””. The set q(}.") is the set of all records agreeing with 7 in
the specified positions. Thus

q(2)={reX"|(vj 1=j=)[F="IVFE=n].

A sample application might be a crossword puzzle dictionary, where a typical
query could require finding all words of the form “B*T**R” (that is: BATHER,
BATTER, BETTER, BETTOR, BITTER, BOTHER, BUTLER, BUTTER).
We shall use Q, throughout to denote the set of all partial-match queries with s
keys specified.

4. Range queries. These are the same as partial-match queries except that a
range of desired values rather than just a single value may be specified for each
attribute. For example, consider the query defined by
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qE)={re3(1=n=3)A1=r=4)}.

5. Best-match queries with restricted distance. These require that a distance
function d be defined on 2*. Query q will specify a record 7 and a distance A, and
have

q(E*)={reZXd(r, F)=A}.

Query g requests all records within distance A of the record 7 to be retrieved. the
distance function d(r, 7) is usually defined to be the number of attribute positions
for which r and 7 have different values; this is the Hamming distance metric.

6. Boolean queries. These are defined by Boolean functions of the attributes.
For example, consider the query q defined by

q(EH ={reZ(r =0V (.= D)A(r; # 3)}.

The class of Boolean queries is identical to the class of intersection queries, since
one can construct a Boolean function which is true only for records in some given
subset q(2*) of =* (the characteristic function of q(=)).

Note that each intersection query requires fotal recall; that is, every record in
F meeting the specification must be retrieved. Many practical applications have
limitations on the number of records to be retrieved, so as not to burden the user
with too much information if he has specified a query too loosely.

1.2.2. Best-match queries. A different query type is the pure best-match
query. A pure best-match query q requests the retrieval of all the nearest
neighbors in F of a record 7€ X* using the Hamming distance metric d over £*,
Performing a pure best-match search is equivalent to decoding the input word #
into one or more of the “‘code words” in F, using a maximum likelihood decoding
rule (see Peterson [35]). Thus we have

q(F)={re F|(Vr'e F)d(r, )= d(r, }))}.

1.2.3. Query types to be considered. In this paper we shall only consider
partial-match queries. The justification for this choice is that this query is quite
common yet has not been “‘solved” in the sense of having known optimal search
algorithms to answer it. In addition, partial- and best-match query types are
usually considered as the paradigms of “associative” queries. The simpler inter-
section query types already have adequate algorithms for handling them. The
more general situation where it is desired to handle any intersection query can be
easily shown to require searching the entire file in almost all cases, if the file is
encoded in a reasonably efficient manner. (Besides, it takes an average of |2 bits
to specify which intersection query one is interested in, so that it would generally
take longer to specify the query than to read the entire file!) A practical retrieval
system must therefore be based on a restricted set of query types or detailed
knowledge of the query statistics.
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1.3. Complexity measures. The difficulty of performing a particular task on a
computer is usually measured in terms of the amount of time required. We shall
measure the difficulty of performing an associative search by the amount of time it
takes to perform that search.

Our measure is the ‘“on-line’’ measure, that is, how much time it takes to
answer a single query. This is the appropriate measure for interactive retrieval
systems, where it is desired to minimize the user’s waiting time. Many information
retrieval systems can, of course, handle queries more efficiently in a batch
manner—that is, they can accumulate a number of queries until it becomes
efficient to make a pass through the entire file answering all the queries at once,
perhaps after having sorted the queries. The practicability of designing a retrieval
system to operate “on-line”” thus depends on the relative efficiency with which a
single query can be answered. That is the study of this paper.

When a file is stored on a secondary storage device such as a magnetic disk
unit, the time taken to search for a particular set of items can be measured in terms
of (i) the number of distihct access or read commands issued, and (ii) the amount of
data transmitted from secondary storage to main storage. For most of our
modeling, we shall consider only the number of accesses. Thus, for the generaliza-
tions of hash-coding schemes discussed in § 3, we count only the number of
buckets accessed to answer the query.

Several measures are explicitly not considered here. The amount of storage
space used to represent the file is not considered, exceptin § 3.3 to show that using
extra storage space may reduce the time taken to answer the query. The time
required to update a particular file structure is also not considered—this can
always be kept quite small for the data structures examined.

1.4. Results to be presented. We give a brief exposition of the historical
development of “‘associative” search algorithms in § 2.

In § 3 we study generalized hash functions as a means for answering partial-
match queries. We derive a lower bound on their achievable performance, and
precisely characterize the class of optimal hash functions. We then introduce a
new class of combinatorial designs, called associative block designs. Interpreted as
hash functions, associative block designs have excellent worst-case behavior while
maintaining optimum average retrieval times. We also examine a method for
utilizing storage redundancy (that is, we examine the efficiency gains obtainable
by storing each record more than once).

In § 4 we study “‘tries” as a means for responding to partial match queries.
“Tries” (plural of “trie”’) are a particular kind of tree in which the ith branching
decision is made only according to the ith bit of the specific record being inserted
or searched for, and not according to the results of comparisons between that
record and another record in the tree. Their average performance turns out to be
nearly the same as the optimal hash functions of § 3.

The results of § 3 and § 4 seem to support the following.

Conjecture. There is a positive constant ¢ such that for all positive integers n,
k and s, the average time required by any algorithm to answer a single partial
match query q € Q, must be at least

cn (k As)/k,
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where the average is taken over all queries g € Q, and all files F of n k-bit records
which are represented efficiently on a direct-access storage device. (That is, no
more than O(n - k) bits of storage are used.)

2. Historical background.

2.1. Origins in hardware design. Associative search problems were first
discussed by people interested in building associative memory devices. According
to Slade [44], the first associative memory design was proposed by Dudley Buck in
1955. The hoped-for technological breakthrough allowing large associative
memories to be built cheaply has not (yet) occurred, however. Small associative
memories (on the order of 10 words) have found applications—most notably in
“paging boxes” for virtual memory systems (see [12]). Minker [32] has written an
excellent survey of the development of associative processors.

2.2. Exact-match algorithms. New search algorithms for use on a conven-
tional computer with random-access memory were also being rapidly discovered
in the 1950’s. The first problem studied (since it is an extremely important
practical problem) was the problem of searching for an exact match in a file of
single-key records. Binary searching of an ordered file was first proposed by
Mauchly [30]. The use of binary trees for searching was invented in the early
1950’s according to [28], with published algorithms appearing around 1960 (see,
for example, Windley [46]—there were also many others).

Tries were first described about the same time by Rene de la Briandais [11].
Tries are roughly as efficient as binary trees for exact-match searches. We shall
examine trie algorithms for performing partial-match searches in § 4.

Hash-coding (invented by Luhn around 1953, according to Knuth [28])
seems the best solution for many applications. Given b storage locations (with
b=|F|) in which to store the records of the file, a hash function h:3*
->{1,2,- -, b} is used to compute the address h(r) of the storage location at
which to store each record r. The function h is chosen to be a suitably “random”
function of the input—the goal is to have each record of the file assigned to a
distinct storage location. Unfortunately, this is nearly impossible ‘to achieve
(consider generalizations of the “birthday phenomenon” as in Knuth [28, § 6.4]),
so a method must be used to handle “collisions” (two records hashing to the same
address). Perhaps the simplest solution (separate chaining) maintains b distinct
lists, or buckets. A record r is stored in list L; (where 1=j=0b)iff h(r) =j. Each
bucket can now store an arbitrary number of records, so collisions are no longer a
problem. To determine if an arbitrary record r € =* is in the file, one need merely
examine the contents of list Ly, to see if it is present there. Since the expected size
of each list is small, very little work need be done. Chaining can be implemented
easily with simple linear linked list techniques (see [28, § 6.4]).

