
Optimal Arrangement of Keys in a Hash Table

RONALD L. RIVEST

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT When open addressing IS used to resolve collisions in a hash table, a given set of keys may be
arranged in many ways, typically this depends on the order in which the keys are inserted It is shown that
arrangements minimizing either the average or worst-case number of probes required to retrieve any key in
the table can be found using an algorithm for the assignment problem. The worst-case retrieval time can be
reduced to O(log2(M)) with probablhty 1 - e(M) when storing Mkeys In a table of size M, where ~(M)~ 0
as M ~ ~ We also examine insertion algorithms to see how to apply these ideas for a dynamically changing
set of keys

KEY WORDS AND PHRASES hashing, collision resolution, searching, assignment problem, optimal algorithms,
database organization

CR CATEGORIES 3 74, 5 41

"Spread the table and contention will cease "' Old English proverb [11, #¢272 6]

1. Introduction

We cons ider s chem es to op t imize the p l acemen t of keys in a hash table w h e n o p e n
address ing is used to resolve coll is ions. M o r e precisely , we begin wi th the obse rva t ion

that a given set of keys may be inse r ted in to a hash table in many d i f fe ren t o rde r s ,
y te ldmg a r r a n g e m e n t s of the keys in the table of varying eff iciency. Typically, the user
has no cont ro l over the o r d e r in which the keys are inser ted ; he must accept t hem in
the o r d e r in which they arr ive. H o w e v e r , the prev ious obse rva t ion that the re exist
many d i f fe ren t a r r a n g e m e n t s of the given set of keys raises the fol lowing ques t ions :

(1) H o w can one d e t e r m i n e that a r r a n g e m e n t which minimizes e i the r the average or
wors t -case n u m b e r of p r o b e s to re t r ieve a key m the table? In Sect ion 2 we show that
this p r o b l e m is an ins tance of the we l l -known " a s s i g n m e n t p r o b l e m , " for which eff ic ient

a lgor i thms exist .
(2) W h a t is the e x p e c t e d value of the wors t -case n u m b e r of p r o b e s requxred to

re t r ieve a key f rom a full table that has b e e n opt imal ly a r r anged using the ass ignment
a lgor i thm? In Sect ion 3 it is p roved that this value is O(logz(M)) for a table of size M
conta in ing M keys. The p r o o f is m o d e l e d on a result by E r d o s and Reny i [2] conce rn ing
the p e r m a n e n t of a r a n d o m matr ix , This resul t d e m o n s t r a t e s that we can

use hashing to achieve " g o o d " (i .e. O(log2(M))) wors t -case p e r f o r m a n c e if we take the
t ime to op t imize the a r r a n g e m e n t of the keys m the table . Tradi t ional ly h a s h mg has

General permission to make fair use in teaching or research of all or part of this material is granted to
individual readers and to nonprofit libraries acting for them provided that ACM's copyrlght notice is given
and that reference is made to the pubhcatlon, to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing Machinery To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific permission as does repubhcation, or
systematic or multiple reproduction
This research was prepared with the support of the National Science Foundation under Research Grant GJ-
43534X, Contract DCR74-12997, and Research Grant MCS76-14294
Author's address Massachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139
© 1978 ACM 0004-5411/78/0400-0200 $00 75

Journal of the Association for Computing Machinery. Vol 25, No 2, Aprd 1978, pp 200-209

Optimal Arrangement o f Keys m a Hash Table 201

been viewed as excellent on the average, but horrible in the worst case. We see
therefore that this need not be so.

(3) The results mentioned above require that an M × M assignment problem be
solved to optimize the placement of M keys in a table of size M. A natural question to
ask is, "Is it possible to solve the assignment problem efficiently ' incrementally, ' so that
the new keys can be added to the table in such a way that the optimality of the
overall arrangement is maintained?" In Section 4 th~s problem is studied and it is
shown that for table densities less than approximately 0.415, it is possible to insert a
key and maintain overall optimality by solving an assignment problem no larger than
1 0 x l 0 , whereas for larger densihes the entire M x M assignment problem must
apparently be solved.

