Optimal Arrangement of Keys in a Hash Table

RONALD L. RIVEST

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT When open addressing is used to resolve collisions 1n a hash table, a given set of keys may be
arranged m many ways, typically this depends on the order in which the keys are mserted It 1s shown that
arrangements mmimizing either the average or worst-case number of probes required to retrieve any key mn
the table can be found using an algorithm for the assignment probiem. The worst-case retrieval time can be
reduced to O(log:(M)) with probability 1 — (M) when storing M keys in a table of size M, where (M) — 0
as M — = We also examine msertion algorithms to see how to apply these 1deas for a dynamically changing
set of keys

KEY WORDS AND PHRASES hashing, collision resolution, searching, assignment problem, optimal algorithms,
database organization

CR CATEGORIES 3 74,5 41

“Spread the table and contention will cease ” Old English proverb [11, #272 6]

1. Introduction

We consider schemes to optimize the placement of keys in a hash table when open
addressing 1s used to resolve collisions. More precisely, we begin with the observation
that a given set of keys may be inserted into a hash table in many different orders,
yielding arrangements of the keys in the table of varying efficiency. Typically, the user
has no control over the order in which the keys are inserted; he must accept them in
the order in which they arrive. However, the previous observation that there exist
many different arrangements of the given set of keys raises the following questions:

(1) How can one determine that arrangement which minimizes either the average or
worst-case number of probes to retrieve a key m the table? In Section 2 we show that
this problem is an instance of the well-known ‘‘assignment problem,” for which efficient
algorithms exist.

(2) What is the expected value of the worst-case number of probes required to
retrieve a key from a full table that has been optimally arranged using the assignment
algorithm? In Section 3 1t is proved that this value 1s O(log,(M)) for a table of size M
containing M keys. The proof is modeled on a result by Erdos and Renyi [2] concerning
the permanent of a random matrix. This result demonstrates that we can
use hashing to achieve “good” (i.e. O (log,(M))) worst-case performance if we take the
time to optimize the arrangement of the keys in the table. Traditionally hashing has

General permission to make fair use mn teaching or research of all or part of this material 1s granted to
mdividual readers and to nonprofit libraries acting for them provided that ACM’s copyright notice 1s given
and that reference 1s made to the publication, to 1ts date of 1ssue, and to the fact that reprinting privileges
were granted by permussion of the Association for Computing Machinery To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific permission as does republication, or
systematic or multiple reproduction

This research was prepared with the support of the National Science Foundation under Research Grant GJ-
43534X, Contract DCR74-12997, and Research Grant MCS76-14294

Author’s address Massachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology
Square, Cambrnidge, MA 02139

© 1978 ACM 0004-5411/78/0400-0200 $00 75

Journal of the Assotiation for Computing Machinery, Vol 25, No 2, Apri 1978, pp 200-209

Optimal Arrangement of Keys in a Hash Table 201

been viewed as excellent on the average, but horrible in the worst case. We see
therefore that this need not be so.

(3) The results mentioned above require that an MXM assignment problem be
solved to optimize the placement of M keys in a table of size M. A natural question to
ask is, “Is it possible to solve the assignment problem efficiently ‘incrementally,’ so that
the new keys can be added to the table in such a way that the optimality of the
overall arrangement is maintained?”” In Section 4 this problem is studied and it is
shown that for table densities less than approximately 0.415, 1t is possible to insert a
key and maintain overall optimality by solving an assignment problem no larger than
10x10, whereas for larger densities the entire MXM assignment problem must
apparently be solved.

Overall, we view the contribution of this paper to be the introduction of the
assignment algorithm for the placement of keys in a hash table, and the demonstration
that efficient worst-case retrieval can be achieved thereby, even in a full table.

