
ARTIFICIAL INTELLIGENCE 77 

Game Tree Searching by 
Min / Max Approximation* 

Recommended by Hans Berliner 

Ronald L. Rivest 
Laboratory for Computer Science, MIT, Cambridge, 
MA 02139, U.S.A. 

ABSTRACT 

We present an iterative method for searching minlmax game trees based on the idea of approximating 
the “min” and “max” operators by generalized mean-valued operators. This approximation is useci 

to guide the selection of the next leaf node to expand, since the approximations allow one to select 
ejficiently that leaf node upon whose value the (approximate) value at the root most highly depends. 
Experimental results from almost 1,000 games of Connect-Four’ suggest that our scheme is superior 
to minimax search with alpha-beta pruning, for the same number of calls to the move routine. 
However, our scheme has higher overhead, so that further work is needed before it becomes 
competitive when CPU time per turn is the limiting resource. 

1. Introduction 

This paper introduces a new technique for searching in game trees, based on 
the idea of approximating the min and max operators with generalized 
mean-value operators. 

Game playing by computer has a long history, and many brilliant ideas have 
led us to the point where high-quality play for many games can be obtained 
with pocket-sized computers. (See [3] for an exposition of previous work in this 
area, and Pearl’s book [13] for an excellent introduction to the mathematical 
analysis of game-playing programs.) 

However, further improvement is certainly possible, and this area of re- 
search is still an active one. The combinatorial explosion of possibilities in a 
game such as chess tax our most powerful computers, and even special-purpose 
hardware soon reaches its limits. Clearly, the most careful organization and 
allocation of computational resources is needed to obtain expert-level play. 

” This research was supported by NSF grants DCR-8006938 and DCR-8607494. 

’ Connect-Four is a trademark of the Milton-Bradley company. 

Artificial Intelligence 34 (1988) 77-96 
0004-3702/B/$3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland) 



78 R.L. RIVEST 

Techniques such as alpha-beta pruning and its successors [6, 2] have been 
essential in reducing the computat ional  burden of exploring a game tree. Still, 
new techniques are needed. Nau et al. [10], after much expermentat ion with 
existing methods,  assert that " A  method is needed which will always expand 
the node that is expected to have the largest effect on the value."  This paper  
suggests such a method.  

Our  method,  " m i n / m a x  approximat ion,"  at tempts to focus the computer ' s  
attention on the important  lines of play. The key idea is to approximate  the 
"min"  and "max"  operators  with generalized mean-value operators.  These are 
good approximations to the ra in /max operators ,  but have continuous deriva- 
tives with respect to all arguments.  This allows us to define the "expandable  tip 
upon whose value the backed-up value at the root most heavily depends"  in a 
nontrivial manner.  This tip is the next one to be expanded,  using our heuristic. 

In Section 2 of this paper  I present the essential results about generalized 
mean values that underly the new method.  Then,  in Section 3, these ideas are 
applied to the problem of searching game trees. In Section 4, I give some 
thoughts regarding implementat ion details. Section 5 describes our preliminary 
experimental  results. Some final thoughts are presented in Section 6 . 

2. General ized Mean Values 

Let a = (a 1 . . . .  , an) be a vector of n positive real numbers,  and let p be a 
nonzero real number.  Then we can define the generalized p-mean of a, Mp(a), 
by 

Mp(a)= n aPi (1) 
i = l  

Of course, M l(a) is the ordinary arithmetic mean.  We can extend our notation 
to the case p = 0  by 

i o ( a  ) = l im i p ( a )  = ( a l .  . . a , )  1/" , (2) 
p~O 

so that Mo(a ) is the geometric mean. 
We begin with the fact that 

p < q ~ Mp(a) <~ Mq(a), (3) 

where equality only holds on the right if all the a i are equal. (See [5] for proofs 
and other facts about  generalized mean values.) 

For our purposes,  we are most interested in the following two facts: 

lira Mp(a) = max(a  I . . . . .  a , , ) ,  

lim Mp(a) = min(a I . . . . .  a , , ) .  