Overall, we view the contribution of th~s paper to be the introduction of the
assignment algorithm for the placement of keys in a hash table, and the demonstration
that efficient worst-case retrieval can be achieved thereby, even in a full table.

We proceed now to define our terminology and to introduce the "standard" algorithm
for inserting a key into a hash table. Let K = {K1, K2 KN} be a set of N keys, and
let an array T, for 1 _< i -< M be a set of M memory locations (the hash table) which
will be used to store ,9/'. Each table position may hold either a single key or the special
symbol empty. We assume N -< M. When open addressing is used to resolve collisions a
"hashing function" h : U x {1, 2 M} ~ {1, 2 , M} is used, mapping the set U of
all possible keys (that is, ~ may be any N-subset of U) and probe numbers into the set
of memory locations. We assume for any key K E U that the sequence h(K, 1), h(K, 2),
... , h(K, M) is a permutation of {1, 2, .. , M} To store the key K m the table using
the standard insertion algorithm the locatzons Th<K,1), Th(K,Z), .. are successwely examined
until an empty location is found or until K Is found already present in the table. The
following program makes this precise.

THE "STANDARD" INSERTION ALGORITHM

Input' A key K, a hash table T, a hash function h
Output None T is modified to contain K, unless K is already present
Procedure

I '=0,
repea l / = 1 + 1,

z = h (K , l) ,

if T, = empty then T, = K
until T, = K,

Note that T must contain at least one empty location if K ~s not already in the table,
if the loop is to terminate properly The value of j at termination, which Is the number
of probes required to insert K, ~s taken to be the cost of inserting K.

A s~mdar procedure searches for the presence of a key K m T (replace the assignment
statement "T, := K" by "return (K not present)") If the r e p e a t loop terminates
normally then T, contains the previously stored key K. The value o f j at termination ~s
taken to be the cost of searching for K.

Knuth [6] studies hashing algorithms in detail, gwmg alternanve methods for handling
"colhslons" (the case when h(K,, 1) = h(K~, 1) for K, ¢ Kj) and several open-addressing
hash functions h. The reader who is unfamihar with hashing algorithms should fred it
profitable to consult his text.

2 Opttmal Arrangements

In this section we give precise definitions of when an arrangement mimmizes the
average or worst-case retrieval nine, and then show that there always exists some
ordering such that if the keys had been inserted by the standard algorithm in that
order, the opnmal arrangement results Then ~t ~s shown that the assignment algorithm

202 RONALD L. RIVEST

can be used to arrange the keys so as to minimize either the average or worst-case
retrieval t ime.

The arrangement of the keys X in the hash table depends on the order m which they
were inserted, if the standard insertion algorithm is used. For example , let U be the set
of natural numbers and let h(K, j) be the j th decimal digit of K. Inserting the set ~" =
{1423, 1234, 3412, 2341} into an empty table in that order results m the arrangement

Loeanon: 1 2 3 4
Contents: 1423 1234 3412 2341

whereas inserting them m the order 1234, 2341, 1423, 3412 results in c~':

Locanon' 1 2 3 4
Contents 1234 2341 3412 1423

Let a : ~ ~ {1, 2 M} be called an arrangement; o~(K~) = j means that Tj = K~. Of
course a must be one-to-one. Let A(Yf, M) denote the set of all arrangements of ~ in
T, TM.

Let p(K, a) denote the number of probes required to retrieve a key K under
arrangement a ; the average avg(a) = (l / N) ~ K ~ p(K, a) and worst-case wc(a) =
max{p(K, a) lK ~ Y{} number of probes to retrieve any key in T are then definable. We
have avg(a) = 7/4, wc(a) = 3, avg (a ') = s/4, and w c (a ') = 2 in the above examples.

Define an arrangement c~ E A(Y(, M) to be valid if all the positions h(K, 1), h(K, 2),
. . . . h(K, p (K, a) - 1) are nonempty for every key K in Yr. An arrangement is valid lff
every key K in ~ ~s retr ievable using the search algorithm of Section 1 Similarly define
an arrangement to be feastble if it is the result of inserting the keys in ~ into an empty
table sequentially in some order ; necessarily every feasible arrangement is vahd.