We proceed now to define our terminology and to introduce the ‘‘standard’ algorithm
for inserting a key into a hash table. Let ¥ = {K,, K, ... , Ky} be a set of N keys, and
let an array 7, for 1 =i < M be a set of M memory locations (the hash table) which
will be used to store ¥. Each table position may hold either a single key or the special
symbol empty. We assume N <= M. When open addressing is used to resolve collisions a
“hashing function” #:U x {1, 2, ... , M} —> {1, 2, ... , M} is used, mapping the set U of
all possible keys (that is, & may be any N-subset of U) and probe numbers nto the set
of memory locations. We assume for any key K € U that the sequence h(K, 1), (K, 2),
..., (K, M) is a permutation of {1, 2, .., M} To store the key K 1n the table using
the standard insertion algorithm the locations Ty,1y, Thex2)s -- are successively examined
until an empty location is found or until X 1s found already present in the table. The
following program makes this precise.

THE “STANDARD” INSERTION ALGORITHM

Input- A key K, a hash table T, a hash function A
Output None T 1s modified to contain K, unless K 1s already present
Procedure

] =0,
repeat) =; + 1,

1 = h(K,)),

ifT, =empty thenT, = K
until 7, =K,

Note that T must contamn at least one empty location if K 1s not already in the table,
if the loop is to terminate properly The value of j at termination, which 1s the number
of probes required to insert X, 1s taken to be the cost of inserting K.

A similar procedure searches for the presence of a key K in T (replace the assignment
statement “T, := K” by “return (K not present)”) If the repeat loop terminates
normally then 7, contains the previously stored key K. The value of j at termination 1s
taken to be the cost of searching for K.

Knuth [6] studies hashing algorithms in detail, giving alternative methods for handling
“collisions” (the case when h(K,, 1) = h(K,, 1) for K, # K;) and several open-addressing
hash functions 4. The reader who is unfamiliar with hashing algorithms should find 1t
profitable to consult his text.

2 Optimal Arrangements

In this section we give precise definitions of when an arrangement minimizes the
average or worst-case retrieval time, and then show that there always exists some
ordering such that if the keys had been inserted by the standard algorithm in that
order, the optimal arrangement results Then 1t 1s shown that the assignment algonthm

202 RONALD L. RIVEST

can be used to arrange the keys so as to minimize either the average or worst-case
retrieval time.

The arrangement of the keys ¥ in the hash table depends on the order in which they
were inserted, if the standard insertion algorithm is used. For example, let U be the set
of natural numbers and let #(K, j) be the jth decimal digit of K. Inserting the set ¥ =
{1423, 1234, 3412, 2341} into an empty table in that order results 1n the arrangement
a:

Location: 1 2 3 4
Contents: 1423 1234 3412 2341

whereas inserting them 1n the order 1234, 2341, 1423, 3412 results in a':

Location® 1 2 3 4
Contents 1234 2341 3412 1423

Let a:% — {1, 2, ... , M} be called an arrangement; a(K;) = j means that T; = K,. Of
course a must be one-to-one. Let A(¥, M) denote the set of all arrangements of ¥ in
Ty, ..., Ty

Let p(K, a) denote the number of probes required to retrieve a key K under
arrangement «; the average avg{a) = (1/N) Y xex p(K, «) and worst-case wc(a) =
max{p(K, a)| K € ¥} number of probes to retrieve any key in T are then definable. We
have avg(a) = 7/4, we(a) = 3, avg(a') = /4, and we(a’) = 2 in the above examples.

Define an arrangement a € A(X, M) to be valid if all the positions (K, 1), A(K, 2),
... , h(K, p(K, @) — 1) are nonempty for every key K in #. An arrangement is valid iff
every key K in ¥ 1s retrievable using the search algorithm of Section 1 Similarly define
an arrangement to be feasible 1f it is the result of inserting the keys in J into an empty
table sequentially in some order; necessarily every feasible arrangement is valid.

