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REMARKS ON A PROPOSED CRYPTANALYTIC ATTACK ON
THE M.I.T. PUBLIC-KEY CRYPTOSYSTEM
Ronald L. Rivest

In this note I would like to demonstrate that the "M.I.T. Public-Key
Cryptosystem” (developed by Adi Shamir, Len Adleman, and myself) (1) is
essentially invulnerable against the sort of attack recently proposed by
G.J. Simmons and M.J. Norris (2). (In all fairness, we point out that
they made no claims that the proposed attack method had any chance of

success. Here we show that it really has none.)

In our scheme, a message M is encrypted by raising it to a power e,
modulo n. Here e and n are integers published by the intended
recipient of the encrypted message. The recipient can decipher the
received ciphertext by raising it to another power d, modulo n. The
recipient has constructed n to be the product of two large prime numbers
p and g, and has chosen e to be relatively prime to (p-1)-(g-1l). The
decoding exponent d is the multiplicative inverse of e, modulo
(p=1)+(g-1). Only the recipient knows the correct decoding exponent d,
since the computational difficulty (f5r anyone else) of computing d,
given n and e, is provably equivalent to the difficulty of factoring n.
Since factoring large numbers is apparently very difficult, one can be
confident that publishing e and n will not enable an "enemy" to
compute the corresponding dececding exponent d. Only the recipient knows

the factors of n; therefore only he can compute d.

A more detailed exposition of our method is given in our paper (1). 1In
particular, the proof that shows that computing d and factoring n are

egivalent in complexity is given there in more detail.

Being able to factor n (or equivalently, finding d) would clearly
enable an "enemy" to decipher every message encrypted with the given e
and n. However, a cryptographic system should be considered insecure if
there exists any way of deciphering a large fraction of the enciphered
messages (éiphertexts), even if deciphering every ciphertext is not
possible. The paper by Simmons and Norris (2) suggests that such a pro-
cedure may exist for our system. The point of our note here is to demon-
strate that the fraction of ciphertexts that cin be successfully broken
with their approach is truly insignificant — one would be better off

spending one's time trying to factor n.
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The proposed method is to decrypt a ciphertext C (where C = Me(mod n))
by successively re-encrypting C until C is again obtained. Then the
original message M 1is the penultimate message in this list. More

e

formally, one sets Cl to C, and computes Ci+l = Ci (mod n) until

ci+l = C. Then Ci = M. This method will be practical only if i turns
out to be relatively small (e.g. less than a million). Let's call this

i
i the "iteration exponent" of M; then M°" = M (mod n).

Two questions immediately arise:

(i) Is there a significant probability that there is a small, universal,
iteration exponent which works for all messages M?

(ii) Is there a significant probability that a significant fraction of the

messages M have small iteration exponents?

Obviously, a positive answer to either question would imply that our
system was "insecure" in a very real sense. Fortunately, we will see that

both questions have very definite negative answers.

Our paper (1) makes definite suggestions as to how the prime numbers p
and g should be chosen. These suggestions are relevant here, and this
note should help to make those suggestions less mysterious. They were
that:

(a) p-1 and g-1 should contain very large prime factors (call them
'.:.-"> p' and %“, respectively), and

(b) similarly, p'~l and q'-1 should contain very large prime factors
(call them p" and q").
Thus, we may write

p=a'p'+l, g = b'g'+l

p' = a"p"+1, g' = b"q"+1
for some small a', b', a", b". Although (a) and (b) almost certainly
hold for a randomly chosen pair of primes p and g, it is simple to
construct p and gq to explicitly satisfy.(a) and (b). The existence
of p', p", q', and q" will be seen to make the proposed cryptanalytic
procedure quite futile.

We say that "M belongs to the exponent k, modulo n" if k is the least
aaan : k : ; :
posltive integer such that M" = 1 (mod n). In order to find the iteration

exponent of M we must determine:

(i) What is the exponent k to which M belongs, modulo n?
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(ii) What is the exponent & to which e belongs, modulo k?

Then & is the iteration exponent of M,

Let us assume for the sake of concreteness, that the primes Bl g Py

q'. p
estimate of the number of elementary atomic particles in the known
-90

and g" are all larger than 1090. Inasmuch as lO80 is an
universe, any event which has probability 10 or less may be realisti-

cally considered as truly unlikely, or "impossible" in practice.

To begin with, we observe that a random message M, where 0 s Mi<s n,

is truly unlikely to be a multiple of P or g. More precisely, the
probability that ged(M,n) # 1 is (p+q-1)/n, or roughly 10 °C. If it
were easy to find such messages M, then n would be easily factored, since
gcd (M,n) would be p or g. We therefore assume that ged (M,m) = 1, d.e.
that M belongs to the multiplicative group of residues which are

relatively prime to n.

The size of this multiplicative group, modulo n, is just ¢(n) = (p-1)-(g-1).
The order of an element M in this group is just the exponent k to which
M belongs, modulo n. Elementary group theory tells us that k must
divide ¢(n) = (p-1) (g-1) = a'p‘b'q’._ The group is an abelian group and so
is the direct product of cyclic prime-power order subgroups. This product
It is then

includes Z (the cyclic group on p' elements) and also 2

simple to see that the odds are overwhelming that p'q' divides k. More

| =
precisely, the probability is only (p#q—l)/p'q', or roughly 10 b that p'qg!
does not divide the exponent k to which M belongs. Therefore we may

assume that p'q' divides k, i.e. that k = ap'q' for some a.

Similarly we ask for the exponent % to which e belongs modulo k. If

k e? (mod k)

M 1 (mod n), then M (mod n); the least & such that

L
e

i

1 (mod k) is therefore the iteration exponent of M - by definition

it is also the exponent £ to which e belongs, modulc k.

We can argue in a manner similar to that above that the odds are overwhelm-
ing that a random encoding exponent e will be relatively prime to p'q’';
the chance of this not happening is (p'+q'-1l)/p'q' = 10-90. Note that e
can be explicitly chosen so that gcd(e,p'q') = 1, as well. Since plg'
divides k, the exponent &' to which e belongs, modulo p'q', must divide
the exponent £ to which e belongs, modulo k. We now show that it is

essentially certain that &', and therefore ¢, must be enormous.
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The exponent &' to which e belongs, modulo p'q', is analogous to the
exponent k to which M Dbelongs, module n = p*g. Since e is
virtually certain to be relatively prime to p'qg', it belongs to the
multiplicative group of residues, modulo p'q', which are relatively prime
to p'qg'. This group has order ¢(p'q') = a"p"b"g", and is abelian. We
can conclude, by using the same arguments used above, that the odds are
overwhelming that p"gq" will divide the exponent &' to which e belongs,
modulo p'qg’. Thus the iteration exponent £ of M is essentially
certain to be divisible by p"g", which implies that & > 10180, we note
that the recipient can chocose e so that p"q" divides &' since it is
simple for him to campute &'. If an e 1is chosen for which p"g" does
not divide &', he can simply examine other e's at random until a

suitable one is found.

Conclusions
We have shown that the probability that a message M can be decrypted by
successively re-encrypting the ciphertext C of M a small number of
times is vanishingly small. For numbers of the size suggested, this

0-90, Since the probability of guessing a factor

probability is roughly 1
of n 1is also of this magnitude, we conclude that a cryptanalyst should
spend his time trying to factor n rather than using the proposed

cryptanalytic approach — a single success then allows him to read every

message rather than just the single one he was lucky enough to decrypt.
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