2.3. Single-key search algorithms. The next problem to be considered was
that of single-key retrieval for records having more than one key (that is, k >1).
This is often called the problem of “retrieval on secondary keys”. L. R. Johnson
[26] proposed the use of k distinct hash functions h; and k sets of lists Li—for
1=i=kand 1=j=b. Record r is stored in k lists—list L, for 1 =i =k. This is
an efficient solution, although storage and updating time will grow with k. Prywes



PARTIAL-MATCH RETRIEVAL ALGORITHMS 25

and Gray suggested a similar solution—called Multilist—in which each attribute-
value is associated with a unique list through the use of indices (search trees)
instead of hash functions (see [20], [36]). Davis and Lin [10] describe another
variant in which list techniques are replaced by compact storage of the record
addresses relevant to each bucket. The above methods are often called inverted list
techniques since a separate list is maintained of all the records having a particular
attribute value, thus mapping attribute to records rather than the reverse as in an
ordinary file.

2.4. Partial-match search algorithms. Inverted list techniques, while ade-
quate for single-key retrieval of multiple-key records, do not work well for
partial-match queries unless the number s of keys specified in the query is small.
This is because the response to a query is the intersection of s lists of the inverted
list system. The amount of work required to perform this intersection grows with
the number of keys given, while the expected number of records satisfying the
query decreases! One would expect a “reasonable’ algorithm to do an amount of
work that decreases if the expected size E(|q(F)|) of the response decreases. One
might even hope to do work proportional to the number of records in the answer.
Unfortunately, no such “linear” algorithms have been discovered that do not use
exorbitant amounts of storage. The algorithms presented in §§ 3 and 4, while
nonlinear, easily outperform inverted list techniques. These algorithms do an
amount of work that decreases approximately exponentially with s. When s =0,
the whole file must, of course, be searched, and when s = k, unit work must be done.
In between, log(work) decreases approximately linearly with s.

J. A. Feldman’s and P. D. Rovner’s system LEAP [13] allows complete
generality in specifying a partial match query. LEAP handles only 3-key records,
however, so that there are at most eight query types. This is not as restrictive as
might seem at first, since any kind of data can in fact be expressed as a collection of
“triples”: (attributename, objectname, value). While arbitrary Boolean queries
are easily programmed, the theoretical retrieval efficiency is equivalent to an
inverted list system.

Several authors have published algorithms for the partial match problem
different from the inverted list technique. One approach is to use a very large
number of short lists so that each query’s response will be the union of some of the
lists, instead of an intersection. Wong and Chiang [47] discuss this approach in
detail. Note, however, that the requisite number of lists is at least |2* | if the system
must handle all partial-match queries (since exact-match queries are a subset of
the partial-match queries). Having such a large number of lists (most of them
empty if |F|<|Z*|, as is usual) is not practical. A large number of authors (C. T.
Abraham, S. P. Ghosh, D. K. Ray-Chaudhuri, G. G. Koch, David K. Chow and
R. C. Bose—see references for titles and dates) have therefore considered the case
where s is not allowed to exceed some fixed small value s’ (for example, s’ = 3).

Then the number of lists required is (f,) v*. This is achieved by reserving a bucket

for the response to each query with the maximal number s’ of keys given; the
response to other queries is then the union of existing buckets. Note that each

. . [k
record is now stored in < ,) buckets, however! One can reduce the number of
s



26 RONALD L. RIVEST

buckets used and record redundancy somewhat, by the clever use of combinator-
ial designs, but another approach is really needed to escape combinatorial
explosion.

The first efficient solution to an associative retrieval problem is described by
Richard A. Gustafson in his Ph.D. thesis [21], [22]. Gustafson assumes that
each record r is an unordered list {r,, r,, - - -} of at most k' attribute values (these
might be key words, where the records represent documents) chosen from a very

. . . AR
large universe of possible attribute values. Let w be chosen so that ( k’) Is a

reasonable number of lists to have in the system, and let a hash function h map
attribute values into the range {1, 2, - - -, w}. Each list is associated with a unique
w-bit word containing exactly k' ones, and each record r is stored on the list
associated with the word with ones only in positions h(ry), h(r,), - - -, h(re). (If
these are not all distinct positions, extra ones are added randomly until there are
exactly k' ones.) A query specifying attributes ai, a,, - - -, a, (with t =k’) need

only examine the ( I:v, ;) lists associated with words with ones in positions
h(a,), h(a,), - - -, h(a,). The amount of work thus decreases rapidly with ¢. Note
that the query response is not merely the union of the relevant lists, since
undesired records may also be stored on these lists. We are guaranteed, however,
that all the desired records are on the examined lists. In essence, Gustafson
reduces the number of record types by creating w attribute classes, a record being
filed according to which attribute classes describe it. His method has the following
desirable properties:

(a) each record is stored on only one list (so updating is simple), and

(b) the expected amount of work required to answer a query decreases
approximately exponentially with the number of attributes specified. His
definition of a record differs from ours, however, so that the queries allowable in
his system are a proper subset of our partial match queries—those with no zeros
specified. (Convert each of his records into a long bitstring with ones in exactly k'
places—each bit position corresponding to a permissible key word in the system.)

Terry Welch, in his Ph.D. thesis [45], studies the achievable performance of
file structures which include directories. His main result is that the size of the
directory is the critical component of such systems. He briefly considers directory-
less files, and derives a lower bound on the average time required to perform a
partial match search with hash-coding methods that is much lower than the precise
answer given in § 3. He also presents Elias’s algorithm for handling best-match
queries, which the author shows to be minimize the average number of lists
examined in [40] and [41].

3. Hashing algorithms for partial-match queries. Given a set * of possible
records, and a number b of lists (buckets) desired in a filing scheme, we wish to
construct a hash function h : 2> {1, - - -, b} so that partial match queries can be
answered efficiently (either on the average or in the worst case). A record r in our
file F is stored in list L; if and only if k(r) = j, with collisions handled by separate
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chaining. We define block B; of the partition of £* induced by h to be

B, ={re3*|n(r)=j},

so that
L;=B,NF.

If |B;| = |2*|/b for all j, then we say that h is a balanced hash function.
To answer a partial-match query q € Q, we must examine the contents of the
lists with indices in

h(q) ={jl(B; N q(Z")) # null},

or equivalently,

hig)= U {h(n)}.

reqzk)

Here we make the natural extension of A onto the domain Q.
The basic retrieval algorithm can thus be expressed

q(F)= U (L:Ngq(z")),

ich(q)

or equivalently in pseudo-ALGOL:
Procedure SEARCH (g, h,{L,,- - -, L,});
comment SEARCH prints the response to a partial-match query q € Q, given
that the file FCX* is stored on lists {L,, - -, L,} according to hash
function h . ;
begin integer i; record r;
for each i € h(q) do
foreachre L, do
if r € q(2*) then print (r)

end SEARCH;

The difficulty of computing the set h(q) depends very heavily on the nature of
the hash function h. It is conceivable that for some pseudo-random hash functions
h, it is more time-consuming to determine whether i € h(q) than it is to read the
entire list L, from the secondary storage device. Such hash functions are, of
course, useless, since one would always skip the computation of h(q) and read the
entire file to answer a query. We will restrict our attention to hash functions h for
which the time required to compute the set h(q) of indices of lists that need to be
searched is negligible in comparison with the time required to read those lists.

We denote the average and worst-case number of lists examined by
SEARCH to answer a partial-match query with s keys specified, given that the file
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was stored using hash function h, by

A,(h)=|Q™" ¥ |h(g)] and M(h)=r£%§|h(q)l,

qe Qs
respectively.

We shall denote the average number of lists examined, taken over all
partial-match queries in Q, by A(h). We denote the minimum possible average
number of lists examined for a query q € Q, by A.i.(k, w, s, v) where h is assumed
to be a balanced hash function mapping=*={0, 1, - - -, v—1}* onto {1, 2, - - -, b},
where b =2", w being a natural number. If v is omitted, v =2 is to be assumed.

Note that the number of lists examined does not depend on the particular file
F being searched, but only on the hash function h being used.

3.1. Hash functions minimizing average search time. We first concentrate on
the average number of buckets examined by SEARCH to calculate the response
to a partial-match query g. That is, we consider the functions A (h) and A,(h) and
determine for which hash functions h are A(h) and A,(h) minimized.

In § 3.1.1 we consider nonbinary records, (that is, where || is relatively
large), and show that a simple string-homomorphism hash function is optimal.