Valid arrangements which are not feasible are possible; consider the following
arrangement using the hash function 4 from our previous example:

Location® 1 2 3 4
Contents* empty empty 4321 3412

The number of feasible arrangements depends on J and 4. It 1s no larger than N! (the
number of ways to enter the keys), but may be as low as 1 if no collisions occur.
Similarly the number of valid arrangements can vary between 1 and N!. For example,
only one valid arrangement exists if no collisions occur and h(X,, 1) # k(K,, 2) for all
K,, K; in). The upper bound of N! on the number of valid arrangements is obtained
by induction on N, using the fact that p(K, a) = N for any valid arrangement and all
keys K € #. We may store Ky, in any of N positions h(Ky, i) for 1 < < N; if we then
delete Ky from ¥# and h(Kj, 1) from the probe sequence h(K,, 1), ... , h(K,, M) for
every j < N we see that every valid arrangement of % induces a valid arrangement of
H-{Ky} 1 locations {j|1 = j = M andj # h(Ky, i)} using the modified probe sequences.

We define an arrangement a(¥#, M) to be optimal if either avg(a) or we(a) is
minimal over all arrangements m A(%, M); the terms average-optimal and worst-case-
optimal will distinguish these cases.

PRrROPOSITION 1. A feasible optimal arrangement always exists.

Proor If a minimal arrangement « is not feasible, then there exists a set {K,, X, ,

» K, _,} of keys, none of which can be entered first since they form a “blocking
cycle”: There is a set of integers ¢, for 0 = j < r — 1 such that h(K,, p(K,,) =
P (Ko, imoa o Lorvmea) @nd 8, < p(K,,, @) for 0 =j =r — 1. But clearly p(K,,, a) can be
reduced by setting oK,) to (K, ,¢,) for 0 =j =< r — 1. Since avg(e) strictly decreases,
a feasible optimal arrangement can always be found after a finite number of blocking
cycles have been removed 1n this fashion. O

Proposition 1 suggests an algorithm for finding optimal arrangements: enumerating
all feasible arrangements; however, better methods exist.

Optimal Arrangement of Keys in a Hash Table 203

ProrosiTioN 2 Opnimal arrangements can be found by using an algorithm for the
assignment problem

Proor. The assignment problem [7] can be stated as follows.

Let N and M be given, with N = M, and let{a,,|1 =i/ = N, 1 =j = M} be a matrix of
nonnegative real numbers. The classic example specifies for each of M men and N jobs,
the “inefficiency” a,, of manj in job:. The objective is to find an assignment : — «(i) of
jobs to men such that the sum Y ;.,<y @, 1 minimized, subject to the constraint that
no man is assigned to more than one job.

We can apply this directly to the problem of finding average-optimal arrangements
by letting a,, be the integer such that 4(K,, a,,) = j, denoting the cost of assigning K, to
T,. The average number of probes required to retrieve a key in the optimized table 1s
then just the total “inefficiency” divided by N We observe that if the various keys have
associated retrieval probabilities, then the arrangement that minimizes the expected
retrieval cost can be found in the same manner; we need only multiply each a,, by the
probability that K, will be retrieved.

Similarly, we can mimimize the worst-case cost by choosing a,, to be N*, where [is the
integer such that A(K,, [) = j. Since the key with highest cost determines the order of
the total cost, minimizing the total cost here minimizes the worst-case cost. [J

Having observed that our problem can be formulated as an instance of the assignment
problem, 1t 1s of interest to know how quickly a solution can be determined. The
general NXM assignment problem can be solved mn time O{NM? [8]; the space
required is O(N + M) if the matrix entries a,, can be computed in constant time from
K,, h, and j. When all the matrix entries are small integers (as when we are finding the
average-optimal arrangement), it may be possible to improve this time bound somewhat,
but the author was unable to find a more efficient procedure.