Vahd arrangements which are not feasible are possible; consider the following
arrangement using the hash function h from our previous example:

LocaUon" 1 2 3 4
Contents' empty empty 4321 3412

The number of feasible arrangements depends on ~ and h. It is no larger than N! (the
number of ways to enter the keys), but may be as low as 1 if no colhslons occur.
Similarly the number of vahd arrangements can vary between 1 and N!. For example ,
only one valid arrangement exists if no collisions occur and h(K,, 1) =k h(K, 2) for all
K,, Kj in ~ . The upper bound of N! on the number of valid arrangements is obtained
by reduction on N, using the fact that p(K, a) -< N for any vahd arrangement and all
keys K ~ ~ . We may store Ks in any of N positions h(KN, i) for 1 _< i -< N; if we then
delete KN from ~ and h(KN, t) from the probe sequence h(K~, 1) h(K3, M) for
every j < N we see that every valid arrangement of ~ induces a vahd arrangement of
~-{KN} m locatmns {/I 1 --< ! --< M a n d j 4 h(Ks, i)} using the modified probe sequences.

We define an arrangement a (~ , M) to be optimal if ei ther avg(a) or wc(a) is
minimal over all arrangements m A (~ , M); the terms average-optimal and worst-case-
optimal will distinguish these cases.

PROPOSITION 1. A feastble optimal arrangement always exists.
PROOF If a minimal arrangement a is not feasible, then there exists a set {K, o, Kz~,

. . . . K~_~} of keys, none of which can be entered first since they form a "blocking
cycle": There is a set of integers t~ for 0 _< j <_ r - 1 such that h(K,j, p(K,j, c~)) =
h(K~j d ~, to+l)mod r) and t~ < p(K,j, a) for 0 _< j _< r - 1. But clearly p(K,j, cO can be
reduced by setting a(K,j) to h(K,,, t~) for 0 _< j _< r - 1. Since avg(a) strictly decreases,
a feasible optimal arrangement can always be found after a finite number of blocking
cycles have been removed in this fashmn. []

Proposmon 1 suggests an algorithm for finding opnmal arrangements: enumerat ing
all feasible arrangements; however, bet ter methods exist.

O~:

Optimal Arrangement o f Keys m a Hash Table 203

PROPOSmON 2 Optimal arrangements can be found by usmg an algorithm for the
assignment problem

PROOF. The assignment problem [7] can be stated as follows.
Let N and M be given, with N -< M, and let {a,jI 1 -< i -< N, 1 --<] --< M} be a matrix of

nonnegative real numbers. The classic example specifies for each of M men and N jobs,
the "inefficiency" a,3 of man] in job t. The objective is to find an assignment t ~ a(i) of
jobs to men such that the sum ~J_~,~N a,.~(o is minimized, subject to the constraint that
no man is assigned to more than one lob.

We can apply this directly to the problem of finding average-optimal arrangements
by letting a,~ be the integer such that h(K,, a,j) =], denoting the cost of assigning K, to
T r The average number of probes reqmred to retrieve a key in the optimized table is
then just the total "inefficiency" divided by N We observe that if the various keys have
assocmted retrieval probabilities, then the arrangement that minimizes the expected
retrieval cost can be found in the same manner; we need only multiply each a u by the
probability that K, will be retrieved.

Similarly, we can minimize the worst-case cost by choosing a~j to be N t, where l is the
integer such that h(K,, l) = j. Since the key with highest cost determines the order of
the total cost, minimizing the total cost here minimizes the worst-case cost. []

Having observed that our problem can be formulated as an instance of the assignment
problem, it is of interest to know how quickly a solution can be determined. The
general N x M assignment problem can be solved in time O(NM 2) [8]; the space
required is O(N + M) if the matrix entries a,~ can be computed in constant time from
K,, h, and j . When all the matrix entries are small integers (as when we are finding the
average-optimal arrangement), it may be possible to improve this time bound somewhat,
but the author was unable to find a more efficient procedure.

