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YFORWARDS AND BACKWARDS" ENCRYPTION
Ronald L. Rivest

I present here a variation on the use of pseudo-random sequences for encryption
which is extremely resistant to probable-word analysis. Decrypting any small
fragment of the message does not directly allow the cryptanalyst to read the
rest of the message.

The proposed method uses two pseudo-random sequences to encrypt each message.
One sequence is generated left-to-right (forwards) in the normal manner, while
the other is generated right-to-left (backwards); so that the first message
symbol is encrypted using the first generated element of the forwards sequence
and the last generated element of the backwards sequence. Each element of the
ciphertext is the sum (modulo the alphabet size) of a message element and the
corresponding elements of the two pseudo-random sequences.

We observe that this is not a stream cipher, since the entire message must be
available before encryption can begin,

The pseudo-random sequences are chosen in such a way that the forwards sequence
prevents a cryptanalyst from decrypting the portion of the message that pre-
ceded the location of a probable word attack, and the backwards sequence sim-
ilarly prevents him from decrypting the text after the probable word. Together
they make a probable-word attack futile.

We can model the generation of a pseudo-random sequence as follows. An initial
state Sy 1is chosen for the generator. This "seed" forms the cryptographic key
for the sequence, since the entire sequence can be formed from the seed. A
"next-state" function f is repeatedly used to form a sequence of states Si,
Sy, S3, ... where S;47 = £(S;). Finally, the pseudo-random sequence itself is
typically not the state sequence but a transformed version of it: an "output
function"” g is used to transform the ith state Sy dinto the ith element of
the pseudo-random sequence.

A probable word attack is often successful in discovering the state of the gen~
erator at the location of the attack. We wish to prevent this information from
being useful to the cryptanalyst.

Consider the usual situation where only a single (forwards) generator is used.
The cryptanalyst presumably knows the next-state and output functions £ and
g: the cryptographic key is the initial state S; . Once the cryptanalyst
discovers the ith state to be $S{ with a probable word attack, he can easily
decrypt the ith and all subsequent message elements since he can recreate the
pseudo-random sequence from that point forwards. However, a well-chosen next-
state function £ can prevent the cryptanalyst from decrypting the previous
i-1 message elements.

We will choose the next-state function £ to be many-to-one to thwart the
cryptanalyst in his efforts to use his knowledge of S4 to determine
S1seees84-1. If £ dis many-to-one for each state Sj there can be many
states X such that £(X) = Sj; each of these states could have been Sjml.

As the cryptanalyst tries to use his determination of S; to find 84-31, Si-2,
etc., more ambiguity is introduced in each backwards step. If the rate at
which ambiguity (uncertainty) is introduced exceeds the redundancy rate of the
plaintext the cryptanalyst will be unable to decrypt the message prior to the
ith element.

If we use a backwards pseudo-random sequence in addition to the forwards one,
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where both sequences are generated using many-to-one next-state functions, the
cryptanalyst will be unable to use a probable word attack to determine any por-
tion of the message, since the backwards sequence now prevents him from decrypt-
ing the message that follows the probable word.

This completes our description of the basic idea. In what follows, we present
examples and suggestions on the choice of suitable many-to-one next-state fumnc-
tions.

There is no reason why the same next-state function f could not be used in
the generation of both the forwards and the backwards sequences. The crypto-
graphic key will typically consist of two seeds: one to initialize the gener-
ation of each sequence.

One simple choice of the next-state function is to use an f of the form

f(x) = x2 + a (mod p). Here p is a randomly chosen large prime number and

a 1is another randomly chosen number 0 < a < p. For each state 5S4, where

i > 1, of the pseudo-random state sequence Si, S, ..., there will generally

be two solutions tothe equation £(X) = S;. If the output function g produces
one bit of output for each state the ambiguity is introduced at a high rate.

Another technique is to use a nonlinear feedback shift-register of the form:

ao

\\ ! |

Nonlinear function h

Each register cell holds one bit a; of information; the next state of the
register is (a3, a2, ..., ay_1, ap, h{ag, ..., ap)). As long as h(ag, --+5 an)
is not of the form ag @ h' (a1, aj, ap) the next-state function will be
many-to-one.

° 3

It is important to note that pseudo-random sequences generated using a many-to-
one next-state function will not be "maximum period" sequences. If the number
of generator states is n then a maximum period generator will produce a se-
quence of length =n, whereas a pseudo-random sequence produced with a "random"
next-state function will have period roughly vn. The number n of generator
states should be chosen so that vn is much larger than the length of the mes-
sages being enciphered.

As an example, consider encrypting the word CRYPTOGRAPHY using the next-state
function f(x) = x2 + 3 (mod 1009), the forwards seed 919, and the backwards
seed 21, and the output function g(x) = (x mod 26). The encryption computation
is shown in Table 1, the numeric ciphertext 11, 12, 4, ..., is formed by adding
(mod 26) the numeric message codes with the corresponding elements of the for-
wards and backwards pseudo-random sequences. Our ciphertext is thus
LMEDXETYLBMI.
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Even if a cryptanalyst could deduce that the sixth letter of our plaintext was
0 and that the states of the pseudo-random number generators for that letter
were 522 and 248, he would not be able to determine that the next plain-text
letter is G, since it equally well could have been F. (Note that

248 = 6992 + 3 = 3102 + 3 (mod 1009), so that the next element of the backwards
pseudo-random sequence could have been either 23 (= 699 (mod 26)) or

24 (= 310 (mod 26)).) Similarly the previous plain-text letter could be de-
crypted as either T (which is correct) or W, corresponding to forward
states of 103 or 906. Thus a probable-word attack is of no avail to the crypt-
analyst.

While the basic principle should now be clear, we leave it to the reader to in~
vestigate which many-to-one functions are most suitable for use in our method.
The works mentioned in the bibliography describe other pseudo-random sequence
generation techniques, or methods for breaking such techniques.
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