Worst-case optimal arrangements can be determined in time O(BM(M, N)-log:(N)),
where BM(M, N) 1s the time required to solve an MXxN bipartite matching problem.
The procedure, pointed out to the author by Vuillemin, 1s to use binary search on the
worst-case cost: It 1s possible to test if the optimal worst-case cost 1s less than or equal
to a given value w by solving the corresponding maximal matching problem. The graph
used has N vertices x,, M vertices y,, and an edge (x,, y;) iff a,; = w. Intuitively, there is
an edge from x, to y, if and only if table position T;1s one of the first w positions in the
probe sequence for K,. There will be a matching of size N n this graph if and only if
there 1s an arrangement of the keys in the table such that every key can be retrieved
with no more than w probes. Since BM(M, M) = O(M?3), we obtain an O(M? 3 log(M))
algorithm for the case N = M.

3 Efficiency of the Worst-Case Optimal Arrangements

In this section we prove that even if the hash table s full (N = M), we can expect the
worst-case optimal arrangement to have a worst-case cost of O(log(M)) with a probability
approaching one very rapidly as M — . Although a worst-case cost of O(log(M)) can
obviously not be guaranteed (since there is a finite chance that all keys have the same
probe sequence, for example), the odds are overwhelming that with a random hash
function and a random set of keys, there 1s some arrangement of those keys yielding a
worst-case cost of O(log(M)). This compares favorably with standard techniques such as
binary search trees which also require O(log:(N)) time to retrieve a key, especially in
situations where the set of keys is static (since updating an optimized hash table can be
expensive).

The proof is modeled very closely after a similar result of Erdos and Renyi [2], who
show that a random nxn matnx of 0’s and 1's containing N(n) 1’s has a nonzero
permanent with probability approaching 1 as n — o 1if lim,,.(N(n) — log(n))/n = c.
The permanent of an nxn matrix {a,} 15 defined to be 3 ay, a,, - n,, Where the
summation is over all permutations (¢4, ... , i,) of {1, ... , n}. The permanent of a 0-1

204 RONALD L RIVEST

matrix {a,} is the number of matchings of size n in a bipartite graph whose adjacency
matnix is {g,} Ryser [10] discusses the permanent in some detail

Let M(M, N, w) denote the set of all 0-1 matrices with M columns, N rows, and
exactly w 1’s per row. Obviously | #(M, N, w)| = ()¥. We say a matrix {m,} € MM,
N, w) contains N independent 1’s iff there exists a function «:{1, ... ,N}—= {1, ... , M}
such that a(t) # ofj) for: # j and m, o, = 1 for 1 =1 = N. Let P(M, N, w) denote the
probability that a matrix in (M, N, w) contains N independent ones.

The interpretation to matrices of (M, N, w) 1s as follows. Each such matrix has N
rows (corresponding to a set of N keys) and M columns (one for each position in the
hash table) Position 1, j will be a 1 ;ff key 1 can be stored 1n position j with a retrieval
cost of w or less. Therefore each row has exactly w 1’s Such a matrix 1s the adjacency
matrix of one of the bipartite graphs described in the last paragraph of Section 2 A
matrix i M(M, N, w) will have N independent ones 1iff its corresponding bipartite
graph has a matching of size N. This will happen iff there exists an arrangement of the
keys so that every one can be retrieved with w probes or less.

We identify P(M, N, w) with the probability that a random set of N keys can be
arranged 1n a hash table of size M so that the worst-case retrieval cost 1s at most w. This
will be accurate if every set of w locations is equally likely to be the set of w locations
first probed for a random key k This will happen, for example, if every permutation of
{1, . , M} 1s equally likely to be a probe sequence. Each matrix in (M, N, w) then
corresponds 1n a natural fashion to the characteristic matrix describing, for a random
set of N keys, which locations are usable if the worst-case cost 1s constrained to be at
most w The existence of N independent 1’s corresponds to the existence of an
arrangement with worst-case cost of at most w; and by Proposition 1 the existence of a
feasible, valid arrangement with worst-case cost at most w is thereby impled.

We have P(M, N, w) = P(M, M, w) for 1 = N = M since the first N rows of a matrix
n M(M, M, w) which contains M independent 1°s must contain N independent 1’s. We
therefore proceed to show the following.