Worst-case optimal arrangements can be determined in time O(BM(M, N).log2(N)),
where BM(M, N) is the time required to solve an M x N bipartite matching problem.
The procedure, pointed out to the author by Vulllemln, is to use binary search on the
worst-case cost: It is possible to test if the optimal worst-case cost is less than or equal
to a given value w by solving the corresponding maximal matching problem. The graph
used has N vertices x,, M vertices y~, and an edge (x, yj) lff ao -< w. Intuitively, there is
an edge from x, to y~ if and only if table position Tj is one of the first w positions in the
probe sequence for K,. There will be a matching of size N in this graph if and only if
there is an arrangement of the keys in the table such that every key can be retrieved
with no more than w probes. Since BM(M, M) = O(M 25), we obtain an O(M 25 log(M))
algorithm for the case N -- M.

3 Efficiency o f the Worst-Case Optimal Arrangements

In this section we prove that even if the hash table is full (N = M), we can expect the
worst-case optimal arrangement to have a worst-case cost of O(log(M)) with a probability
approaching one very rapidly as M ~ ~. Although a worst-case cost of O(log(M)) can
obviously not be guaranteed (since there is a finite chance that all keys have the same
probe sequence, for example), the odds are overwhelming that with a random hash
function and a random set of keys, there is some arrangement of those keys yielding a
worst-case cost of O(log(M)). This compares favorably with standard techniques such as
binary search trees which also require O(logz(N)) time to retrieve a key, especially in
situations where the set of keys is static (since updating an optimized hash table can be
expensive).

The proof is modeled very closely after a similar result of Erdos and Renyi [2], who
show that a random n×n matrix of O's and l ' s containing N(n) l ' s has a nonzero
permanent with probablhty approaching 1 as n ~ ~ if llmn_~=(N(n) - log(n))/n = ~.
The permanent of an n x n matrix {ao} 1s defined to be ~al,~a2~2 "'" an~, where the
summation is over all permutations (il, ... , in) of {1, ... , n}. The permanent of a 0-1

204 RONALD L RIVEST

matrix {a~j} is the number of matchings of size n in a bipartite graph whose adjacency
matrix is {a~} Ryser [10] discusses the permanent in some detail

Let M(M, N, w) denote the set of all 0-1 matrices with M columns, N rows, and
exactly w l ' s per row. Obviously I~(M, N, w)[= (~)N. We say a matrix {m,~} E ~ (M ,
N, w) contains N independent l ' s iff there exists a function ct:{1, ... , N} ~ {1 M}
such that a(z) =k a(j) for z ~ j and m,~,~ = 1 for 1 _< i -< N. Let P(M, N, w) denote the
probability that a matrix in dE(M, N, w) contains N independent ones.

The interpretation to matrices of ~ (M , N, w) ~s as follows. Each such matrix has N
rows (corresponding to a set of N keys) and M columns (one for each position in the
hash table) Position t, 1 will be a 1 tff key t can be stored in posmon j with a retrieval
cost of w or less. Therefore each row has exactly w l ' s Such a matrix is the adjacency
matrix of one of the bipartite graphs described in the last paragraph of Section 2 A
matrix m 2t(M, N, w) will have N independent ones lff its corresponding bipartite
graph has a matching of size N. This wdl happen iff there exists an arrangement of the
keys so that every one can be retrieved with w probes or less.

We identify P(M, N, w) with the probability that a random set of N keys can be
arranged m a hash table of size M so that the worst-case retrieval cost ~s at most w. This
will be accurate if every set of w locations is equally likely to be the set of w locations
first probed for a random key k This will happen, for example, if every permutation of
{1, . , M} is equally likely to be a probe sequence. Each matrix in ~ (M , N, w) then
corresponds m a natural fashion to the characteristic matrix describing, for a random
set of N keys, which locations are usable ff the worst-case cost is constrained to be at
most w The existence of N independent l ' s corresponds to the existence of an
arrangement with worst-case cost of at most w; and by Proposition 1 the existence of a
feasible, valid arrangement with worst-case cost at most w is thereby implied.

We have P(M, N, w) -> P(M, M, w) for 1 _< N -< M since the first N rows of a matrix
in ~ (M , M, w) which contains M independent l ' s must contain N independent l ' s . We
therefore proceed to show the following.