(4) 

(5) 



GAME TREE SEARCHING 

TABLE l .  Mp(a) for a = (10, 21, 29, 32) 

79 

p -32 -16 -8  -4 -2 -1 0 1 2 4 8 16 32 

Mp(a) 10.4 10.9 11.9 13.9 16.6 18.7 21.0 23.0 24.5 26.5 28.3 29.7 30.7 

To illustrate the above facts, consider Table 1 where various values of Mp(a) 
are given for a = (10, 21, 29, 29, 32) and various p. 

For large positive or negative values of p, Mp(a) is a good approximation to 
max i (ai) or min i (ai), respectively. However ,  Mp(a), unlike max or min, has 
continuous derivatives with respect to each variable a i. The partial derivative 
of Mp(a) with respect to ai is 

OMp(a) 1 ( a i ~p-1 
Oa~-~ - n \ Mp(a) / " (6) 

The major  reason that the generalized means are of interest to us here is that 
they are more  suitable for a "sensitivity analysis" than the min or max 
functions. We propose that OMp(a)/Oa i (for large p) is a more  useful quantity 
than Omax(a)/Oa i, since the latter is zero unless a i is the maximum,  in which 
case it is one. This discontinuous behavior  is awkward to work with, whereas 
the derivative (6) is continuous. We also note that the derivative (6) ranges in 
value from 0 t o  n l / p ~ l  f o r p > > l n n ) .  

By way of example,  with a = (a l, a2, a3, a4) = (10, 21, 29, 32), and p - 32, 
we have VMp(a)~(2 x 10 16, 2 x 10 6, 0.04, 0.90). The a i values near  the 
maximum have much more  effect on Mp(a) here than do smaller values. 

Although we shall not use them in this paper ,  other forms of generalized 
mean values exist. For example,  if f is any continuous monotone  increasing 
function (such as the exponential  function), we can consider mean values of the 
form 

f 1 ( 1  ~ f(ai)) " (7) 
i = 1  

Using f - - e x p ( .  ) would yield a good approximation to max ( • ), and f = In( - )  
would yield a good approximation to min ( . ) .  

One of the ideas of this paper  is that by using the generalized mean values to 
approximate  the min and max functions, we can identify in an interesting way 
that leaf in a game tree upon whose value the value at the root depends most 
strongly. This is done by taking derivatives of the generalized mean value 
functions at each node and using the chain rule. This leaf will be the one to 
expand next. These ideas will be made more  precise in the next sections. 



80  R.L. RIVEST 

3. Game Tree Searching 

3.1. Game trees 

Consider a two-person zero-sum perfect information game between players 
Min and Max which begins in a starting configuration s with Max to move,  
after which they alternate turns. The game defines a finite tree C of configura- 
tions with root s. We split C into subsets Min and Max depending on whose 
turn it is to play. For each c E C we let S(c) denote the set of c's successors (or 
children). To move from configuration c a player selects some d C S(c); his 
opponent  must then move from configuration d. Configurations with no 
successors are called terminal configurations; T(C) will denote the set of 
terminal configurat ions-- these form the leaves of the tree. The game stops 
when a terminal configuration is reached. We assume that the relation S is 
acyclic, so the game always stops. The actual play traces out a path in the tree 
from the root s to leaf representing a terminal configuration t. 

Each leaf t E  T(C) has an associated value or score v(t); this is the value of 
the terminal position from Max's  point of view. By induction on the structure 
of the tree we may determine the value v(c) of any configuration c E C by 
"backing up"  or "minimaxing" the values at the leaves: 

I v ( c ) ,  

v ( c ) -  ~ max v ( d ) ,  
-- } dcS(c) 

! min v ( d ) ,  
I deS(c} 

if c E T ( C )  , 

if c E Maxk T(C) , 

if c E MinX T( C) . 

( 8 )  

FIG. 1. A small game tree. 