ProrositionN 3. himy_,.P(M, M, 4 log(M)) = 1.

Proor. This result says that we can expect to find an arrangement of M keys 1n a
table of size M such that no key requires more than 4 log(M) probes to be retrieved. By
the theorems of Frobenius [3] and Komig [7], 1 — P(M, M, w) is equal to the
probability that a matrix in #(M, M, w) has k rows (or columns) and M — k — 1
columns (or rows) that contain all the 1’s, for some k£, 0 = k = M — 1. (The result of
Frobenius and Konig says that in an M XM matrix of 0’s and 1’s the mmimal number of
lines (i.e. rows or columns) which contamn all the 1’s is equal to the size of the
maximum set of 1’s which can be found which are pairwise independent (no two 1n the
same line).) Thus 1 — P(M, M, w) 1s the probability that there are M — 1 or fewer lines
which contain all the 1’s.

Let Q.(M, N, w) denote the probability that a matrix in (M, N, w) has k rows (or
columns) and N — k — 1 columns (or rows) contaiming all the 1’s, and k is the least
such number for 0 < k = M/2. Then

{M/2]

1—P(M,N,W)= kgo Qk(M5N9w)'

We show that for all k, 0 < k < |m/2), if w = 4 logy,(M) then Q\(M, M, w) — 0. To
do this we divide Q,, into two parts,

Qk(M9 M’ W) =fk(M, M: W) + gk(My M7 W),

where f;, is the probability that k rows and M — k — 1 columns cover all the 1’s and g,
is the probability that k columns and M — k — 1 rows cover all the 1’s (k is each case
being minimal).

Case 1. krows and M — k — 1 columns contain all the 1’s, for some k = M/2.

Optimal Arrangement of Keys in a Hash Table 205

Those matrices in #(M, M, w) having a minimal number k of rows and M — k — 1
columns contaming all the 1’s can be displayed as in Figure 1, after an appropriate
permutation of the rows and columns Each row of submatrix B must contain two 1’s
under our assumption that k i1s minimal (if not, we could include the column, and
exclude the row, of the 1 in matrix B which is in a row of B containing no other 1’s). The
fraction fx(M, M, w) of matrices of this type is less than

()G () - ()

M-k —1}* M\
~een (IR
whose logarithm 1s bounded above by

[(2k + 1) — w(M — k)] log(M) + w(M — k)log(M — k — 1)
— k log(k) — (k + Dlog(k + 1) = (2k + Llog(M) — w(k + 1)/2.

Thus if w = 4 log(M), Qn(M, M,w) —> 0as M — .

Case 2k columns and M — k — 1 rows contain all the 1’s, for some k <= M/2
(Figure 2).

The fraction g,.(M, M, w) of matrices of this type 1s less than

()) () ()

whose logarithm 1s bounded above by
2k + log(M) — w(k + 1)log(w),

so that g,(M, M, w) —» 0 with M if w = 2 log(M). Since Q,(M, M, w) = fi(M, M, w) +
gx(M, M, w), we are fimished with the proof. O

This result says that 1n a full table arranged so as to minimize the worst-case retrieval
time, the worst-case retrieval time should be O(log(M)). This follows from Proposition
3 since the existence of a set of M independent 1’s in a matrix in P(M, M, w)
corresponds to an arrangement of M keys in a table of size M with worst-case retrieval
time no more than w. This result is the best possible (up to a constant multiplicative
factor) due to a result of Gonnet [4]: The worst-case retrieval time must be at least
In(M) + O(1).

A study of the related question of the expected value of the average number of
probes required to retrieve a key in a full table which is average-optimal is given in [S].
(Less than two probes per key are required.)

4. |Insertion Algorithms Which Maintain Optimality

We now turn our attention to the problem of maintaining the optimality of an
arrangement as new keys are inserted into a table. The main result of this section is
that if the table 1s not too densely filled, then a new key can be inserted into the table

M columns M columns
- N r]
A B k A C M-k-I
M rows M rows
C 0 M-k 8 0 k41
M-kt k+1 k M -k

206 RONALD L. RIVEST

and the new optimal arrangement computed by solving a small (e.g 10Xx10) assignment
problem. This result is obtamned by a rather complicated analysis using generating
functions.