PROPOSITION 3. hmM~P(M, M, 4 log(M)) = 1.
PROOF. This result says that we can expect to fred an arrangement of M keys m a

table of size M such that no key reqmres more than 4 log(M) probes to be retrieved. By
the theorems of Frobenius [3] and Komg [7], 1 - P(M, M, w) is equal to the
probability that a matrix in ~ (M , M, w) has k rows (or columns) and M - k - 1
columns (or rows) that contain all the l ' s , for some k, 0 --< k -< M - 1. (The result of
Frobenius and K6nig says that m an M×M matrix of O's and l ' s the minimal number of
lines (i.e. rows or columns) which contain all the l ' s is equal to the size of the
maximum set of l ' s which can be found which are pairwlse independent (no two m the
same line).) Thus 1 - P(M, M, w) is the probability that there are M - 1 or fewer lines
which contain all the l ' s .

Let Qk(M, N, w) denote the probability that a matrix in ~ (M , N, w) has k rows (or
columns) and N - k - 1 columns (or rows) containing all the l ' s , and k is the least
such number for 0 _< k -< M/2. Then

[M/21

1 - P(M,N,w) = ~ Qk(M,N,w).
k = o

We show that for all k, 0 --< k -< [m/2J, if w -> 4 logz(M) then Qk(M, M, w) --> O. To
do this we divide Qk into two parts,

Q~(M, M, w) = fk(m, M, w) + gk(m, M, w),

wherefk is the probabdity that k rows and M - k - 1 columns cover all the l ' s and gk
is the probability that k columns and M - k - 1 rows cover all the l ' s (k is each case
being minimal).

Case 1. k r o w s and M - k - 1 co lumnscon tam all the l ' s , for some k-< M/2.

Optimal Arrangement o f Keys m a Hash Table 205

Those matrices in ~ (M , M, w) having a minimal number k of rows and M - k - 1
columns containing all the l ' s can be displayed as in Figure 1, after an appropr ia te
permutat ion of the rows and columns Each row of submatrix B must contain two l ' s
under our assumption that k is minimal (if not, we could include the column, and
exclude the row, of the 1 in matrix B which is in a row of B containing no other l 's). The
f racuonf i (M, M, w) of matrices of this type is less than

((~ /) (k + M 1) (M - : - 1) M-k ((wM) - (M - : - 1)

1 k M M

whose logarithm is bounded above by

[(2k + 1) - w(M - k)] log(M) + w(M - k)log(M - k - 1)
- k log(k) - (k + 1)log(k + 1) _< (2k + 1)log(M) - w(k + 1)/2.

Thus if w -> 4 log(M), Qk(M, M, w) ~ 0 as M --> oo.
Case 2 k columns and M - k - 1 rows contain all the l ' s , for some k -< M/2

(Figure 2).
The fraction gk(M, M, w) of matrices of this type is less than

+ W] '

whose logarithm is bounded above by

(2k + 1)log(M) - w(k + 1)log(w),

so that gk(M, M, w) ~ 0 with M if w = 2 log(M). Since Qk(M, M, w) = fk(M, M, w) +
gk(M, M, w), we are finished with the proof. []

This result says that in a full table arranged so as to minimize the worst-case retrieval
t ime, the worst-case retrieval time should be O(log(M)). This follows from Proposit ion
3 since the existence of a set of M independent l ' s in a matrix in P(M, M, w)
corresponds to an arrangement of M keys in a table of size M with worst-case retrieval
time no more than w. This result is the best possible (up to a constant multiplicative
factor) due to a result of Gonnet [4]: The worst-case retrieval time must be at least
ln(M) + O(1).

A study of the related question of the expected value of the average number of
probes required to retrieve a key in a full table which is average-optimal is given in [5].
(Less than two probes per key are required.)

4. Insertion Algorithms Which Maintain Optimality

We now turn our attention to the problem of maintaining the optimality of an
arrangement as new keys are inserted into a table. The main result of this section is
that if the table is not too densely filled, then a new key can be inserted into the table

M ,ow, {

M columns

A B

C 0

M-k-I k+l

Flo 1 F[o 2

M columns
.A .

f
F

k / A C M-k - I
M rows

M-k 8 0 k+l

k M-k

2 0 6 RONALD L. RIVEST

and the new optimal arrangement computed by solving a small (e.g 10× 10) assignment
problem. This result is obtained by a rather complicated analysis using generating
functions.