In §3.1.2 we concentrate on binary records, for which a straightforward
(e-free) homomorphism technique would require using an exorbitant number of
buckets (essentially one list per record in *). A relatively complicated com-
binatorial argument shows that selecting a subset of the record bits for use as
address bits is optimal.

3.1.1. Optimal hash functions for nonbinary records. When k (the number
of letters in each record) is less than or equal to w (the number of bits needed to
describe a list index), then a very simple string-homomorphism scheme will
provide efficient retrieval. This case arises frequently for nonbinary records.

We illustrate the principle by means of an example. Suppose we wish to
construct a “crossword puzzle” dictionary for six-letter English words. Let b =2"
be the number of lists used. Given a word (for example, “SEARCH”), we
construct a w-bit list index (bucket address) by forming the concatenation:

h(“SEARCH?’):g(“S’7) g(“E”) g(‘CA”) g(6‘R7’) g(‘6C,’) g(“H’7)

of six (w/6)-bit values; here g is an auxiliary hash function mapping the alphabet £
into (w/6)-bit values.
For a partial-match query with s letters specified, we have, in this case,

A.(h) = W.(h)=2".

This approach is clearly feasible as long as b =2, since one or more bits of the list
index can be associated with each attribute.

A similar technique has been proposed by M. Arisawa [2], in which the ith
key determines, via an auxiliary hash function, the residue class of the list index
modulo the ith prime (see also [34]).

For nonbinary records, the analysis fortunately turns out to be simpler than
for binary records. In this section we prove that schemes that use the above
string-homomorphism idea are, in fact, optimal.
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Let the universe of records be =¥, where £={0,1,---,v—1}and v >2. Let
Quin(x, k) denote the minimum possible number of partial-match queries in Q
which require examination of a list L whose corresponding block B has size x. The
following inequality gives a lower bound for Q.

Qumin(x, k) Zmin (Opin(max f, k= 1)+ Y Qun(fi, k—1)),
: O=i<v

where the minimum is taken over all sets of nonnegative integers fo, - * - , f,—1 such
that Y-.<, f; = x. (Here f; denotes the number of records in B that begin with an i.)
The term Qui.(max f, k —1) is a lower bound on the number of partial-match
queries beginning with a “*”’, and Qui(fi, k — 1) is a lower bound on the number of
partial-match queries beginning with “i”’, that require examination.of L.

We can perform the analysis by passing to the continuous case. Define the
function Q. as follows.

il k) = inf (Ol sup f(2) k= 1)+ [ Qiualf(2), k—1) d)

0=z=v

where the infimum is taken over all nonnegative functions f(z) such that
fo f(z) dz = x. The appropriate initial conditions in this case are Qpa(x, 0) =1 for
0=x =1 (counting the totally unspecified query), Qni.(x, 0) =00 for x >1 (this
forces the above definition of Q. to pick values for f(z) so that all records are
distinguished after all the positions are examined), and Q/,.(x, 0) = 0 otherwise.
The function Q/..(x, k) is obviously a lower bound for Q..(x, k), since the
definition for Q...(x, k) reduces to the above lower bound for Q,., (with equality
holding) if f(z) is defined f(z)=f; fori=z<i+1.

’

The solution of the above recurrence for Q, is
0 if x=0,
Qbin(x, k) =¢(x"*+1)* if 0<x=0",
00 otherwise.

The infimum is reached in the definition of Qp(x, k) when f(z) is the
following function:

x* V% for 0=z =x"*,
flz)=

0 otherwise.

When x is the kth power of some integer y, 1 = y = v, the lower bound provided by
rin(x, k) is, in fact, achievable.

THEOREM 1. If B is a subset of = containing x = y" records, for some integer y,
1=y=v=|2, then the number Q(B) of queries which require examination of the

list L associated with B is minimized when
B=32,XZ,X: X%,

where each X, € X is of size y.
Proof. Q(B) = Qln(x, k) in this case. [0
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Theorem 1 says that our crossword puzzle hashing scheme is optimal, as long
as the auxiliary function g divides the alphabet X into four equal pieces. This is
not possible for the English 26-letter alphabet (Greek puzzlists are in luck with
their 24-letter alphabet, however); we conjecture that splitting X into four
nearly-equal pieces would be optimal in this case.

3.1.2. The optimal hash functions for binary records. In this section we prove
a conjecture due to Welch [45]: when k >1log, (b), an optimal hash function is one
which merely extracts the first log, (b) bits of each record for use as a list index. As
we shall see later, this hash function is only one of many which minimize the
average number of lists examined, some of which also do better at minimizing the
worst-case behavior as well. Sacerdoti [43] has also suggested that this scheme
may be practical for partial-match retrieval.

We shall only consider balanced hash functions in this section. This elimi-
nates considering obviously ‘“‘degenerate’ hash functions mapping all the records
into a single list (costing one list examination per search). Furthermore, if each
record in =¥ is equally likely to appear in the file (independent of other records),
then the expected length of each list will be the same. A formal justification for the
restriction to balanced hash functions will be given later on, after we examine
more closely the average search time of optimal balanced hash functions.

The following theorem gives a precise characterization of which balanced
hash functions h minimize A (h), the average number of lists examined.

THEOREM 2. Let h :{0,1}*~>{1, - - -, b} be a balanced hash function with
b =2" buckets for some integer w, 1 =w = k. Then A(h) is minimal if and only if
each block B is a q({0, 1}*) for some query q € Q..

The geometry of the sets q({0, 1}*) thus is reflected in an appealing fashion in
the optimal shape for the blocks B.. The set of records in each optimal B; can be
described by a string in {0, 1, *}* containing exactly w bits and k —w *’s.

The following corollary is immediate.

CoOROLLARY 1. The hash function which extracts the first w bits of each record
re{0, 1}* to use as a list index minimizes A (h).

The proof of Theorem 2 is unfortunately somewhat lengthy, although
interesting in that we prove a little more than is claimed.

Let Bi<{0,1}* be any block. Then by Q(B;), we denote [gq
€ Q|(q({0, 1} N B,) # J}|, the number of queries g€ Q which examine list L.
Denote by Qumin(x, k) the minimal value of Q(B;) for any B; of size x, B; < {0, 1}*.
We now note that

A(m=]Q|™"- zolh(qﬂ
=[(B, @)l(q({0, 1})N B, # B} - |Q*

= Z O(Bi) : IQI_I =b- Qmin(Zk—w’ k) . 'O,‘l.

1=i=b

To finish the proof of the theorem, we need only show that Q(B;) = Qumin(2*7*, k) if
and only if B; is of the form ({0, 1}*) for some g€ Q,. The rest of the proof
involves four parts: calculation of Q(B;) for B; of the proper form, calculation of
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Quin(27", k), the demonstration of equality, and then the demonstration of the
“only if”” portion.

Calculation of Q(B;). For simplicity of notation, we use the symbols x, y, z to
denote either positive integers or their k-bit binary representation. Occasionally
we may wish to explicitly indicate that some number ¢ of bits is to be used; we
denote this string by x : ¢ (so that 9: 5=01001). The length of a string x in {0, 1}*
we denote by |x|. Concatenation of strings is represented by concatenation of their
symbols; Ox denotes a zero followed by the string x. A string of f ones we denote
by 1°.

If x is a string, we denote by x the set of those x + 1 strings of length |x| which
denote integers not greater than x. For example, 011 = {000, 001, 010, 011}. If
x =2 —1, then x : k describes the set q({0, 1}*) for g = 0”+*"™, which is in Q..
Furthermore, Q(q({0, 1}*)) does not depend on which g € Q, is chosen; this is
always 2”37 (since each * in q can be replaced by 0, 1 or *, and each specified
position optionally replaced by a *, to obtain a query counted in Q(q({0, 1}"))).

Thus Q(B;) =2%3“"" for B, = x : kwith x =2 —1. To show this is optimal,
it is necessary to calculate Q(x) for arbitrary strings x.

Lemma 1. (2) Q(nullstring)=1; (b) Q(0x)=20Q(x); (c) Q(1x)=20Q(1*)
+ Q(x).