We first examine an insertion algorithm due to Brent [1] and demonstrate that it
does not maintain optimality. Of course, Brent only intended his algorithm to be a
good heuristic, a means of inserting each new key in such a fashion that the increase in
average retrieval cost 15 kept reasonably low

Brent’s algorithm works as follows. Let K denote the new key being mnserted, and
suppose positions A(K, 1), ... , h(K, s) are already occupied with keys K, K;, ... , K,
and that T sy 1s empty. Let r, denote the number of probes required to retrieve K,
so that #(K,, r) = h(K, i). Furthermore, let s, denote min{j|T,y,, = empty}, the
number of probes required to retrieve K, if we move it to position #(K,, s,). Then (¢ +
(s, — r))/(N + 1) is the increase in the average retrieval cost caused by moving K, to
position #(K,, s,) and storing K in position h(K, i). Brent chooses between storing X in
position 2(K, s + 1) and moving that K which minimizes: + (s, — r,) by comparing (s +
1) tommnft +5s, —r}.

In fact, the following example demonstrates that no algorithm which only moves keys
forward in their probe sequence (that 1s, moves K from i(K, 1) to h(K, i’) fori’ > i) can
always arrive at the optimal arrangement. Consider the following arrangement (using
the hash function of our previous examples), which is both average and worst-case
optimal:

Location 1 2 3 4 5 6 7

Contents 1273456 1234567 3456712 4567123 5671234 6712345 empty

If the key 2345671 1s now inserted, the only way to maintain optimality is to move
1273456 to location 7, move 1234567 (backward) to position 1, and then store
2345671 1n position 2

Since Brent’s algorithm is the only published algorithm which moves previously
mserted keys when nserting a new key, we see that no existing insertion algorithm can
maintain optimality for arbitrary hash functions. It is interesting to note, however, that
for certain open-addressing collision-resolution schemes the standard insertion algorithm
maintains average-optimality. We say that a hash function & exhibits primary clustering
if i(K,, j) = h(K,y') implies that (K, j +) = h(K,,j" +) for 0 =] = M — mun(j, j’)
for any K,, K,.. Linear probing (k(K, i) = h(K, 1) + ¢ — 1), mod M) is perhaps the
best-known example of a collision-resolution scheme exhibiting primary clustering, and
all primary clustering schemes are in fact isomorphic to linear probing in a natural
manner

Prorosition 4. If h exhibus primary clustering, then the usual insertion algorithm
mantains average-optimality

ProoF. This theorem 1s due to Peterson [9]; the proof is also given in Knuth [6, p.
531]. Knuth also remarks that if the keys have associated retrieval probabilities, then
the average-optumal arrangement can be achieved by using the standard insertion
routine to insert the keys one by one into the table, in order of decreasing request
probabilities. 1

In spite of the fact that for linear probing the standard insertion algorithm maintains
average-optimality, other hashing schemes are to be preferred, since the expected
retrieval cost in the average-optimal scheme for a primary-clustering hashing function
generally exceeds the expected cost for other schemes, even if average-optimality is not
maintained.

We now turn our attention to the task of finding an insertion algorithm that will
maintain the optimality of an arrangement. In essence, we need an algorithm to solve
the assignment problem “incrementally.”

One approach 1s to observe that if N/M is small enough (how small this is we shall
determine), then the number of keys already in the table which we need to consider
moving might be reasonably small. Brent considers moving only those keys on the

Optimal Arrangement of Keys in a Hash Table 207

probe sequence of the new key K; if we also consider moving all of the keys on therr
probe sequences, and so on, we can determme the maximum set & of keys that might
need to be moved. Similarly we let 7 denote the set of locations that & might occupy in
the optimized table; it suffices then to solve the assignment problem for placing ¥ into
I, rather than % U {K} into T.