We first examine an insertion algorithm due to Brent [1] and demonstrate that it
does not maintain optimality. Of course, Brent only intended his algorithm to be a
good heuristic, a means of inserting each new key in such a fashion that the increase in
average retrieval cost ~s kept reasonably low

Brent's algorithm works as follows. Let K denote the new key being inserted, and
suppose positions h(K, 1) h(K, s) are already occupied with keys K1, K2 Ks,
and that Th(g,s+l) ~S empty. Let r~ denote the number of probes required to retrieve K,,
so that h(K,, r,) = h(K, i). Furthermore, let s, denote min{jlTh(K,~) = empty}, the
number of probes required to retrieve K, if we move it to position h(K,, s,). Then (t +
(s, - r,))/(N + 1) is the increase in the average retrieval cost caused by moving K, to
position h(K,, s,) and storing K in position h(K, i). Brent chooses between storing K in
position h(K, s + 1) and moving that K which minimizes t + (st - r,) by comparing (s +
1) to mln,{l + s, - r,}.

In fact, the following example demonstrates that no algorithm which only moves keys
forward in their probe sequence (that is, moves K from h(K, l) to h(K, i') for i ' > i) can
always arrwe at the optimal arrangement. Consider the following arrangement (using
the hash funcnon of our prewous examples), which is both average and worst-case
optimal:

Locatton 1 2 3 4 5 6 7
Contents 1273456 1234567 3456712 4567123 5671234 6712345 empty

If the key 2345671 is now inserted, the only way to maintain optimahty is to move
1273456 to location 7, move 1234567 (backward) to position 1, and then store
2345671 in position 2

Since Brent's algorithm is the only published algorithm which moves previously
inserted keys when inserting a new key, we see that no existing insertion algorithm can
maintain optimality for arbitrary hash functions. It is interesting to note, however, that
for certain open-addressing colhsion-resolution schemes the standard insertion algorithm
maintains average-optimality. We say that a hash function h exhibits prtmary clustering
if h(K,, j) = h(K,,l') implies that h(K,, j + l) = h(K,,, j ' + l) for 0 _< 1 <-- M - mm(j, j ')
for any K,, K,,. Linear probing (h(K, i) ~ h(K, 1) + (l - 1), mod M) is perhaps the
best-known example of a collls~on-resolution scheme exhibiting primary clustering, and
all primary clustering schemes are in fact isomorphic to linear probing in a natural
manner

PROPOSITION 4. If h exhibtts primary clustering, then the usual msertton algorithm
maintains average-opttmahty

PROOF. This theorem is due to Peterson [9]; the proof is also given m Knuth [6, p.
531]. Knuth also remarks that if the keys have associated retrieval probabilities, then
the average-optimal arrangement can be achieved by using the standard insertion
routine to insert the keys one by one into the table, in order of decreasing request
probabilities. []

In spite of the fact that for linear probing the standard insertion algorithm maintains
average-optimahty, other hashing schemes are to be preferred, since the expected
retrieval cost m the average-optimal scheme for a primary-clustering hashing function
generally exceeds the expected cost for other schemes, even if average-optimality is not
maintained.

We now turn our attention to the task of finding an insertion algorithm that will
maintain the optimality of an arrangement. In essence, we need an algorithm to solve
the assignment problem "incrementally."

One approach is to observe that if N / M is small enough (how small this is we shall
determine), then the number of keys already in the table which we need to consider
moving might be reasonably small. Brent considers mowng only those keys on the

Optimal Arrangement of Keys m a Hash Table 207

probe sequence of the new key K; if we also consider moving all of the keys on their
probe sequences, and so on, we can determine the maximum set 5e of keys that might
need to be moved. Similarly we let 5 r denote the set of locations that 5° might occupy in
the optimized table; it suffices then to solve the assignment problem for placing 5e into
3", rather than ~ U {K} into T.

Define, for a given arrangement a, the functions:

~'(K) = min{/lh(K, j) = empty},
o-(K) = {K, I a(K,) = h(K, j) for some j < 7r(K)},
T(K) = {ilh(K,j) = i for some j ~. ~-(K)}.

