
SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

ON THE WORST-CASE BEHAVIOR OF
STRING-SEARCHING ALGORITHMS*

RONALD L. RIVEST’

Abstract. Any algorithm for finding a pattern of length k in a string of length n must examine at
least n k + of the characters of the string in the worst case. By considering the pattern 00 0, we
prove that this is the best possible result. Therefore there do not exist pattern matching algorithms
whose worst-case behavior is "sublinear" in n (that is, linear with constant less than one), in contrast
with the situation for average behavior (the Boyer-Moore algorithm is known to be sublinear on the
average).

Key words, string-searching, pattern matching, text editing, computational complexity, worst-
case behavior

1. Introduction. Let s sls2""sn denote a string of length n over some
finite alphabet E, and similarly let p PlP2""Pk denote a pattern of length k
over the same alphabet. The "string-searching problem" is to determine if the
pattern occurs in the stringmthat is, if

(! j)(1 =<j _<-n- k + 1)A(pp2 p s.isj+l"" Sj+k-1).

We denote this occurrence as p _-< s.
Several efficient algorithms exist for determining whether p _-<s, given a

pattern p of length k and a string s of length n. For example, the algorithm of
Knuth, Morris and Pratt [3], [4] first constructs (in time O(k)) a finite state
automaton to recognize the regular set Z*pZ* (see [1] also). Then p _-<s iff the
automaton accepts s, which can be determined in time O(n), The entire algorithm
runs in time O(n + k). As an example (which we shall use later), for p 0101 the
automaton of Fig. 1 would be constructed. Here we assume that Z {0, 1}. State 1
is the initial state and state 5 is the only accepting state.

FIG.

Recently, Boyer and Moore published an algorithm [2] which is significantly
faster than the Knuth-Morris-Pratt algorithm on the average. The latter
algorithm examines every character in s exactly once, whereas the Boyer-Moore
algorithm looks at only some fraction c < 1 of the characters on the average; a

* Received by the editors June 15, 1976, and in revised form October 5, 1976.
f Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts 02139. This report was prepared with the support of the National Science Foundation
Grant GJ-43634X, Contract DCR74-12997-A01, and Grant MCS76-14294.

669

670 RONALD L. RIVEST

typical value for c might be .24 when p is a five-letter English word. The
worst-case behavior of the algorithm is nonlinear in n and k, although a slight
modification of their algorithm due to B. Kuipers results in a linear worst-case
time algorithm as well. (Knuth [5] has shown that the average number of times a
character in s is examined by the modified algorithm is bounded above by 6; the
proof, however, is very complicated.) The Boyer-Moore algorithm requires that
the string s be stored in some sort of random-access memory in order to achieve
any savings. Their procedure examines Sk, then sk-1, and so on, until an sj such that
s. pi is found. Then some of the initial characters of s may be deleted and the
process repeated with the shorter string s. If the examined (matching) subsection

si+l sk of s occurs nowhere else in p, the first k characters of s may be skipped,
even though only k -] + 1 of them have been examined. Otherwise some smaller
number may be discarded, reflecting the next possible alignment of Si+I"’’Sk
with some subsection of p. Another heuristic is also used: the latest occurrence of
sj in p (hopefully preceding p.) is used to determine how many characters from s
can be deleted before si aligns with some character in p. In the best case we find
that sk Pk and that sk occurs nowhere in p; then k characters of s can be skipped
at the cost of examining just one.

The focus of this paper is on the worst-case behavior of such pattern-
matching algorithms. We answer (in the negative) the conjecture that a pattern-
matching algorithm can exist whose worst-case behavior is "sublinear" in the
same sense that the Boyer-Moore algorithm is sublinear in its average behavior.
More precisely, we show that for every pattern p and for every correct algorithm
A which determines if p _-< s for arbitrary strings s, there exists a string s which
causes A to examine at least Isl-Ipl / 1 characters of s. This result is given in 2 of
this paper. In 3 we show that this lower bound is the best possible by considering
an algorithm for the pattern p 00. 0.