Proof. Take (a) to be true by definition. For (b), any query examining x can be
preceded by either a 0 or a * to obtain a query examining Ox. Part (c) follows from
the fact that 1x= 0(1")U 1x; there are 2Q(1") queries starting with 0 or *, and
Q(x) starting with 1. O

The preceding lemma permits Q(x) to be easily computed for arbitrary
strings x; we list some particular values:

x=null 0 1 00 01 10 11
Qx)= 1 2 3 4 6 8 9

x=000 001 010 011 100 101 110 111
OQx)= 8 12 16 18 22 24 26 27

If x is the string x,x, - - - x, and z; denotes the number of zeros in x; - - - x;,
then Lemma 1 implies that

Q(.-I)=2Zk + Z xi3k-i22,~+1.

1=si=k

LEmMMA 2. Q(x1)=30(x).

Proof. Directly from the above formula for Q(x) or by noting that if q is
counted in Q(x), then q0, g1 and g* will be counted in Q(x1). U

Using p(x) to denote 2* (where z, is the number of zeros in x), we have also
the following.

LEMMA 3. Q(x:k)=Q(x—1:k)+p(x: k).

Proof. The only queries counted in Q(x) but not Q(x—1) will be those
obtained by replacing an arbitrary subset of the zeros in x by *’s [
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Now that we know quite a bit about Q(q({0, 1}*)) for q € Q., we turn our
attention to Q.

A lower bound for Quia(x, k). The following inequality holds for Qui(x, k),
the minimal number of queries Q(B;) for any B, {0, 1}, |B)|=x:

Qnin(x, k) Zmin (2 Quin(x0, k — 1)+ Quin(x1, k — 1)),

where the minimum is taken over all pairs of nonnegative integers xo, X; such that
Xo+ X1 =X, Xo= X1, and xo=2""'. To show this, let B; contain x, records starting
with a 0 and x, with a 1. Then Q(B;) must count at least 2Q,.in(X0, kK —1) queries
beginning with a zero or a *, and at least Qu.(x;, k —1) which start with a 1.
(Nothing is lost by assuming xo = x,.) For k = 1, we have Quin(x, 1) = Q(x—1: 1),
by inspection.

Showing Q(B;) = Quin(2“7™, k) if B;= 2" —1: k. We will, in fact, prove the
stronger statement that Q(B;) = Qmi(x +1, k) if B, =x : k, by induction on k.
Since Q(x : k) = Qumin(x + 1, k) necessarily, with equality holding for k =1, as we
have seen, equality can be proved in general using our lower bound for Qui(x, k)
if we can show the following:

(1) Q(x: k)=min 2Q(y : k=1)+Q(z: k1)),

where the minimum is taken over all pairs of nonnegative integers y, z such that
y+z+1=x,y=zand y =2“"". By induction, the right-hand side of (1) is a lower
bound for Quis(x +1, k). The case in (1) of x = y corresponding to x; =0 in our
lower bound for Q..(x, k) holds by Lemma 1 (b). To prove (1), we consider four
cases, according to the last bits of y and z.

Case 1. y:k—1=y'l,z:k—1=2'1, and x : k =x'1. In this case, (1) is
true by Lemma 2, since we know by induction that Q(x') =2Q(y") + Q(2)).

Case 2. y:k—1=y'0, z:k—-1=2'1, and x: k=x'0. If p(x")=2p(y"),
then (1) is true since it is equivalent by Lemmas 2 and 3 to

30(x'=1)+2p(x)=60Q(y' = 1) +4p(y") +3Q(2)),

but we know by induction that Q(x'—1)=2Q(y'— 1)+ Q(z’). Otherwise if p(x’)
>2p(y’), we use the fact that (1) says

3Q(x)—p(x)=6Q(y)—2p(y)+30(z")
and we know that Q(x')=2Q(y’) + Q(z’) by induction.
Case 3. y:k—1=y'l,z:k—1=2'0, and x : k =x'0. Depending on the

truth or falsity of p(x') = p(z'), we use induction and the fact that (1) is implied by
either

30(x'—1)+2p(x)=60Q(y")+3Q(z' - 1) +2p(z’)

or

30(x)-p(x)=6Q1)+30Q(z)—p(2).
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Case 4. y:k—1=y0,z2:k—1=2'0,and x : k=x"1. If p(y")=p(z'), we
use induction and the fact that (1) is implied by

30(x)=60Q(y)—2p(y")+30(z' = 1) +2p(2").
Otherwise we use the fact that (1) is implied by

30(x)=60Q(y'—1)+4p(y")+30(z") — p(z").

This completes the proof that Q(x : k) = Quia(x +1, k).

Showing Q(B;) = Quin(2“™", k) only if B;=q({0, 1}*) for some q<c Q,. We
need only that (1) holds with equality for x =2 —1 only if y =z, since this
implies that Q(B,) > Q.in(27™, k) if B, is not of the form q({0, 1}*) for q € Q... To
see this, let B, =0C U 1D for C, D <{0, 1}*"*. Then note that if B; # q({0, 1}*) for
some q € Q,, then either [C|>0,|D|>0, and |C| #|D|; or |C| = |D| but at least one
of C, D is not of the form q({0, 1}*™") for any g € Q,,—,.

Now x : k=0"1*"".If y = z, then (1) holds with equality by Lemma 1. To
show (1) holds with equality only if y=z, suppose y=2""+¢t—1 and
z=2¥"""—t—1 for any t,0<t<2*""'. Then (1) holding with strict inequality
says:

QO¥1*™M<20(y:k—1D)+0Q(z: k—1)

or

Q01" M <20(y: k—w)+Q(z : k—w)

or
Q01" <O(y: k—w+1)+0(z: k—w).
Subtracting 2“™*~! from both x and y, we get that (1) means
Q01" " < Q(t—=1:k—w+0QR" "' '—t—1:k—w).
It is simpler to note that the general statement
Qx:k<Q(—1:k)+Q(x—t:k)

is always true; in fact, it is implied directly by (1), Lemma 1 and the fact that
Q(x—t:k) is always positive. This completes our proof that
Q(B)) = Quin(2¥7", k) only if B; = q({0, 1}*) for some q € Q,,, and also finishes our
proof of Theorem 2. [

While Theorem 2 only counted queries in Q, the same result holds if we count
queries in Q..

THEOREM 3. Let h and b be as in Theorem 1. Then A,(h) is minimal for
0<s <k if and only if each block B; is a q({0, 1}*) for some q € Q..

This can’t be asserted in an “iff”” manner for s =0 or s =k, since Ao(h)=>b
and A, (h) =1 independent of h.

Theorem 3 can be proved in the same manner as Theorem 2. We note here
the differences, using Q,(B;) and Q,.i.+(x, k) to count queries in Q, rather than Q.
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LEMMA 4. (a) Qu(x)=1, for all x. (b) Q, (nullstring)=0 for s=1. (¢)
Q, (0x) = Q,(0) + Qs-1(x), for s=1 and all x. (d) Q,(1x) = Q.(01") + Q,:(x), for

s=1 and all x.
LEMMA 5. Q,(x)— Q,(x—1)= (kz_k s)’ where z, denotes the number of zeros in

x and |x|= k.

LEMMA 6. Q(x1) =20Q,-1(x) + Q. (x).

LEMMA 7. Quin,s(x, k) Zmin (Qmins(Xo, K = 1) + Quins (X0, k = 1) + Omins-1(X1,
k — 1)) where the minimum is taken over all pairs of nonnegative integers xo, x., such
that xo+x,=X, Xo= X, and xo=2*"".

The proofs of these lemmas are omitted here (see [40]). The proof of
Theorem 2 then proceeds along the same lines as that of Theorem 1; with (1) being
replaced by

O(x:k)=min (Qu(y : k=D + Qi (y: k=1)+Qi(z: k=1)).