Then

5~(K) -- {K} U {OO(K,)I K, ~ o-(K)},
3-(K) = T(K) U {~(K,)IK, E o'(K)}

define by means of their minimal solutions the sets ~ and ~ of keys and positions
relevant to the insertion of K into an arrangement ~x

Let/3 = N/M denote the "loading factor" of the existing arrangement a. In order to
estimate the expected size ~(K), we assume that the hashing function is uniform in the
sense that every permutation of {1, . , M} is equally likely to be a probe sequence of
some key K. We can then use the approximation Prob(Tr(K) = t) = (1 - /3)/3 '-1

Let s, denote the probability that [~(K)I = t, and let

S(z) = ~ s,z'
t = l

denote the corresponding generating function. We shall develop an equation for S(z)
which depends on the generating function:

P(z) = ~ p,z'

(where p, is the probability that, for a key K' already stored m T, ct(K') = h(K', l)).
However, determining P(z) for optimized hash tables remains an open problem, so we
shall approximate S(z) after we develop the correct defining equation.

Let C(z) = ~=1 c,z' be the generating function with coefficients c, equal to the
probability that the "contribution" of a key K' on the probe sequence of the new key K
to S(K) is i keys. Therefore

oo

S(z) = ~'~ (1 - t)fl'[C(z)]"z,
I = 0

since there is a probability of (1 - /3)fl' that It(K) = t + 1 (that Is, there are t keys on
the probe sequence for the new key K). The final z is for the key K itself.

Similarly we can define

C(z) = [,=~ P,(C(z))'-'] "[~=o(1- t)fl'(C(z))'] "z

(or equivalently,

(1 - tiC(z)).(C(z)) 2 = (1 - fl)P(C(z))z).
The first term accumulates the contributions of those keys K" on the probe sequences
of a key K' on the probe sequence for K, such that K" occurs before K' in the probe
sequence for K' The second term adjusts for those keys K" occurring after K' in the
probe sequence for K' . Finally, the third term z ~s for the key K' itself.

The expected size of oW(K) is S'(1); and

d f (1 - fl)z ~ (1 - tiC(z))(1- fl) + (1 - fl)z~C'(z)
S'(z) = dz "\(1 -~- ~3~z))}" = (1 - tC(z)) 2

Now

3

S'(I)

2

RONALD L. RIVEST

/3c'(1)
S'(1) = 1 + (1 - fl)"

(1 - /3C(z))2C(z)C'(z) - f lC'(z)(C(z)) 2 = (1 - f l)[P'(z)C'(z)z + P(C(z))]

so we obtain

and thus

C'(1) = (1 - /3)/(2 - 3/3 - (1 - fl)P'(1))

s ' (1) = 1 + / 3 / (2 - 3/3 - (1 - / 3) P ' (1)) .

Unfortunately, P(z) is unknown. We observe, however, that S'(1) can be expected to
remain fimte as long as P'(1) -< (2 - 3/3)/(1 - /3). Since P'(1) is the expected number
of probes required to retrieve a key from an optimmed table, it is bounded above by
the expected number of probes required to retrieve a key from a table organized with
any open-addressing hashing method. For uniform probing (all probes sequences
equally likely) we have [6]

P ' (1) ~/3-1log(1/(1 - / 3))

approximately. Substituting this into the final equation for S'(1) yields Figure 3; we see
that the size of the relevant assignment problem is reasonably small (say 10 keys or
less) as long as /3 -< 0.4 roughly The function S'(1) has a pole /3 = 0.41466541; for
loading densities less than this we can expect the number of relevant keys to be finite.
In practice we should expect to be able to handle even higher loading densities without
much trouble, since our formulas for S, C, and P explicitly ignore the probabil i ty of
overlapping probe sequences Fur thermore , replacing P(z) by its correct definition
(rather than the one for uniform probing) should yield a definite improvement .

m

m

2O8

so that

I I I
O .I .2 .3

B
FIG 3

I
. 4

. 4 [4 6 6 5 4 1

.5

Optimal Arrangement o f Keys tn a Hash Table 209

The result of this ra ther compl ica ted analysis is that if the loading densi ty of the file
is less than roughly 0.4 we can hope to insert a new key K into the table by solving a
small assignment p rob lem. For higher densit ies the p rob lem is inherent ly a global one
apparent ly ; we must consider for re locat ion a considerable n u m b e r of keys.