2. The worst-case lower bound. The approach models the method Rivest
and Vuillemin used to prove the Aanderaa-Rosenberg conjecture [5]. Fix the
pattern p and let A, be any algorithm for determining whether p -<_ s for any string
s. Let w(Ae, n) denote the maximum number of characters in s examined by
algorithm Ap for any string s in En; w(Ap, n) is the worst-case cost function for
algorithm A.

We assume that w(Ap, n)<-_ w(Ap, n + 1) for all Ap and all n. Otherwise if
w (Ap, n) > w (Ap, n + 1) for some n an improved algorithm A can be derived
from Ap by letting A behave on inputs s just as Ap does whenever Is n and
lettingA, behave on the strings s of length n just as Ap would behave on the string
sz where z Pk (simulating the query of the (n + 1)st character z). Since (p _-< s)
(p =< sz), we have that w (A ’p, n) <= w (Ap, n + 1), and w (A’p, m)= w (Ap, m) for
m n. Thus w(A’p, n) < w(A’p, n + 1); repeating this procedure as necessary

such that w (Ap, n) < w (Ap, n) for all n andyields an improved procedure Ap

w(Ap, n) =< w (A, n + 1) or all n.
THEOREM 1. (p)(VAp)(n)(w(A, n)>=n-k + 1), where k
Proof. We shall in fact prove that w (Ap, n) n for infinitely many n, such that

these values of n occur not more than k apart. Using our assumption that
W (Ap, n) w (Ap, n + 1) then yields the theorem.

STRING-SEARCHING ALGORITHMS 671

Let f(p, n) denote [{s Is Zn/k P -< s }[, the number of strings of length n which
contain p as a substring. The following result is immediate from [5].

LEMMA 1. Ill(P, n)0(mod]E[), then w(Ap, n)= n.
The proof of Lemma 1 will not be given here; we only remark that it follows

from a calculation of f(p,n) using a decision-tree representation of Ap. If
w(ap, n)< n then f(p, n)-= 0 (mod [El) follows.

In order to calculate tip, n) we make use of the finite state automaton (fsa)
constructed by the Knuth-Morris-Pratt algorithm for recognizing Z*pE*. Let the
states of this fsa be numbered so that state 1 is the initial state, state (for 1 -< -< k)
is arrived at whenever a string ending in plP2 Pi-1 has been read (and this is the
largest such i), and state k + 1 is the accepting state. There is a transition labeled Pi
from state i- 1 to state (for 1 <-i =< k); all other transitions leaving state i- 1
arrive at some state numbered strictly less than i.

Let gp(n,i) denote [{slsE" and the fsa on s ends in state i}l. Then
gp(n, k + 1)=f(p, n). The fsa will be used to derive a set of linear recurrences for
the vector gn (gp(n, 1), gp(n, 2),. ., gp(n, k + 1)). In fact g+l T. gn, where T
is a k + 1 by k + 1 matrix whose (i,]) entry is the number of symbols in E which
cause a transition from state j to state i. For example, for p 0101 the correspond-
ing matrix T= {tij} is

1 0 1 0 0

1 1 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 2

In general, the sum of each column is IN], ti,i_ --1 for 2_-<i-<k +1, and
tij 0 if j <i-1. Also, tk+l,k+l IEI. To initialize the recurrence we have g0
(,o,o,...,o).

Since we are interested in f(p, n) gp (n, k + 1) only with respect to its residue
Wmodulo I.EI, we consider the reduced recurrence gn+l "gn (mod 151), where

the entries of T’ are those of T reduced modulo 11. In fact T’ is just T with the
(k + 1, k + 1) entry replaced by 0. We now observe that gp (n, k + 1) -= gp (n 1, k),
so we will concentrate on the parity of gp (n, k) from now on. The k by k upper left
submatrix T" of T’ maps (gp(n, 1) (mod Ixl),,,,, g (n, k) (mod I 1)) onto tn+1.