Define, for a given arrangement «, the functions:

m(K) = min{j|h(K, j) = empty},
o(K) = {K,| o(K,) = h(K, j) for some j < =(K)},
oK) = {i|h(K, j) = i for some j = w(K)}.

Then

F(K) ={K} U {F(K)|K, € o(K)},
T(K) = 7(K) U {T(K)| K, € a(K)}

define by means of their minimal solutions the sets & and J of keys and positions
relevant to the insertion of K into an arrangement «

Let B = N/M denote the “loading factor” of the existing arrangement «. In order to
estimate the expected size #(K), we assume that the hashing function 1s uniform 1n the
sense that every permutation of {1, . , M} is equally likely to be a probe sequence of
some key K. We can then use the approximation Prob(w(K) = 1) = (1 ~ B)B1!

Let s, denote the probability that |#(K)| = 1, and let

S(z) = Zs,z’
=1

denote the corresponding generating function. We shall develop an equation for S(z)
which depends on the generating function:

Hﬂ=§mr

(where p, is the probability that, for a key K’ already stored n T, «(K') = h(K’, 1)).
However, determining P(z) for optimized hash tables remains an open problem, so we
shall approximate S(z) after we develop the correct defining equation.

Let C(z) = Y2, c,z' be the generating function with coefficients ¢, equal to the
probability that the “contribution” of a key K’ on the probe sequence of the new key K
to S(K) is i keys. Therefore

sm=§u—mmwmm

since there is a probability of (1 — 8)B8' that m(K) = + 1 (that 1s, there are : keys on
the probe sequence for the new key K). The final z is for the key K itself.
Similarly we can define

) = [EPI(C(Z))"‘] [;0 1- B)B’(C(Z))‘] 'z
(or equivalently,

(1 = BC(2))-(C(2))* = (1 — B)P(C(2))2).
The first term accumulates the contributions of those keys K” on the probe sequences
of a key K' on the probe sequence for K, such that K" occurs before K’ in the probe
sequence for K’ The second term adjusts for those keys K" occurring after K’ in the
probe sequence for K’. Finally, the third term z 1s for the key K’ itself.
The expected size of #(K) 1s §'(1); and

') = i(-8z) _ Q= BpCE)A - B + Q- BzBC'(2)
(1 - BC()) (1 - BC(2)y

T d:z

208 RONALD L. RIVEST

so that

= 1 4 BCD
S =1+ =

Now
(1 = BCN2C(2)C'(z) — BC'2NC(@))* = (1 = BIP'(D)C'(2)z + P(C(2))]
so we obtain
CH=010-p/2-38-1-pBPQ)
and thus
SN =1+ p/2-38-010-BPQ1).

Unfortunately, P(z) 1s unknown. We observe, however, that §'(1) can be expected to
remain finite as long as P'(1) = (2 — 38)/(1 — B). Since P'(1) is the expected number
of probes required to retrieve a key from an optimized table, it 1s bounded above by
the expected number of probes required to retrieve a key from a table organized with
any open-addressing hashing method. For uniform probing (all probes sequences
equally likely) we have [6]

P'(1) = g7og(1/1 — B))

approximately. Substituting this into the final equation for §'(1) yields Figure 3; we see
that the size of the relevant assignment problem is reasonably small (say 10 keys or
less) as long as B8 = 0.4 roughly The function §’(1) has a pole 8 = 0.41466541; for
loading densities less than this we can expect the number of relevant keys to be finite.
In practice we should expect to be able to handle even higher loading densities without
much trouble, since our formulas for S, C, and P explicitly ignore the probability of
overlapping probe sequences Furthermore, replacing P(z) by its correct definition
(rather than the one for uniform probing) should yield a definite improvement.