GAME TREE SEARCHING 81 

Given v(c) for all c E C, optimal moves are easy to determine: if c E Max, 
then player Max should select any configuration d E S(c) with maximum value 
v(d).  Similarly, if c E Min, then player Min should select any configuration 
d E S ( c )  with minimum value v(d).  Figure 1 shows a small game tree. 
Configurations in Max are shown as squares, those in Min are shown as circles. 
The value of each configuration is shown inside the square or circle. The value 
of the game is 16; optimal play is indicated with the heavy arrows. 

3.2. Searching a game tree 

When C is small, the tree can be explored completely, so optimal play is 
possible. On slightly larger trees minimax search with alpha-beta pruning [6] 
may produce optimal play even though only a small fraction of the game tree is 
explored-- the  portions of the tree that are "pruned"  (not explored) are known 
not to be relevant. 

However,  for most interesting games the game tree is so large that heuristic 
approximations are needed. 

A heuristic method is usually based on a "static evaluation function" ~ that 
gives an estimate b(c) of the backed-up value v(c) for a nonterminal node c. 
This estimate is based on "static" features of the current configuration that can 
be evaluated without further look-ahead (e.g. piece count and an advantage for 
the player to move). 

Our proposed technique requires a single static evaluator b( . ) .  Some other  
methods- -most  notably the B* algorithm [2]--require two static evaluation 
functions which are upper and lower bounds on v( . ) .  

A popular approach to handling very large game trees is to select a suitable 
depth bound d, to estimate the values of nodes at depth d using the static 
evaluator, and then to compute the backed-up minimax value from the nodes 
at depth d using alpha-beta pruning. 

Given a limit on the computing time available, one can successively compute 
the backed-up values for depths d = 1, 2 . . . .  , until one runs out of time, use 
the move determined by the last search completed. This technique is known as 
iterative deepening. 

For familiar games (e.g. chess) as one increases d the accuracy of the value 
computed for the root seems to improve. However ,  there are "pathological" 
games for which increasing d seems to yield less accuracy [8, 9]. We assume our 
game is nonpathological. 

A different class of heuristics are the iterative heuristics, which "grow" the 
search tree one step at a time. At each step a tip node (or leaf) of the current 
tree is chosen, and the successors of that tip node are added to the tree. Then 
the values provided by the static evaluator at the new leaves are used to 
provide new backed-up values to the leaves' ancestors. The tree grown by an 
itcrative heuristic need not be of uniform depth: some branches may be 
searched to a much greater depth than other  branches. 



82 R.L. RIVEST 

Examples  of  such iterative techniques are the Berl iner ' s  B* algori thm [2], 
Nilsson's  " a r r o w "  me thod  [11], Palay 's  probabi l i ty-based method  [12], and 
McAlles ter ' s  "conspi racy  n u m b e r "  me thod  [7]. 

The  heuristic p roposed  in this paper  is an iterative technique in the above 
sense. 

3.3. Iterative search heuristics details 

We now formalize how a tree is explored using an iterative search heuristic, 
and how estimates are "backed  up"  to the root.  

We begin with some s t ra ightforward definitions. 
If  d E S(c), we say that  c is the father  of  d. We denote  the fa ther  of  d by 

f ( d ) ,  and define f(s)  = s. We call c a sibling of  d if f (c)  = f ( d ) ,  and we call c an 
ancestor of d if c = d or  if c is an ancestor  o f f ( d ) .  We let A ( d )  denote  the set 
of  d ' s  ancestors.  Note  that  c is both  an ancestor  and a sibling of  itself. 

If  E is a partial game tree,  then for any c E E the subtree of  E rooted at c, 
denoted  E., is { x l x E  E&c  ~ A(x)},  the set of  all x ~ E which have c for an 
ancestor.  

If  E is a partial game tree, then c E E is a tip o r E  if c has no successors in E, 
i.e. S(c) f-) E = 0. The  set o f  tips of  E is deno ted  T(E).  The tips of  C are the 
terminal configurations.  We say that a tip x of  E is expandable if x has 
S u c c e s s o r s .  

