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STATISTICAL ANALYSIS OF THE HAGELIN CRYPTOGRAPH
Renald L. Rivest

We derive here a formula which estimates how much ciphertext is needed to
solve a cryptogram produced by a Hagelin cryptograph, using the cryptanalytic
technique presented by Barker [1]. We shall see that no more than 8000
characters of ciphertext are needed to solve a Hagelin Model C-48 (or U.S.
Army M-209) cryptogram. The Hagelin cryptograph was invented in the 1930's
by Boris Hagelin; many thousands of these machines were produced in the sub-
sequent decades.

I. The Encryption Process

We let the letters of the alphabet used (both for plaintext and ciphertext) be
denoted &1,82,...,8), where A is the number of letters (typically X = 26).

A typical Hagelin machine has w keywheels, or wheels, where wheel i has tj
pins. For the C-48 we have w = 6 wheels of 17, 19, 21, 23, 25, and 26 pins,
respectively. Each pin can either be pushed left or right. Each wheel
rotates past a sensor; at a given moment the w sensors can determine which of
the w wheels have "left''-pins under the sensor, and which have "right"-pins.
Therefore one of 2¥ possible sensor readings will occur; this sensor reading
is used to select a monocalphabetic substitution to encrypt the plaintext
letter. Each wheel then advances one position before the encryption of the
next letter,

The detailed operation of the machine is described in Barker [1]. A substi-
tution selected by a given sensor reading may be the same as substitutions
selected by other sensor readings; this will not affect our analysis. (For
example, on the C-48 we have 2¥ = 64 different readings possible but only 26
monoalphabetic substitutions available, so some substitutions will be selected
by more than one reading.)

II. The Cryptanalytic Procedure

We assume that we must make a "ciphertext only' attack; no partial plaintext
or probable words are available to us. We assume, however, that the plaintext
is English (or another nonrandom source of characters). For English military
text we can expect frequency counts per 1000 characters as shown in Table 1
(from [1], p. 109). The frequency of "Z"” is high because the Hagelin machines
are not equipped with a ''space character, so Z is conventionally used in its
place.

A=62 H-28 0-63 v-13
3-8 1-62 P-22 W-13
c-26 J-1 Q-3 X~4
D-35 K-2 R-64 ¥-16
E-109 L-31 $-51 7~162
F-24 M-21 T-77

G-14 N~-67 U-22

Table 1. English Military Text Frequencies (per 1000)
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The fact that the plaintext has a non-~uniform distribution causes the cipher~
text also to have a non-uniform distribution; this enables us to determine
the pin settings using statistical tests on the ciphertext.

Suppose we wish to determine the pin-settings on wheel 1 (the other wheels can
be handled similarly). Although a very large number of characters must be
enciphered before the sequence of sensor readings repeats itself (this number
is the least common multiple of ¢ ...,tw), the pins passing under wheel 1's

l’
sensor will repeat every tl letters. If Cl’CZ"" is the sequence of cipher-
text letters available, then pin 1 was used to encipher letters C C

1’ t1+l’

Ct1+2’ C2t1+2’°"’ etc.

. while pin 2 was used to encipher letters Cz,
We wish to determine 1f pin i on wheel 1 has been pushed in the same direction
as pin j on wheel 1, for all i and j, 1 # j. To do this we can compare the
frequencies of the ciphertext letters produced using pin i with those produced
using pin j. For example to compare pins 1 and 2 we can make a table such as
is given in Table 2.

C2t1+l"'

ay a2 e a, «Ciphertext Letter
pin 11 £, £, £ |
pin 2} g, g, P g n
total fl+gl f2+g2 e fk+gx 2n

Table 2. Sample frequency table

Here fi is the number of a,'s in C C , while gi is the number

1’ t1+l’ C2t1+l’..l
of ai's in CZ’ Ct gt etc. We have assumed for simplicity that the
1

available ciphertext has length t.* n, so that each pin of wheel 1 is used

1

exactly n times.

If pins 1 and 2 are in the same position (i.e. either both left or right), we
would expect the fi's and gi's to have the same distribution. On the other

hand, if the pins are in different positions, the underlying non-uniformity of
the plaintest distribution will result in a statistically significant differ~
ence in the distribution of the fi's and the gi's.