We omit details here of the proof, as it varies little from the proof of (1). The “only
if”” portion of the proof is also similar, except that the inductive hypothesis has to
be applied more than once (for varying s values). [

Calculation of A,(h). Now that Theorems 2 and 3 tell us what the optimal
balanced hash functions h : {0, 1}*>{1, - -, b=2"} are like, we can caloulate
A, (h) easily, using the optimal h from Corollary 1 to Theorem 2 (using the first w
bits of x €{0, 1}* as the hash value). We get

Ann(k, w, 5)= Ay(h) = (k)_' Py (‘.")(k B '.v)zw-‘ =pi

N l S—1

where the first sum considers the ways in which i of the s specified bits fall in the
first w positions; when this happens 2*~* buckets must be searched. The inequality
is a special case of a mean value theorem [24, Thm. 59]. In fact, b'™** is a
reasonable approximation to A,(h), as long as w is not too small.

A better approximation may be obtained by replacing the hypergeometric

probability
() (D)
s i/\s—i
by its approximation
w . A
()esrmraa s

Then we have

Amin(k, w, s)zz (?)(s/k)‘(l —s/k) 2"

-3 (V)ikr@-2- s/ =@ s/

For example, when half of the bits are specified in a query (s = k/2), we should
expect to look at (1.5)" lists.
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3.1.3. The optimal number of lists. In this section we use the results of the
last section to derive the optimal number of lists (buckets) in a hash-coding
partial-match retrieval scheme. We also give justification for the use of balanced
hash functions.

The basic result of the preceding section was that the optimal shape for a
block B is a “subcube” of {0, 1}*; that is, B = q({0, 1}*) for some partial-match
query q, under the assumption that each partial-match query is equally likely. Let
us now assume that each record re =* is equally likely to appear in F (equival-
ently, every file F of a given size is equally likely). In this case, the expected length
of alist L; is just |F| - [Bi| - 27%.

We use the following simple model for the true retrieval cost (rather than just
counting the number of lists searched): @ seconds are required to access each list
L;, and p seconds are required to read each record in L.. The total time to search L,
is then a +p|L:|. Suppose B; = q({0, 1}*) for some q € Q,. The average expected
time per partial-match query spent searching list L; is then just

E((a+p|L) - (2"3) - 37 )=(a+p|F| - [B] - 27) - (2/3)",

since there are 2*3*™ queries which must examine L; out of 3* possible queries,
and (E|L:]) =|F| - |B:| - 27*. To minimize the total average cost (the above summed
over lists L), it is sufficient to minimize the cost per element of {0, 1}*. Dividing the
above by |B;|=2""", we want to minimize

2/3)"27 [« - 2" +plf[].
Taking the derivative with respect to w, setting the result to zero and solving for w,
we get that the total expected cost per query is minimized when

—p|F|In (2/3)

G/ )Elogz (a 'p|F|- 1.408).

w =log, (
(The second derivative is positive, so this is a minimum.)

For example, if p=.001, @ =.05, |F|=10° and k =40, then the optimal
hashing scheme would have w = 15, so that 2'* = 32,768 buckets would be used.
The average time per query turns out to be about 6.5 seconds.

Note that the optimal choice of w does not depend on k, due to the fact that
the probability (2/3)” of examining L; when |B;|=2*"" does not depend on k.
Since our above analysis only considered a single arbitrary bucket, all buckets
should have the same optimal size determined above. That is, the hash function
should be balanced.

3.2. Minimizing the worst-case number of lists searched. The worst-case
behavior of the hash function of Corollary 1 is obviously poor; if none of the
specified bits occur in the first w positions, then every list must be searched. In this
section we find that other optimal average-time hash functions exist which have
much improved worst-case behavior, often approximately equal to the average
behavior. We also consider a simpler strategy involving storing each record in
several lists.

To obtain good worst-case behavior W, (h) for h : {0, 1}*>{1,---, b =2"},
the hash function h(x) must depend on all of the bits of x, so that each specified bit
contributes approximately equally and independently towards decreasing the
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number of lists searched. We shall also restrict our attention to balanced hash
functions satisfying the conditions of Theorems 2 and 3 so that optimal average
time behavior is ensured. While we have no proof that these block shapes are
necessary for optimal worst-case behavior, the fact that W, (h) is bounded below
by A,(h) makes it desirable to keep A,(h) minimal.

3.2.1. Anexample. Let us consider, by way of introduction, an example with
k =4, w=3. The following table describes an interesting hash function h; row i
describes the query g€ Q, such that B;=q({0, 1}*). Thus h(0110)=6 and
h(1110) =4, each x €{0, 1}* is stored in a unique bucket. (This function was first
pointed out to the author by Donald E. Knuth.)

TABLE 1
A hash functionh : {0, 1}*>{1, - - -, 8}

Bit position

1 2 3 4

10 0 * 0

211 0 0 *

Bucket 3[* 1 0 0
address 4|1 * 1 0
501 1 * 1

6/0 1 1 *

7(* 0 1 1

8]0 * 0 1

This can be interpreted as a perfect matching on the Boolean 4-cube, as
indicated in Fig. 1, since each block contains two adjacent points and distinct
blocks are disjoint. In general, we have the problem of packing {0, 1}* with
disjoint (k — w)-dimensional subspaces.

Whereas the hash function of Corollary 1 would have all its *’s in the fourth
column, here the *’s are divided equally among the four columns. As a result, we
have W,(h) = 5 instead of 8. For example, we need only examine buckets 1,4, 5,6
and 7 for the query **1*, Table 2 lists W, (h) and [ A,(h)] for 0= s =4; we see that
we have reduced W, (h) so that W,(h) = [ A,(h)]; no further reduction is possible.

0110 o1

0100 0101

7-1111

1000+

L______ 1 oot

0000 0001
F1G. 1. A perfectmatchingon {0, 1}*
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TABLE 2
W, (h) and A,(h)

s|01234

wa |8 s 3 21
[Am] 18 5 3 21

3.2.2. Definition of ABD’s. Let us call a table such as Table 1 an ““associative
block design of type (k, w)”, or an ABD(k, w) for short. To be precise, an
ABD(k, w) is a table with b = 2" rows and k columns with entries from {0, 1, *} such
that k > w and

(i) each row has w digits and k —w *’s,
(ii) the rows represent disjoint subsets of {0, 1}*. That is, given any two rows,
there exists a column in which they contain differing digits.

(iii) each column contains the same number b - (k —w)/k of *’s.

Conditions (i) and (ii) ensure that A,(h) is minimal, by Theorem 3, since each
row of the table represents a partial-match query in Q,, by condition (i), and by (ii)
the corresponding sets q({0, 1}*) are disjoint.

Condition (iii) attempts to restrict the class of ABD’s to those hash functions
with good worst-case behavior W, (h) by requiring a certain amount of uniformity
in the utilization of each record bit by h. In fact, (iii) implies that W,(h) is minimal
by (i) of Theorem 4, to follow. More stringent uniformity conditions are conceiva-
ble, perhaps involving the distribution of ¢-tuples within each ¢-subset of columns,
but (iii) alone is enough to make the construction of ABD’s a difficult combinator-
ial problem, comparable to the construction of balanced block designs (see [9]).
Furthermore, with the exception of a construction due to Preparata based on
BCH codes for the case w = k — 1, the existence of ABD’s of arbitrary size does
not seem to be answered by any previous results of combinatorial design theory.
(See [40], [41], however, for an interpretation of ABD’s as a special case of
group-divisible incomplete block designs, defined in [5].)

3.2.3. Characteristics of ABD’s. The following lemma gives some additional
characteristics of ABD’s that are implied by the definition.
THEOREM 4. An ABD(k, w)
(i) has exactly b - w/2k 0’s (or 1’s) in each column,

(ii) has <u> rows which agree in exactly u positions with any given record

ref0, 1}, forany u, 0=u=w,
(iii) is such that
: u)2><b)
k <2k 2/

or equivalently,



38 RONALD L. RIVEST

Proof. (i) There are as many records in {0, 1}* having a 0 in a given column as
there are having a 1. A row of the ABD containing a * in that column represents a
block B containing an equal number of each type. Rows containing a digit in that
column represent blocks containing 2™ records of that type.