If  E is a partial game tree,  and c is an expandable  tip of  E,  then to expand E 
at c means  to add the successors S(c) of  c to E. If  we expand E at a tip c, then 
E remains a partial game tree. 

We let ~ denote  our  static evaluat ion function.  We assume that b(c) = v(c) if 
c C T(C) ;  our  static evaluat ion function is exact on terminal  positions. For  
nonterminal  positions c b(c) is merely  an est imate of  v(c). 

For  any partial game tree E and any c C E  we define the backed-up  
est imates ~E(c) of  v(c) in a manne r  identical to the way the correct  values are 
backed-up  using equat ion  (8), except that  we are backing up the static 
evaluat ions f rom the tips of  E ra ther  than backing them up f rom the terminal  
posit ions of  C: 

/ max (bE(d)) 
 E(c) = ] 

/ min (bE(d)) ,  
( dCS(c) 

if c E T(E)  , 
if c E Max \T (E)  , 

if c E Min \T(E)  . 
(9) 

If  E = (s} (our partial game tree is the minimal possible game tree), then 
fJE(s)= b(s). On the o ther  hand,  if E =  C then our  est imates are exact:  
bE(c ) = v(c) for all c. We expect  that  ~E(s)---~ v(s) as E---~ C for our  "non-  
pathological"  game.  (The use of  the limiting notat ion "---~" here is merely  
suggestive and not formal.)  



GAME TREE SEARCHING 83 

We observe that if we expand E at c, then we can update b e by recomputing 
equation (9) only at nodes in A(c) (first at c, then f(c), and on up the tree until 
s is reached).  

The general process of partially exploring a game tree by an iterative 
heuristic can be formalized as follows: 

Step 1. Initialize E to (s}, and 8E(s ) to 8(s). 
Step 2. While E :~ C, and while time permits, do: 

(a) Pick an expandable tip c of E. 
(b) Expand E at c. 
(c) Update 8E(c ) at c and the ancestors of c up to  the root s, using 

equation (9). 

The major unspecified detail here is in Step 2(a)--which expandable tip c of 
E should we pick? The purpose of this paper is to provide a new answer to this 
question. 

Another  intriguing question is how one might gauge the accuracy of the 
current estimate of the value at the root, in case one wishes to use a 
termination condition based on accuracy instead of a termination condition 
based on time. We do not pursue this question is this paper. 

3.4. Penalty-based iterative search methods 

We now present a general method for choosing which leaf to expand in an 
iterative method; our technique is a specific instance of this method. 

We assume that for each node c E E an estimate ~e(c) of v(c) is available; 
for example, we may have ~e(c) = f2e(c ). If c @ T(E), we assume that ~e(c) = 
~(c). Otherwise, we assume ~e(c) only depends upon ~e(d) for d E S(c), and 
whether c is in Min or Max. 

Although one could in principle work just with the backed-up estimates 
b E ( ) ,  the derivation of our method is clearest if we permit rE( ) to differ from 
b E ( ) .  Nonetheless, our actual implementation will use r e (  ) =  rE( ) for 
efficiency reasons. 

We assign a nonnegative "penal ty"  (or "weight")  to every edge in the game 
tree such that edges representing bad moves arc penalized more than edges 
representing good moves. We let w(c) denote the weight on the edge between c 
and its father f(c) ,  and define w(s) to be zero. 

We assume that w(c) is computable from ~E(f(c)), and the values {~E(d)[d 
is a sibling of c}. (Recall that c is its own sibling.) 

For example, we might define w(c) to be a + (~E(d) - UE(C)) 2, where a > 0 
is the penalty for descending a level and where d is the sibling of c which 
optimizes ~E(d). (Our actual proposal will be somewhat different.) 

We define the "penal ty"  P(c) of a tip c E T(E) to be the sum of the penalties 
of all the edges between c and the root s: 



84 R.L. RIVEST 

P ( c ) =  ~ w(d) .  
dEA(c) 

Our idea is then to expand that tip node t which has the least penalty P(t). 
We add t's children to the tree, update  the estimate bE(c ) for every c E A(t) ,  
and update the penalties on the edges between each c E A(t)  and its children. 