The X2 test [2, p.447] will detect significant differences between the fi's
and the gi's. We compute
A
X2 =1 (f,~g.)2 .
i=1( 1783/ (E i+
This statistic will follow the X2 distribution with A-1 degrees of freedom if
the fi's and the gi's have the same distribution. Thus [2, p.234]
E(X?2) = X-1, and (2)
Var(X2) = 2(x-1). (3

If the fi's and the gi's are not from the same distribution, we can expect,

that X2 » @ as n -» «,
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When
X2 > E(X3) + 2/Var(X2) = x-1 + ¥8(2-1) (4)

we may assume that the deviation is statistically significant.

Once we have enough ciphertext we will be able to determine which pins on
wheel 1 are set in the same manner; that is we will have divided the pin
positions into two groups, where every pin in a group is set in the same di-
rection. Other simple techniques (see [1]) can then be used to decide which
group is ''left'" and which "right". From there on determining the pin settings
on the other wheels, etc., is relatively straightforward (see [l] for more
details).

IIT. How Much Ciphertext is Needed?

Although the cryptanalytic procedure given above was published by Barker [1],
no estimate was given there for the amount of ciphertext required to solve a
cryptogram. The analysis given here uses only elementary techniques, and
arrives at an answer which seems 'reasonable" in comparison with the examples
given in [1].

We first solve the following problem. Let p; (respectively q;) denote the
probability of letter ai occurring in the ciphertext when pin 1 (respectively
pin 2) of wheel 1 is under the sensor. Then we want to know how much cipher-
text is required to determine that the p;'s are different from the qi's (as-
suming that they are different). The answer will of course depend on how

different the two distributions are.

The distribution of £, thus follows a binomial distribution with probability
of success p,: +

.y _ oy k n-k
Prob(f =k) = (p, (1-p,) (5)
E(fi) = np, (6)
Var(fi) = npi(l—pi)- (7

Similarly 8, follows a binomial distribution with probability eh of success.

We assume that pi:qi:l/A for all i in what follows. That is, we assume that

each ciphertext letter will be (to a first-order approximation) equally likely;
the X2-test will however measure the second-order effects of any differences.
Using this assumption in (1) to conclude that fi+gi % 2n/X we obtain
A
2y = - 2
E(X?) (>\/2n)i§lE((fi g;)2) - (8)
Furthermore,
- 2y = 2 2y -
E((£,-8)2) = E(£,%) + E(g;2) - 2E(£)E(g,) (9)
since fi and g, are independent random variables. Also
2y = 2
E(fi ) Var(fi) + (E(fi)) . (10)

Combining equatioms (6) - (10)

by
E(X2) * (A/2n) izlE(n'(pi(l—pi)+qi(l—qi))+n2(Pi—qi)2)- (11)
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Using our assumption that p_xq,z1l/A to simplify the coefficient of n in (11)
we obtain R

A
B(X2) » (A-1) + (Kn/Z)iEIE((Pi-qi)z) (12)

Note that this agrees with (2) when Pi=qy for all i; we obtain E(X2) = X-1 as

we should. When the two distributions are different the excess of X2 over )
increases linearly with n and with the sum of the squares of the differences in
the corresponding probabilities. This completes our answer to our first
problem for given probabilities p., q., since we can now calculate how large n
must be for (4) to hold. 1 +

In order to use the above result we need to calculate E((py-q¢)2). Note that

p. and q, are random variables; they depend on how the pins are set on wheels
i i . X .

2y...,Ww.” Once we know the distribution of p, and q, we can calculate

E((p,-q,)2), since -

E((pi—qi)z) Var(pi—qi) = 2Var(pi). (13)

It

This follows since E(pi) = E(qi) 1/x, so that E(pi—qi) = 0, and since

Var(pi—qi) = Var(pi) + Var(qi), where Var(pi) = Var(qi) since p, and a9y will

have the same distribution.

How is Py determined? With pin 1 of wheel 1 in a fixed position, the other

-1 . ... . :
w-1 wheels can produce 27" distinct sensor readings, each of which selects
some monoalphabetic substitution. Since the recommended usage of the Hagelin
machine is to set about half of the pins on each wheel in each direction, each

of the ZW_l substitution functions is equally likely to be used.

