THE GAME OF "N QUESTIONS" ON A TREE*

Ronald L. RIVEST

M.I.T., Department of Electrical Engineering and Computer Science, Cambridge, MA 02139, U.S.A.

Received 4 February 1976
Revised 7 April 1976

We consider the minimax number of questions required to determine which leaf in a finite binary tree T your opponent has chosen, where each question may ask if the leaf is in a specified subtree of T. The requisite number of questions is shown to be approximately the logarithm (base \(\phi \)) of the number of leaves in T as T becomes large, where \(\phi = 1.61803... \) is the "golden ratio". Specifically, \(q \) questions are sufficient to reduce the number of possibilities by a factor of \(2/F_{q+3} \) (where \(F_i \) is the \(i \)th Fibonacci number), and this is the best possible.

1. Introduction

We consider the problem of identifying a leaf in a finite binary tree T by posing a sequence of questions of the form, "is the leaf in subtree S of T?", for various S. Our main result is that (in a sufficiently large tree) \(q \) questions are sufficient to reduce the number of possibilities by a factor of \(2/F_{q+3} \), where \(F_i \) is the \(i \)th Fibonacci number. This generalizes a well-known result that every finite binary tree contains a subtree having between 1/3 and 2/3 of all the tree's leaves [4, 6]. Our result is obtained by analyzing a "greedy" algorithm which always chooses the subtree S which has a number of leaves as nearly equal to one-half of the number of remaining leaves as possible. We show that this is the best possible worst-case result by demonstrating that the "Fibonacci trees" yield a corresponding lower bound on the achievable performance.

2. Definitions

We shall express our problem by using finite sets of finite-length words over the alphabet \(\Sigma = \{0, 1\} \) to represent binary trees, and using regular expressions to denote sets of words [2]. We say that \(T \subseteq \Sigma^* \) is a binary tree iff T is prefix-free: no word in T is a prefix of any other word in T. In this paper all binary trees will be finite. Each word in T corresponds to a path from the root to a leaf in a

* This research was supported by the National Science Foundation under research contract No. DCR74-12997.
"conventional" binary tree \([3, \text{Section 2.3}]\) in a natural manner (zeroes indicating left branches and ones indicating right branches).

If \(S \subseteq \Sigma^*\), we define

\[
\pi S = \{ x \in \Sigma^* \mid (\exists y \in \Sigma^*)xy \in S \}
\]

to be the set of: prefixes of \(S\). Note that \(S \subseteq \pi S\). For brevity we let \(\pi x\) denote \(\pi\{x\}\) for \(x \in \Sigma^*\).

To illustrate, the first six Fibonacci trees are shown in Fig. 1; they are defined by

\[
\begin{align*}
\mathcal{F}_1 &= \mathcal{F}_2 = \{ A \} \quad (A \text{ denotes the empty word}) \\
\mathcal{F}_i &= 0\mathcal{F}_{i-2} \cup 1\mathcal{F}_{i-1} \quad \text{for } i \geq 3.
\end{align*}
\]

The elements of \(\mathcal{F}_i\) are boxed; other elements of \(\pi\mathcal{F}_i\) are circled.

Given a binary tree \(T\) and \(x \in \pi T\), the subtree of \(x\) in \(T\) (denoted \(T_x\)) is defined

\[
T_x = x\Sigma^* \cap T.
\]

The complement \(T - T_x\) of the subtree of \(x\) in \(T\) is denoted \(T'_x\).

Consider the following two-person game played on a binary tree \(T\). Player \(A\) chooses a word \(x_0 \in T\) which player \(B\) wishes to determine by posing as few questions as possible to \(A\). All of \(B\)'s questions must be of the form, "is \(y\) a prefix of \(x_0\)?" for some \(y \in \pi T\), and player \(B\) obtains \(A\)'s response to the \(i^{th}\) question before posing his \((i+1)^{th}\) question.

The model proposed here (binary trees) corresponds reasonably well to a large number of practical applications where a hierarchical organization of concepts
forms the framework for an identification process, and specific tests exist for determining whether the unknown quantity is a number of a given category in the hierarchy. For example, the problems of identifying an unknown disease in a patient, an unknown chemical compound, or a faulty gate in a logic circuit might be viewed in this manner. The model used here is a restricted form of the general “group-testing” problem [5, 7]; the difference is that in our situation only certain subsets (corresponding to subtrees) may be tested.

It is well known [4, 6] that with one question \(B \) can reduce the number of possible candidates for \(x_0 \) to no more than \(2 \mid T \mid /3 \) if \(\mid T \mid \geq 2 \), and that this is the best possible result (consider \(T = \{0, 10, 11\} \)). In general \(B \) can achieve this by picking \(y \) so that \(\max(\mid T_y \mid, \mid T'_y \mid) \) is as near to \(\mid T \mid /2 \) as possible.