Now T" induces a mapping from F {0, 1,...,]1-1}k to itself. Further-
more, T" is easily seen to be invertible; sequentially adding row to row + 1 for

1, 2,. , k will reduce T" to an upper triangular form with IE]- 1 along the
main diagonal (we assume that IE] > 1).

Since T" is invertible, the directed graph G, whose vertices are elements of F
and whose edges (x, y) are present whenever T"x y, consists of a set of disjoint
cycles. We need to show that the cycle containing; (1, 0, 0, , 0) has a vertex
whose kth coordinate is nonzero at least once every k steps.

We first observe that the all-zero vector 0k is not an element of tlie cycle,
since it belongs to a one-element cycle (it is fixed by the linear mapping T"), and
is not the zero vector.

672 RONALD L. RIVEST

Next we observe that for any vector x F such that xi 0 and x. 0 for j > i,
the vector y (T")k-ix has Yk 0. In general, if x 0k, xk 0 and is the largest
integer such that xi 0, then (T"x)/l x since the lower diagonal portion of T" is
zero except for the subdiagonal, which consists entirely of ones.

This completes the proof of
LEMMA 2. (Vr/)> k)(=:] j)(O<-j <k)(w(Ae, n-j)= n-j).
Theorem 1 now follows directly from Lernma 1 and our assumption. [’1

3. An upper bound on the worst-case. The lower bound of [s l-]P[+ 1 proved
in the last section may seem weak at first; one’s first guess might be that
w(Ap, n)=n as long as n->[p[. This, however, turns out to be false, as we
demonstrate in this section by a careful analysis of an algorithm for the pattern
p Ok.

THEOREM 2. (p ok):(:l Ap)(w(Ap, n) n-p,(n)), where

/z(n)={0 if nP=-O (mod k + l) or n =-k (mod k + l),
n (mod k + 1) otherwise.

Proof. The algorithm Ap works in a fashion similar to the Boyer-Moore
algorithm. It is given below.

ALGORITHM Ap for p 0k.
Input: a string s ls2" sn.
Local variables: r, i, j
Procedure:

r:=O;i:=O;j:=O;
repeat if r + k > n then

begin print ("p s"); exit end;
if Sr+k-i 0 then j: j + 1
else begin r := r + k j;

i:=j;
j:=0

end;
until +] k;
print ("p =< s at position", r + 1).

Inductively the algorithm knows at the top of the repeat loop that positions
S,.+l, Sr+2,’’’,Sr/i and positions Sr+k-j+,’’’,Sr+k are all zero; it next tests
position sr/k-j and adjusts r, i, and j accordingly. Let c(m, i, j) denote the
maximum number of characters in s that Ap needs to examine, starting from some
instant when m n -r and and j define the state of Ap’s knowledge about s as
above. Thus w(Ap, n)= c(n, 0, 0) by definition. Furthermore, we have by con-
struction that

0 ifi+j=korn<k,
(,) (n,c i, j)

max(c(n,i,j+l),c(n-k+j,j,O))+l otherwise.

Define for integers m and i, 0-< _-< k 1, 0 -< m -< k,
0 ifm =k,

/3(m,i)= m+l ifi>mandm<k,

m -i ifi_--<m and m <k.

STRING-SEARCHING ALGORITHMS 673

c(n,i,])={O ifi+]=korn<k,
n -i-j-fl(m, i) otherwise, where m n (mod k + 1).

Proof. By induction, as in the definition (.) of c(n, i, j). The lemma is clearly
correct if +] k or n < k. Henceforth, assume +] < k <= n. There are two cases
to consider.’ Let m denote n (mod k + 1).

Case 1. c(n, i,]) =c(n, i,] + 1)+ 1. Here the lemma follows directly as long as
i+j+ 1 k; otherwise c(n,i,j+ 1)<-c(n-k +j,], 0), so here we can appeal to
Case 2.