Let = ,7, denote the respective probabilities of occurrence of

IRLDERRETEIN
al,az,...,ax in the plaintext. (For English military text these can be ob-

tained from Table 1.) To determine the probability Py of letter ay occurring

in the ciphertext when pin 1 is used, let a, ,a, ,...,a, be the list of
2" plaintext letters, the k-th of which causes a; to be produced as the
ciphertext when substitution k is used. (There may be repetitions in this
list.) Then
w-1
L om (14)

1 2
p, = (1/27h -
1 k=1 Jk

Py is the mean probability of the ZW_l plaintext letters which can produce ay -

Let 7 be a random variable which is equally likely to take any one of the
values m,,%,,...,%,. Then
1’72 DN
E(m) = 1/A, and (15)
Var(m) = 042, (16)
for some value oy?. From Table 1 we have 1/) = .03846 and 02 : .001344.

Equation (14) says that Py is the mean value of a sample of Zw—l values of =,
so that

E(pi) = E(r) = 1/x an
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2 -1

Var(p,) = Var(m)/2" = g5%/2" (18)

Thus, although 1 and 45 both have expected value 1/A, the underlying non-

uniformity of the distribution of the plaintext (Var(r) #% 0) will cause p; and
ay to be samples from a distribution with non-zero variance. If pins 1 and 2

are set in the same manner, then P, = 4 is forced, but if they are set differ-
ently we may assume that pi and qi are independent, so that from (13) and (18)

we obtain a non-zero E((pi—q,)z):
i
2, w-1
—q )2) = =
E((Pi q;)%) = 2Vaxr(p,) = gp /27 . (19

Plugging this into (12) we obtain for the case that pins 1 and 2 are in differ-
ent positions:

7 -
EEH = -1 + ((F0pH /2" . (20

In order for this to be a significant deviation we want (4) to hold, so that
(0 2oyH /2% Yy n 2 2varx?) = /BG-D). 1)

Since t.n is the total amount of ciphertext required to produce n ciphertext

1
letters enciphered under each pin of wheel 1, we can rewrite (21) as

Amount of ciphertext = (tiZWVZ(X—l))/(AZGOZ); (22)

this amount of ciphertext should produce sufficient statistical evidence to
determine all the pin settings.

Formula (22) is our main result. If we assume that we are trying to break a
w-wheel Hagelin cryptogram where one of the wheels has length tl = 17, then

we can calculate the amount of ciphertext required as estimated using (22) with
A = 26 and 0p2 = .001344:

Number of Wheels Amount of Ciphertext

264 Characters
529 Characters
1058 Characters
2117 Characters
4233 Characters
8468 Characters

[NV, BRI VOIS S I )

Table 3.

The amount of ciphertext required doubles with each additional wheel, reaching
approximately 8000 characters for a six-wheel machine.

How realistic is this result? By way of comparison Barker [1] provides a set
of four six-wheel problems to be solved. Since they all have the same pin
settings, they can be combined for statistical purposes into a single problem
of 3245 characters. Barker also solves as an example a 4-wheel problem of 770
letters in length.

We conclude that our analysis is probably a bit conservative; our estimates

may be a factor of two to four to large. While we believe our analysis to be
correct, several considerations may reduce the actual amount of ciphertext
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required:

(1) Our assumption that the X2 statistic must be 2 standard deviations
above its expected value in order to be considered significant is proba-
bly conservative; a cryptogram might still be easily breakable if the
expected deviation in the case that the pins were set differently were
only one standard deviation. This would reduce our estimates by a factor
of two.

(2) There is a '"snowballing" effect once several of the pin settings on
a wheel have been correctly identified, since the statistics from the
known settings can be combined to yield improved accuracy in the determi-
nation of the remaining settings.

(3) There may be characteristics of the Hagelin machines which we have
ignored which permit more powerful statistical tests to be used. For
example, it may be useful to know that if pins 1 and 2 are set in differ-
ent positions, then the substitutions selected under pin 2 are all
shifted by the same amount from the substitutions selected under pin 1
(this is the "lug setting' for wheel 1). In our analysis we assume that
the substitutions were all randomly selected.

We leave as open problems the precise analysis of considerations (1) - (3).

Since these considerations all tend to reduce the amount of ciphertext required,

our estimate of 8000 characters to break a C-48 cryptogram should be taken as

an upper bound. The reader is urged to devise improved statistical techniques
and analyses which would provide an improved estimate of the amount of cipher-
text required.
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