S '
1
[]
]
]
]
{
—]
4]
[}
]
]
]
]
31 |
]
]
st !
]
]
[}
2 i
[]
i
|
]
]
]
|]
]
[]
]
]

| 4146654l

I I 1 L ¥ J
o) I 2 3 4 5

Opnmal Arrangement of Keys in a Hash Table 209

The result of this rather complicated analysis is that if the loading density of the file
1s less than roughly 0.4 we can hope to insert a new key K into the table by solving a
small assignment problem. For higher densities the problem 1s inherently a global one
apparently; we must consider for relocation a considerable number of keys.

5. Duscussion and Conclusions

In this paper we have shown how to arrange a set of keys in a hash table so as to
minimize the expected (or worst-case) number of probes required to retrieve a key.
Our analysis demonstrates that the worst-case cost can be reduced to O(log,(M)) in
almost all cases. (In practice it should be possible to achieve O(log:(M)) 1n all cases with
very little work, since a set of keys which has an optimized cost that 1s too large can, by
choosing another hash functton randomly, be expected to yield an O(log,(M)) cost.)

Our analysis assumes that uniform hashing 1s used, however; an open problem is to
confirm this result for the more common techniques such as double hashing.

We have also examined briefly a technique for inserting a new key into an optimized
table so as to maintain optimality of the arrangement. Our result here is that as long as
the loading factor is less than 0.41 (approximately), we can usually insert a new key
and mantain optimality by solving a small (approximately 10-element) assignment
problem. For tables of higher density one must apparently solve an assignment problem
which nvolves most of the keys previously stored. (By saving the primal and dual
variabies of the previous solution, one can significantly speed up the solution of the
new problem, but the extra storage required might better be used to store the keys
themselves, thereby reducing the overall density.)

The reader is encouraged to consult the excellent article by Gonnet and Munro {5},
which gives explicit listings of algorithms for optimizing the arrangement of keys in a
hash table and tight results on the expected number of probes required to retrieve a
key from an average-optimal table.

The technmiques described here should be most useful when the hash table is relatively
static, with the number of retrievals considerably exceeding the number of insertions
Large databases are often of exactly this nature, and frequently utilize hashing
techniques

ACKNOWLEDGMENT. I would hke to thank Professor Donald Knuth for suggesting
directions in which to extend a previous draft of this paper.

REFERENCES

1 Brent, R P Reducing the retrieval ime of scatter storage techmques Comm ACM 16,2 (Feb 1973),
105-109
2 Erpos, P, aND ReENyl, A On random matrices Magyar Tud Akad Mat Kutaté Int. Kozl 8 (1964),
455-461 Reprinted in Erdos, P The Art of Counnng,J Spencer, Ed , M I T Press, Cambridge, Mass
(1973), pp 625-631
3 FroBenws, G Uber zerlegbare Determinaten Swuzungsberichte der Berliner Akadernue (1917), 274-
277
4 GonNET, G H Interpolation and mterpolation hash searching Res Rep 76-02, Comptr Sci Dept ,
U of Waterloo, Waterloo, Ont , 1976
5 GonNNET, G, AND MuNro, I The analysis of an improved hashing techmque Proc Ninth Annual
ACM Symp on Theory of Comptng , Boulder, Colo , 1977, pp 113-121
6 KnutH, D E The Art of Computer Programming, Vol 3 Sorting and Searching Addison-Wesley,
Reading, Mass , 1973
7 Konig, D Graphok és matrixok Matematikar és Fizikai Lapok 38 (1931), 116-119.
8 KunN, HW The Hunganan method for the assignment problem Naval Res Log Quart 2 (1955),
83-97
9 PetErsoN, W W Addressing for random-access storage IBM J Res and Develop 1 (1957), 130-146
10 Ryser, HJ Combinatorial Mathematics Carus Math Mono #14, Math Assoc Amer , 1963
11 Triep, R Internanional Thesaurus of Quotanons Thomas Y Crowell, New York, 1970

RECEIVED JUNE 1976, REVISED JUNE 1977

Journal of the Association for Computing Machmery, Vol 25, No 2, Apnl 1978