5. Dtscusslon and Conclusions

In this paper we have shown how to arrange a set of keys in a hash table so as to
mlmmlze the expected (or worst-case) n u m b e r of probes requ i red to re t r ieve a key.
Our analysis demons t ra tes that the worst-case cost can be . reduced to O(log2(M)) in
almost all cases. (In pract ice it should be possible to achieve O(logz(M)) in all cases with
very little work, since a set of keys which has an opt imized cost that IS too large can, by
choosing another hash funct ion randomly , be expec ted to yield an O(log2(M)) cost.)

Our analysis assumes that uniform hashing is used, however ; an open p rob lem is to
confirm this result for the more c o m m o n techniques such as double hashing.

We have also examined briefly a t echnique for insert ing a new key into an op t imized
table so as to maintain opt imal i ty of the a r rangement . Our result here is that as long as
the loading factor is less than 0.41 (approximate ly) , we can usually insert a new key
and maintain opt imali ty by solving a small (approximate ly 10-e lement) ass ignment
p rob lem. For tables of higher density one must apparent ly solve an ass ignment p rob lem
which mvolves most of the keys previously s tored. (By saving the pr imal and dual
variables of the previous solut ion, one can significantly speed up the solut ion of the
new prob lem, but the extra s torage requi red might be t te r be used to s tore the keys
themselves , thereby reducing the overal l densi ty.)

The reader is encouraged to consult the excel lent article by G o n n e t and Munro [5],
which gives e x p h o t listings of a lgor i thms for opt imizing the a r r angemen t of keys in a
hash table and tight results on the expec ted n u m b e r of probes requ i red to re t r ieve a
key f rom an average-opt imal table.

The techniques descr ibed here should be most useful when the hash table is re lat ively
static, with the number of retr ievals considerably exceeding the n u m b e r of insert ions
Large databases are often of exactly this na ture , and f requent ly ut lhze hashing
techniques

ACKNOWLED6MENT. I would hke to thank Professor Dona ld Knu th for suggesting
direct ions in which to ex tend a previous draft of this paper .

REFERENCES

1 BRENT, R P Reducing the retrieval t~me of scatter storage techniques Comm ACM 16, 2 (Feb 1973),
105-109

2 ERDOS, P, AND RENYI, A On random matrices Magyar Tud Akad Mat Kutat6 lnt. Kozl 8 (1964),
455-461 Reprinted m Erdos, P The Art ofCountzng, J Spencer, Ed , M I T Press, Cambridge, Mass
(1973),pp 625-631

3 FROBENIUS, G Uber zerlegbare Determmaten Suzungsbertchte der Berhner Akademie (1917), 274-
277

4 GONNET, G H Interpolation and interpolation hash searching Res Rep 76-02, Comptr Scl Dept ,
U of Waterloo, Waterloo, Ont , 1976

5 GONNET, G , AND MUNRO, I The analysis of an improved hashing techmque Proc Ninth Annual
ACM Symp on Theory of Comptng, Boulder, ColD , 1977, pp 113-121

6 KNUTH, D E The Art of Computer Programming, Vol 3 Sorting and Searching Addison-Wesley,
Reading, Mass , 1973

7 KONIG, D Graphok 6s matnxok Matemattkat ds Ftztkai Lapok 38 (1931), 116-119.
8 KUHN, H W The Hungarian method for the assignment problem Naval Res Log Quart 2 (1955),

83-97
9 PETERSON, W W Addressing for random-access storage IBMJ Res and Develop 1 (1957), 130-146

10 RYSER, H J Combmatorml Mathemaucs Carus Math Mono #14, Math Assoc Amer, 1963
11 TRIPP, R International Thesaurus of Quotatzons Thomas Y Crowell, New York, 1970

RECEIVED JUNE 1 9 7 6 , REVISED JUNE 1 9 7 7

Journal of the Association for Computing Machinery, Vol 25, No 2, Aprd 1978