We will denote the worst-case size of the subset that \(B \) can constrain \(x_0 \) to lie in after asking \(i \) questions by \(P_i(T) \):

\[
P_0(T) = \mid T \mid,
\]

and

\[
P_{i+1}(T) = \min_{y \in \pi T} (\max(P_i(T_y), P_i(T'_y))) \quad \text{for } i \geq 0.
\]

For example, \(P_i(\mathcal{F}_{i+3}) = 2 \) for \(i \geq 0 \), as we shall prove later.

In order to talk meaningfully about the usefulness of a number of questions, it is necessary that the tree \(T \) be large enough so that target leaf is not identified before all the questions are asked. With this understanding, we define

\[
r_i = \text{lub}\{P_i(T) / \mid T \mid : P_i(T) \geq 2\}
\]

to be the least upper bound on the fraction of \(T \) that \(B \) can constrain \(x_0 \) to lie in after \(i \) questions. Given that \(\mid T \mid \) is large enough (say, \(> 2^i \)), player \(B \) can reduce the number of possibilities for \(x_0 \) to at most \(r_i \mid T \mid \) with \(i \) questions.

In the next section we show that \(r_i \geq 2/F_{i+3} \) for \(i \geq 1 \), using Fibonacci trees. In Section 4 we show that \(r_i \leq 2/F_{i+3} \) for \(i \geq 1 \) using the “greedy algorithm”.

3. The lower bound

Theorem 3.1. \(r_i \geq 2/F_{i+3} \) for \(i \geq 0 \).

Proof. We prove this by demonstrating that \(P_i(\mathcal{F}_{i+3}) \geq 2 \) for all \(i \), using induction on \(i \).

By inspection, \(P_i(\mathcal{F}_i) = 2 \), so we have that \(r_i \geq 2/3 \).

For the inductive step, we first remark that if \(T = 0R \cup 1S \) is a binary tree, then \(P_i(T) \leq P_i(U) \) for all \(i \) if \(I \supseteq aR \cup bS \) where \(a, b \in \Sigma^* \) such that \(\{a, b\} \) is prefix-free. A question about \(aR \cup bS \) can be transformed into an equivalent question about \(T \) by replacing an initial \(a \) or \(b \) with 0 or 1, respectively.

We next note that for any \(x \in \pi \mathcal{F}_i \), at least one of \((\mathcal{F}_i) \), and \((\mathcal{F}_i)' \), includes a tree
\(G = a\mathcal{F}_{i-2} \cup b\mathcal{F}_{i-3} \) for some \(\{a, b\} \subseteq \Sigma^* \) which is prefix-free. There are four cases depending on \(x \):

(i) If \(x \in 0\Sigma^* \), we have \(G \subseteq (\mathcal{F}_i)^* \) with \(a = 11 \) and \(b = 10 \).
(ii) If \(x = 1 \), we have \(G \subseteq (\mathcal{F}_i)^* \) with \(a = 11 \) and \(b = 10 \).
(iii) If \(x \in 10\Sigma^* \), then \(G \subseteq (\mathcal{F}_i)^* \) with \(a = 0 \) and \(b = 111 \).
(iv) If \(x \in 11\Sigma^* \), then \(G \subseteq (\mathcal{F}_i)^* \) with \(a = 0 \) and \(b = 10 \).

These are trivial consequences of the definition of \(\mathcal{F}_i \). The definition of \(P, \) now yields immediately that \(P_i(\mathcal{F}_{i+3}) \geq 2 \), proving that

\[
 r_i \geq 2/F_{i+3} \quad \text{for} \quad i \geq 1.
\]

4. The upper bound

We now show that \(r_i \leq 2/F_{i+3} \) for \(i \geq 1 \) by demonstrating that the "greedy algorithm" (which always asks the \(y \in \pi T \) which minimizes the value of \(\max(|T_1|, |T_2|) \)) is at least this efficient.

For notational convenience we shall use the variables \(a, b, c, \) etc., in \(\pi T \) to denote \(|T_1|/|T_2| \), etc., in addition to their usual meaning.

Let \(a \) denote the longest word in \(\pi T \) such that \(a > 1/2 \), (there is clearly only one), and let \(b, c \) denote \(a0, a1 \) in an order so that \(b \geq c \).

Lemma 4.1. One of \(y = a \) or \(y = b \) minimizes \(\max(y, 1 - y) \) for \(y \in \pi T \).

Proof. Let \(y \) be the word minimizing \(\max(y, 1 - y) \). If \(y > 1/2 \), then \(y \in \pi a \); \(y = a \) is the word in \(\pi a \) minimizing \(\max(y, 1 - y) \). If \(y < 1/2 \) then \(y \in \{z0, z1\} \) for some \(z \in \pi a \). But if \(y = z0 \) and \(z1 \in \pi a \), then \(z1 \) is closer to 1/2 than \(y \) since of two positive real numbers whose sum is less than one, the larger is always closer to 1/2. Thus for \(y < 1/2, \) \(y = b \) minimizes \(\max(y, 1 - y) \).