(ii) Let a, denote the number of rows in the ABD which agree in exactly u
positions with the given record r. We have that a, is nonzero only if 0=Su=w,
since any row of the ABD contains w digits (*’s don’t “agree” with digits). Also
ao= 1, since the complement of r is stored in a unique list. Furthermore,

el o)
u Osvsu u—v

. k o .
since of the <u) records that agree with r in u positions,

ol

O=v<u u—v

are accounted for by rows which agree with r in v positions, for some v <u (by
replacing u — v of the k — w stars in that row by digits which agree with r, and the
other k —w —u +v stars by digits complementary to r). Each record remaining
must be in a separate list, since a row agreeing with r in u places can represent at
most one record agreeing with r in u places, and any row agreeing with r in more

w\ . .
than u places can represent none. The formula a, =< ) is the solution to the
u

above recurrence.
(ili) Between each pair of rows in the ABD there must be at least one column

in which they contain differing digits. There must be at least (1;) such row-row-

column differences. On the other hand, each column can contribute at most
(bw/2k)? such differences by (i) of this theorem. 0O

Parts (i) and (iii) of the above theorem can be used to restrict the search for
ABD’s. Note that (i) implies that bw/2k must be integral, so that no ABD(S, 4)’s
exist, for example. Part (iii) implies that to achieve large (record length)/(list index
length) ratios k/w, we must let w grow to at least 2k/w, approximately. For k =20
the above restrictions imply that the ABD(k, w)’s could only exist for the
following (k, w) pairs:

4, 3), 8, w) ford=w=7,
(10, 5), (12, 6),(12,9)
(14,7) (16, w) for6=w=15,

(18,3f) for2=t=5, (20, 10), (20, 15).
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By an extension of the reasoning used to show (iii), an ABD(8, 4) has been shown
not to exist, so that an ABD(8, 5) would be the next possible size after our
ABD(8, 4) of § 3.2.1 for which existence is possible. To date, the existence of an
ABD(8, 5) has not been settled; ABD(8, 6)’s and ABD(8, 7)’s are shown to exist
in the following section.

3.2.4. ABD construction techniques. We present here several direct con-
struction techniques which provide infinite classes of ABD’s. The general ques-
tion of the existence of an ABD of arbitrary type (k, w) seems to be extremely
difficult; the positive nature of the very partial results obtained here suggests,
however, that ABD’s are not scarce.

We first present a simple infinite class of ABD’s. The construction here is due
to Ronald Graham. Franco Preparata has discovered another construction for a
class of the same parameters, based on cyclic BCH erro-correcting codes [38].

THEOREM 5. An ABD(2, 2~ 1) exists for t=2.

Proof. We extend our notation for an ABD; a row containing r “~"’s will
represent 2" rows of the actual ABD obtained by independently replacing each —
with a 0 or 1. The construction has two parts:

(i) Rows 1to t+1 have —’s in positions t+2 to k. Row i for 1 =i=t+1 has
its star in column i, the remaining columns contain digits. (For example, columns 1
to t+1 of these rows might contain cyclic shifts of *10°".)

(i) Row i for t+2=i=2k —t— 1 contains digits in columns 1 to t+1,a * in
column ¢+ 1+ |[(i—1)/2], and —’s elsewhere. The digits used are arbitrary except
they must satisfy part (ii) of the ABD definition. It is easy to check that this is an
ABD. [

We present in Table 3 an ABD(8, 7)(t = 3) constructed this way.

TABLE 3
An ABD(8, 7)

1 23 45 6 7 8
1(* 1.0 0 - - - -
210 * 1.0 - - - -
3/0 0 % 1 - - - -
411 0 0 * - - - -
510 00 0 % - - -
60 1 0 1 * - - =
710 1 1 1 - * - -
81 01 0 - * - -
91 0 1 1 - - * -
0/1 10 1 - - * -
111 110 - - - %
12/t 111 - - - %

Graham has also constructed an ABD(16, 13) with a similar two-part
method. This design is given in Table 4.
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The ABD’s of Theorem 5, while interesting as a solution to a combinatorial
problem, are essentially useless as hash functions since the number of buckets is
unacceptably large. We wish to have ABD’s such that the ratio k/w does not tend
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TABLE 4
An ABD(16, 13)

to 1. The following theorem does just that.

THEOREM 6. Given an ABD(k, w) and an ABD(k', w') such that k/w

=k'/w’', one can construct an ABD(k+ k', w+w’).

Proof. For each possible pair of rows (R,, R,) with R,€ ABD(k, w), R, €
ABD(k', w'), let the concatenation R;R, be a row of the ABD(k+k', w+w’).

This is easily shown to be a legal ABD. [

We can now form an ABD(8, 6) oran ABD(12, 9) from the design of Table 1.

Table 5 gives the ABD(8, 6) so constructed.

12345678

1] 00%000%0
2| 00*0100*
3] 00%0*100
4] 00*01%10
5] 00%011*1
6| 00%0011*
7| 00*0*011
8| 00*00*01
9] 100*00*0
10] 100*100*
11] 100**100
12| 100%1¥10
13| 100*11%1
14 100%011*
15| 100**011
16| 100%0*01

TABLE 5
An ABD(8, 6)

12345678

17] *10000%0
18] *100100*
19) *100%100
20 *1001%*10
21| ¥10011%1
22| *¥100011*
23| *¥100*011
24| *1000*01
25| 1*1000*0
26| 1¥10100*
27| 1*10*100
28| 1¥101%10
29 1¥1011%1
30| 1*10011*
31| 1¥10%011
32| 1¥100%01

12345678

12345678

33| 11*¥100*0
34| 11%1100*
35| 11%1%100
36| 11¥11*10
37) 11¥111%1
38| 11*1011*
39 11*1%011
40| 11*10*01
41 011%00*0
42| 011*100*
43| 011**100
44| 011*1*10
45) 011*11%1
46| 011%011*
47] 011%*011
48| 011%0%01

49| *01100%0
50| *011100*
51| *011*100
52| *0111%10
53] *01111%1
54| *011011*
55| *011*011
56 *0110*01
57| 0%0100*0
58] 0*01100*
59 0*01*100
60| 0¥011%10
61| 0*¥0111%1
62| 0%01011*
63| 0%01*011
64| 0%010*01
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Theorem 5 allows us to construct an infinite family of ABD’s of type (4¢, 3¢),
for t =1, using the ABD of Table 1. This is approaching utility (an ABD(16, 12) is
conceivably useful, say) but we need “‘starting” designs with large k/w to obtain a
family with large k/w. On the other hand, we know by Theorem 4 (iii) that designs
with large k/w must have k at least 2(k/w)? approximately. Unfortunately, these
tables get rapidly unmanageable by hand. Computer searches for an ABD(8, 5) or
an ABD(10, 5) also ran out of time before finding any. The question as to whether
ABD(k, w)’s existed with k/w>4/3 thus remained open until the following
theorem, showing that k/w can be arbitrarily large, was discovered.

THEOREM 7. Given an ABD(k, w) and an ABD(k’, w') one can construct an
ABD(kk', ww').

Proof. Each row R of the first ABD generates 2*™ " rows of the resultant
ABD, as follows. The set of rows of the ABD(k’, w') is arbitrarily divided into
equal-sized subsets, A, and A,. Each character x of R is replaced by a string of k'
characters: if x =*, x is replaced by **', otherwise x is replaced by some row in A.,.
The w digits of R are replaced independently in all possible ways by rows from the
corresponding sets Ao and A;.

This generates a table with 2™ rows of length kk’, each row having
(k—=w)k'+w(k'—w")=kk'—ww’ *’s. Any two rows of the resultant ABD must
contain differing digits in at least one column, since rows replacing differing digits
must differ, or if the two rows were generated from the same row of the first
design, then one of the digits replaced will have been replaced by two (differing)
rows from the second ABD. The number of *’s in each column turns out to be
2" (kk'—ww')/kk', as required, so that we have created an ABD(kk’, ww'). 0O

The theorem allows us to form ABD’s with arbitrarily large ratios k/w. For
example, we can now construct an ABD(16, 9) or an ABD(64, 27) (in general, an
ABD(4',3") for t=1) from the ABD(4, 3) of Table 1. The following table
illustrates the rows generated for an ABD(16, 9).