Case 2. c (n, i, j) c (n k +],], O) + 1.
Case 2a. n k +] < k. Here we know that c(n, i,j + 1) >-c(n k +],/’, 0) so the

lemma holds by Case 1. (If both n- k +] < k and +j + 1 k then the lemma
follows by the definition of fl).

Case 2b. n-k +j>-_k.
Case 2b(1). +] + 1 k. Here we need to show that

n-i-j-Ct(m,i)=n-k+l-Ct(n-k+j (mod k + 1), j),
or

fl(m, i) [3(n 1 (mod k + 1), k 1 i).

Case 2b(1)i. m =k. Here both sides of (**) are 0, since n-i-l=
k- i- 1 (mod k + 1).

Case 2b(1)ii. i>m and m<k. Both sides of (**) are m+l, since
n-i-I (modk+l)>k-i-1.

Case 2b(1)iii. i<=m and m <k. Both sides of (**) are m-i, since 0=<

m-i-l<k-i-1.
Case 2b(2). +j + 1 < k. Here it suffices to show that

n-i-j- 1-/3(m, i)>-n-k +j-h-fl(n-k +j (mod k + 1), j),

that is, that c(n, i, j + 1) >_- c(n k +],], 0), so that we may appeal to Case 1. Since
rn + 1 --- n k (mod k + 1), this is equivalent to

k-i-j>-l+(m,i)-8(m+j+l (modk + 1), j).

Note that the left-hand side of (***) is strictly greater than one, since we are in
Case 2b(2).

Case 2b(2)i. m k. Here the right side of (***) is at most one.
Case 2b(2)ii. i>m. The right side of (***) equals 1 since m +/’+ 1 <

i+f+l<k.
Case 2b(2)iii. -< m. If m + + 1 < k, then the right hand side of (***) is -i. If

m+]+l=k then it is l+m-i=k-i-j. If m+j+l>k then if m<k it is
1 +(m-i)-(m +] + 1-k 1 + 1)= k -i-i; otherwise it is one.

This completes the proof of the lemma. Theorem 2 follows since
/3 (n (mod k + 1), 0) (n). U

We conclude from Theorem 2 that when searching for the pattern 0 in a
string s Z, we only need to examine at most n-k + 1 characters of s if
n --- k 1 (mod k + 1). The uniform lower bound of theorem 1 can therefore not
be improved. Note that the use of the pattern 0 in Theorem 2 means that
Theorem 1 is best possible even for a binary alphabet.

674 RONALD L. RIVEST

Conclusions. We have shown that pattern matching in strings is inherently
linear (with constant 1) in the length of the string. An open problem is to prove the
equivalent of Theorem 2 for all patterns"

(Vp)(l Ap)(n)(w(Ap, n)= n-Ipl+ 1).

Acknowledgment. I would like to thank Donna Brown for several helpful
discussions, during one of which a weak version of Theorem 2 was observed. I
would also like to thank Leo Guibas and Robert Floyd for communications
regarding improved proofs of Theorems 1 and 2, respectively.

REFERENCES

A. V. AHO, AND M. J. CORASICK, Fastpattern matching; An aid to bibliographic search, Comm.
ACM, 18 (1975), pp. 333-340.

[2] R. S. BOYER AND J. STROTHER MOORE, A fast string searching algorithm, Tech. Rep. 3,
Stanford Res. Inst., Mar. 1976. To appear, Comm. ACM.

[3] D. E. KNUTH, J. H. MORRIS AND g. 1. PRAT/’, Fast pattern matching in strings, Computer
Science Department Tech. Rep. CS-74-440, Stanford Univ., Stanford, CA, 1974.

[4],Fast pattern matching in strings, this Journal, 6 (1977), pp. 323-350.
[5] R. L. RIVEST AND J. VUILLEMIN, A generalization and proof of the Aanderaa-Rosenberg

conjecture, Proc. 7th SIGACT Symp. on Theory of Computing, pp. 6-11.