The previous lemma implies that the greedy algorithm will either use \(a \) or \(b \) as the next question: \(a \) if \(1 - a > b \), and \(b \) if \(1 - a \leq b \).

We need to introduce notation analogous to the \(P_i(T) \) notation which includes as a parameter the worst-case split obtainable in \(T \), because our analysis depends heavily on the fact that if one question yields a poor split, then the next question is guaranteed to do somewhat better. Let

\[
 R_i(s) = \text{lub}\{P_i(T) / |T| : P_i(T) \geq 2 \land P_i(T) / |T| = s\}
\]

denote the least upper bound on the fraction of \(T \) that \(B \) can constrain \(x_0 \) to lie in, given that \(P_i(T) \geq 2 \) and that the worst result of the first "greedy" question contains exactly \(s / |T| \) leaves. The domain of \(R_i \) is \(1/2 \leq s \leq 2/3 \), since \(P_i(T) / |T| \) is always in this range (if \(a > 2/3 \), then \(b \geq a/2 > 1/3 \).
The game of N questions on a tree

Theorem 4.2.

$$R_i(s) \leq \begin{cases} 2s/F_{i+2} & \text{for } 1/2 \leq s \leq F_{i+2}/F_{i+3} \\ 2(1-s)/F_{i+1} & \text{for } F_{i+2}/F_{i+3} \leq s \leq 2/3. \end{cases}$$

Proof. We first observe that the theorem implies that $1/F_{i+2} \leq R_i(s) \leq 2/F_{i+3}$ for $1/2 \leq s \leq 2/3$. The proof proceeds by induction on i. For $i = 1$ we obtain $R_1(s) \leq s$ for $1/2 \leq s \leq 2/3$ directly.

For larger i, the greedy algorithm first asks the question y (here $y = a$ or $y = b$). Let U denote the subtree of T (either T_y or T'_y) with size $s \cdot |T|$, $(T_a$ if $y = a, T'_b$ if $y = b$), and let V denote the complement of U with respect to T.

If $x_0 \in V$, then we can say that

$$R_i(s) \leq \frac{|V|}{|T|} \cdot \max_{1/2 = s \leq 2/3} (R_{i-1}(s)) \leq \frac{1}{2} \cdot \frac{2}{F_{i+2}} = \frac{1}{F_{i+2}}.$$

But $1/F_{i+2}$ is the minimum value obtained by the claimed upper bound for $R_i(s)$, so in this case the upper bound is correct.

On the other hand, if $x_0 \in U$, then we can argue that $P_i(U) \leq |V|$. If $y = a$, then $b < 1 \cdot a$, $U = T_a$, and $P_i(U) \leq |T_b| \leq |T'_b|$. Or if $y = b$, then $1 \cdot a = b$, $U = T'_b$, and $P_i(U) \leq |T_a| \leq |T_b|$ (remember that b is larger than its brother c, so that $\max(c, 1-a) = 1-a$). In either case we have that

$$R_i(s) \leq s \cdot \max_{1/2 = s \leq 2/3} (R_{i-1}(t)),$$

since $|V|/|U| = (1-s)/s$. For $1/2 \leq s \leq F_{i+2}/F_{i+3}$ this directly yields

$$R_i(s) \leq s \cdot \max_{1/2 \leq t \leq 2/3} R_{i-1}(t) = 2s/F_{i+2}.$$

For $F_{i+2}/F_{i+3} \leq s \leq 2/3$ we obtain (since $(1-s)/s \leq F_{i+1}/F_{i+2}$)

$$R_i(s) \leq s \cdot \max_{1/2 \leq t \leq (1-s)/s} R_{i-1}(t) = s \cdot R_{i-1}((1-s)/s) = 2(1-s)/F_{i+1}.$$

This finishes the proof of the theorem.

The functions $R_1(s)$, $R_2(s)$, and $R_3(s)$ are plotted in Fig. 2.

Corollary. $r_i = 2/F_{i+3}$.

Thus, with two questions player B can reduce the possibilities for x_0 by a factor of $2/5$, and so on. The efficiency of each question approaches the limit:

$$r = \lim_{i \to \infty} (r_i)^{1/i} = \emptyset^{-1} = 0.61803\ldots,$$

the inverse of the golden ratio \emptyset.
We remark that although the greedy algorithm suffices to give us an upper bound on r_n, there exist trees for which the greedy algorithm is not the best strategy. The “greedy algorithm” is shown to perform very poorly in a similar testing situation in [1].

References