TABLE 6
Rowsof an ABD(16, 9)

00*0- 00*000*0****00*0
00*000*0****100*
00*000*0*****100
00*000*0****1*10
00*0100*#*+*00*0

100* > 11*100*000*0****
11*100*0*100****
11*100%01*10****

0*01 - 00*0****00*011*1
00*0****00*0011*
00*0****00*0*011

ABD(4, 3) rows > ABD(16, 9) rows
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The preceding theorem allows us to construct an ABD(4', 3°) for t=1, for
example, from our ABD(4, 3). While this does provide large k/w designs, they are
quite likely not the smallest designs for the given ratio, since by Theorem 4 (iii) we
might hope to have w grow linearly with (k/w), whereas here it grows like
(k/w)" > (k/w)*. At present, however, it is our only way of constructing large
k/w designs.

3.2.5. Analysis of ABD search times. Let us examine the worst-case number
of lists examined W, (h) for hash functions associated with the ABD’s of the last
section.

Consider first the hash function h associated with an ABD(k+k', w+w')
which was created by the concatenation (Theorem 6) of an ABD(k, w) and an
ABD(k', w') (with associated hash functions g and g’, respectively). Then

W, (k) = max W.(g) - Wi(g)

forO=s=k+k',0=su=k,0=v=k'. For example, the ABD(8, 6) created from
two of our ABD(4, 3)’s has W,(h) as in Table 7.

TABLE 7
Performance of an ABD(8, 6)

s|012345678

W.(h) \64 40 25 16 10 6 4 2 1
[A(h)] 164 40 25 15 9 6 4 2 1

Also shown are the values of [A,(h)], which is a lower bound for W,(h). The
ABD(8, 6) is seen to do nearly as well as possible. The exact asymptotics for the
worst-case behavior of the repeated concatenation of an ABD with itself are quite
simple to figure out for given values of k and w. Suppose we concatenate an
ABD(k, w) with worst-case behavior W,(g) with itself m times, yielding an
ABD(mk, mw). Consider a partial match query q € Q.. Let y; be the number of
k-column blocks which have exactly i specified bits, for 0 =i =k, so that

Y yi=m and Y iyi=s.
osisk osisk
We also have, of course, the condition that
y: =0 for O0=i=sk.
The worst-case behavior W, (h) of the resultant ABD(mk, mw) is defined by
W, (h) = max 0H<k Wi(g),

where the maximum is taken over all sets of integers y,, - - * , y« satisfying the three
conditions on the y;’s given above.
Let Wi(h) =log W,(h) for any h and for all s, so that

Wih)=max Y Wig) -y,

O=isk
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yielding an integer programming problem in (k + 1)-dimensional space. Since we
desire the asymptotic behavior as m - 00, the solution to the corresponding linear
programming problem, in which each y; is replaced by the corresponding fraction
x: = yi/ m, will give us the asymptotic behavior. The problem to be solved is thus:

maximize Wi(h)= Y Wi(g)x,

O=si=sk
subject to
Y x=1,
0o=i=sk
Y ixi=s/m,

O=isk

x=0 for O0=i=k.

We must have at least k —1 of the x;’s equal to zero in the optimal solution, since
there are only k + 3 constraints for this problem in k + 1 dimensions. Let x; and x;
be the two nonzero values, with i <j. If Wi(g) is a concave function, we have

i=|s/m|=j—-1

and
Wilh) = Wig)(j—s/m)/(j—i)+ Wi(g)(s/m—i)/(j—i).

This is the general solution. When s/m is a multiple of 1/k, then only Xy is
nonzero, equal to one. This solution does not apply when Wi(g) is not concave.
(For example, Wi(g) for our ABD(4, 3) is not quite concave, since W(g)=21is a
little too large. This convexity is the cause of the discrepancies of Table 4.) One
can show, by a combinatorial argument, that if W,(g) = A(k, w, s) for 0=s=k,
then W,(h) = A(mk, mw, s) for 0 =s = mk as well. Thus concatenation of ABD’s
can be expected to preserve near-optimal worst-case behavior.

The behavior of an ABD constructed by insertion is more difficult to work
out. It seems the worst case here occurs when the specified bits occur together in
blocks corresponding to the digits of the first ABD (of type (k, w)) used in the
construction.

Under this assumption (for which I have no proof) the worst-case behavior of
an ABD(16, 9) created from two of our ABD(4, 3)’s can be calculated to be as
given in Table 8.

TABLE 8
Performance of an ABD(16, 9)

s 0 1 2 3 4 5 6 7 8

W.(h) | 512 368 272 224 176 116 76 56 36
[A,(h)] [ 512 368 263 186 131 91 63 43 30

s 9 10 11 12 13 14 15 16

W.h) | 33 24 16 8 5 3
Al 20 14 9 6 4 3 2 1

[\S]
—
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We see that while W,(h) approximates A,(h) reasonably well, performance
has been degraded somewhat. We conjecture that better ABD(16, 9)’s exist. (It is
a situation reminiscent of the fact that recursive or systematic constructions of
error-correcting codes tend not to work as well as a random code.) An exhaustive
search by computer for better designs appears to be infeasible, so that a better
construction method is needed. (A sophisticated backtracking procedure was
unable to determine whether an ABD(8, 5) exists or not, using one hour of
computer time.)

While it is not too difficult to calculate W, (h) for small ABD’s constructed by
insertion (assuming that our conjecture about the nature of the worst case is
correct), the asymptotic analysis seems difficult. In any case, the ABD’s so
constructed yield large k/w designs with significantly improved W,(h).

3.2.6. Irregular ABD’s. The difficulty of constructing ABD’s leads one to
attempt simpler, less tightly constrained hash functions. Such ad hoc hash
functions are easy to construct for small values of k and w. For example, consider
the case k = 3, w = 2 (which does not satisfy the divisibility constraint of Theorem
4, so that an ABD(3, 2) can not exist). The “design” in Table 9 yields reasonably
good worst-case performance.

TABLE 9
An “irregular” (3, 2) design

1 2 3

Here bucket 4 contains both records 010 and 101. This hash function has

worst-case behavior as in Table 10.
TABLE 10
Behavior of the previous design

s[0 1.2 3

W, (h) | 4 3 21
Concatenating this function with itself will yield larger “designs” having a k/w

ratio of 3/2 and having good worst-case retrieval times. Another “design” yields a
k/w ratio of 2 (Table 11).

TABLE 11
An “irregular” (4, 2) design

1 2 3 4

B b-)l\)»—d!
% % %O
—

—_
OO = = ®

1 0
The above hash function has worst-case behavior shown in Table 12.
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TABLE 12

Behavior of the irregular (4, 2) design
s | 012 3 4

Ws(h)‘4 4 3 21

3.2.7. Conclusions on ABD’s. Associative designs minimize the average
retrieval time for partial-match queries, since the blocks have the optimal shape
specified in Theorems 2 and 3. In addition, they reduce greatly the worst-case
retrieval time, often nearly to the average time. While the recursive or iterative
nature of our ABD construction techniques lends itself to simple implementation,
the complexity of the hash function computation may be such that using ABD’s is
justified only when the file is stored on slow secondary storage devices.

In summary, ABD’s can be used to minimize the worst-case performance of
hashing algorithms with no increase in either the average retrieval time of the
amount of storage used.

3.3. Benefits of storage redundancy. The perhaps difficult problems involved
in constructing an ABD for a particular application can be circumvented if the
user can afford a moderate amount of storage redundancy to achieve good
worst-case behavior. By moderate I really mean moderate—the redundancy
factor is not subject to combinatorial explosion as in the designs of Ghosh et al.
Furthermore, both the worst-case and average behavior is even slightly improved
over the designs of § 3.1 and the ABD’s of § 3.2.

The technique is actually quite simple, and will be illustrated by an example.
Suppose we have a file of 2°° 100-bit records (that is, each record consists of 100
one-bit keys). The method of the previous section would have required the
construction of an ABD(100, w), for w near 20—a difficult task. Let us instead
simply create five (= 100/20) independent filing systems, and let each record be
filed once in each system. Each bucket system will have 2%° lists. The first system
will use the first 20 bits of each record as its list index, the second system will use
the second 20 bits of the record, and so on.

Now suppose we have a query q € Q,. Atleast one of the five systems will have
at least s/5 bits specified for its list index—so we can use this system to retrieve the
desired records. The number of buckets searched is not more than 22°~*1,

In general, if b =2" is the number of buckets per system, and we have k-bit
records to store (records with nonbinary keys can, of course, always be encoded
into binary), we will establish m = k/w distinct bucket systems, divide the record
into m w-bit fields, and use each field as a bucket address in one of the systems.

The worst-case behavior of this scheme follows a strict geometric inequality:

m(h) é 2w—[ws/k'|.
This surpasses even the best achievable average behavior of hash functions with

no storage redundancy, although not by very much. If half of the bits are given in a
query (i.e., s = k/2), then at most sqrt(b) = 2" buckets need be searched. The
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average behavior of this scheme is difficult to compute, but it seems likely that it
will approach the worst-case behavior, especially if w is large.

The above idea can be generalized further. Instead of taking each of the m
subfields of the record and using it directly as an address, one can treat each
subfield as a record and use an ABD(k/m, w) or some other method (such as the
trie algorithm of § 4) to calculate an address from each subfield. The efficiency of
this composite method will, of course, depend on the efficiency of the methods
chosen for each subfield.

4. Trie algorithms for partial-match queries. The results of § 3, that an
optimal block shape for a hashing algorithm for partial-match retrieval is a
“subcube” of ¥, suggests using tries as an alternative data structure. Since the set
of records stored in each subtrie of a trie is a subcube of =¥, recursively split into
smaller subcubes at each level, tries might perform as efficiently as the optimal
hash functions of the preceding section.

4.1. Definition of tries. Tries were introduced by Rene de la Briandais [11],
and were further elaborated on by E. Fredkin[15], D. E. Knuth [28, § 6.3], and G.
Gwehenberger [23].

A trie stores records at its leaves (external nodes). Each internal node at level
i (the root is at level 1) specifies an |2|-way branch based on the ith character of the
word being stored. As an example, consider the file

F={000,001,100,101, 111}

of three-bit binary words (that is, ¥ = {0, 1}). They would be stored in a trie shown
in Fig. 2. Here a left branch is taken when the corresponding bit is zero; a right
branch is taken otherwise. A record is stored as a leaf as soon as it is the only
record in its subtree; this reduces the average path length from the the root to a
leaf in a random binary trie from k to about log,|F| (see [28, § 6.3]).

b BN
7N R
000 001 100 101

FiG. 2. Atrie
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A link to an empty subtree, such as that for records of type 01* in the figure, is
indicated by the null link “~”’. Useless internal nodes having but one nonnull link
can be eliminated by storing at each internal node the character position on which
to branch. This refinement, introduced by D. R. Morrison [33], shall not be
pursued further here. Knuth has shown that the number of internal nodes will be
roughly |F|/(In2)=1.44|F|, if k »log,|F|, for random binary tries; here the
number of such useless nodes will not be excessive.

4.2. Searching tries. Given a partial match query q =(qi, - * -, qi), where
g eEU{*}) for 1=i=k, and a trie T with root node N, the following
procedure prints all records in T satisfying q. The initial call has the argument level
equal to one. If M is an internal node of T, the M, denotes the root of the subtree
corresponding to the character ¢ € X, or null if no such subtree exists.

Procedure Triesearch (N, g, level);
begin
if N is a leaf containing record r then
begin if r satisfies g then print (r) end
else if Gieve # ™ then
begin if N,  # null then Triesearch (N,__, g, level+1) end
else for c€X do
if N. #null then Triesearch (N,, g, level +1)
end Triesearch

4.3. Analysis of Triesearch. We will restrict our attention to binary tries in
this section; the analysis for general |E|-ary tries would be similar. Since for
nonbinary alphabets, record r could be encoded in binary by concatenating binary
representations of each character r; (for 1=i=k), this entails no real loss in
generality; binary tries can be used to store arbitrary data. In fact, Theorem 1
suggests that this might be even a good idea, since we could then branch on the first
bit of the representation of each character of r before branching on the second bit
of each, and thus obtain record-spaces for each subtree more closely in agreement
with Theorem 1. Bentley [3] has examined a similar approach in more detail; we
shall not pursue it further here.

Our cost measure c¢(n, s, k) shall be the average number of internal and
external nodes examined by Triesearch to respond to a partial match query q € Q,,
given that the trie contains n k-bit records.

Consider an arbitrary node M at level w+1 in a trie. There are at most 2"
nodes at this level. Let m, - - - m,, denote the common prefix of the records in the
subtree with root M; the bits m, - - - m,, specify which w branches to take to get
from the root of the trie to M. Finally, let p(n, w, k) denote the probability thatin a
random trie there is a node M at level w+1 with prefix m, - - - m, (this is
independent of the actual values of m, - - - m,, if each n-record file F is equally
likely). Note that there will be such a node if and only if the number of records with
prefix m, - - - m, is not zero and the number with prefix m, - - - m,,_; is not one.

Thus
pmwio= () 1000 )-CL5 )2
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Assuming that n « 2, we may approximate the latter two terms by the probability
of having zero (resp., one) success in 27" (resp., 2*™"') trials, where the
probability of success is n27*. Using the Poisson approximation to the binomial
distribution, we have

p(n, w,k)=1—exp (—n2"")—n2"" exp (—n27""").

This expression is independent of k, as we might expect, since once enough bits of
arecord are known to distinguish it, it is stored as a leaf in the trie, independent of
the total record length. The function p(n, w, k) is very nearly a step function; it is
approximately 1 for w <log, (n), going very quickly to O for w >log, (n), passing
the value 3 at (log, (n) —.0093), approximately.

Thus probability that a node M at level w + 1 will be examined for a partial
match query g € Q. is just A,..(k, w, s), where Anin(k, w, s) is the function defined
in § 3.12. Since there are 27" nodes at level w + 1 in a complete binary tree, we get
that the total expected cost of Triesearch is

1+ Z p(n9 W, k) * Amin(k, W, S),

1=wsk

= Y (1-exp(—n2™")—n2""exp (—n27"*"H(2—s/k)".

1=sw=k

Substituting w = log, (n) + z, we get that the above is equivalent to

) (1—exp (=27°) =277 exp (=2' *))(2— s/ k) =",
—loga(n)=z=k—logy(n)

For z=-1, p(nlogy(n)+z k)=.82, so the sum for negative z is
ck(k—s)"'(2—s/k)°=" for some ¢, .82=c=1.00. For z =0, the sum is max-
imized when s/k = 0. However, even in this case the sum is not more than 1.54
(2—s/k)"®=", by numerical calculation, so that the total cost of the algorithm is
approximately

ck(k—s)"'(2—s/k)=",

where the constant ¢ of proportionality is less than 2.54.

4.4. Conclusions on tries. Tries are roughly as efficient as the optimal hashing
algorithms for random data for which the number of lists used is |F|. For the usual
situation involving highly nonrandom data, tries are probably the best practical
choice, since the tries will store any data efficiently, whereas a hashing algorithm
which selects record bits to use as a list index might result in a large number of
empty lists and a few very long lists. For nonrandom data, an interesting problem
arises if the branching decision may be made on any of the untested bits; we wish
to choose the bit on which to split the subfile that will yield the best behavior.
(Note that it is the most unbalanced tries which perform best.) For this modifica-
tion, it may also be possible to take into consideration the probability that any
given bit may be queried.

5. Conclusions. The hashing and trie-search algorithms presented perform
more efficiently than any previously published partial-match search algorithms.
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Retrieving from a file of n k-bit words all words that match a query with s bits
specified takes approximately n'°®“"** time, a little more than n'~**, our conjec-
tured lower bound on the time required by any algorithm. The main open
problems are the proof or disproof of this conjecture, the existence questions for
ABD’s of general parameters, and the generalization of the results of this paper to
handle nonrandom data with nonuniform query distribution probabilities.
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