The min /max  approximation technique presented here is such a penalty- 
based scheme. 

We now describe the implementat ion of a generic penalty-based scheme in 
more detail. 

Let E denote the current partial game tree. 
For any c E E, and any d E E c, we define Pc(d) to be the sum of the weights 

of the edges between d and c; Pc(d) is the penalty of  d relative to the subtree 
E C rooted at c. (So P ( d ) =  P,,(d).) 

For any node c ~ E, we define b(c) to be the expandable tip node in the 
subtree E C which minimizes Pc(x). Ties are resolved arbitrarily (e.g. by 
selecting the leftmost such node). If none of E o's tip nodes are expandable,  we 
define b(c) to be the special value w. 

For any node c E E, we define a(c) as follows. If b(c) = ~o then a(c) = w. If  c 
is an expandable tip of E then a(c)= c. Otherwise a(c) is that d E S(c) such 
that b(c) E E, .  Think of a(c) as an "a r row"  from c to one of its children, such 
that following successive arrows leads from c to b(c). (See [11] for the origin of 
this "a r row"  terminology.) 

With each node c of E we store bE(c ), a(c), and ~'(c) = P~(b(c)), the penalty 
of the best expandable tip b(c) of Ec relative to the subtree Ec, or else ~ if 
b(c) = w. Note that Pc(b(c)) = 0 if b(c) = c is an expandable tip node. 

The weight w(c) need not be stored; it is computable  from the value of b E at 
the c's father and siblings. 

We note that bE(c ), a(c), and ~(c) are computable  from the corresponding 
values for c's children. Specifically, be(c ) is computable  this way by assump- 
tion, a(c) is the child d of c which minimizes z r (d )+  w(d), and zr(c) is 
zr(a(c)) + w(a(c)). (If  all the b(di) are ~o, then a(c) = oo and ~-(c) = oc.) 

A penalty-based algorithm begins with E = {s}, a(s), and ~-(s)= 0. 
At each step of the iterative expansion procedure,  the following steps are 

performed:  

Step 1. If b(s) = w stop---the tree has no expandable tips (i.e. E = C). 
Step 2. Set x to s. 
Step 3. While a ( x ) #  x, set x ~--a(x). (Now x is the expandable tip node 

which minimizes P(x).) 
Step 4. Add the sucessors of x to E. 
Step 5. Compute  bE(d ) for all successors d of x. For each expandable child d 

of x, initialize a(d) to d and zr(d) to 0. For each terminal child d of x, initialize 
a(d) to be ~o and ~-(d) to be oo. 



GAME TREE SEARCHING 85 

Step 6. Recompute  fie(x), a(x), and ~-(x) from the corresponding values at 
x's children. 

Step 7. If x = s stop, otherwise set x = f(x) and go back to Step 6. 

When the algorithm terminates in the last step, then it has traced a path 
from the root s down to the best expandable tip x = b(s) in Es, added all the 
successors of x to E, and updated the rE, a, and 7r values where necessary by a 
traversal back up the tree from x to the root s. 

3.5. Searching by min/max approximation 

The "min /max  approximation" heuristic is special case of the penalty-based 
search method,  where the penalties are defined in terms of the derivatives of 
the approximating functions. 

Consider the partial game tree of Fig. 2. Here  we have a tree E of size 5; we 
assume all the tips of E are expandable. The value bE(c ) is given at each node 
c, based on the estimates ~(t) = 2, ~(w) = 10, ~(x) = 12. 

If we expand at w (say, because that is the most promising line of play), we 
may obtain Fig. 3. 

Note that f~e(w) has changed from 10 to 11. 
Which node should be expanded next? In the conventional framework this 

question is difficult to answer. 
To answer this question we propose picking a relatively large p (e.g., 

p = 10), and computing an approximation rE(c) to f~e(C) for each c @ E by the 
analog to equation (9) wherein "max"  has been approximated by "Mp" ,  and 
"min"  has been approximated by "M_p":  

{ b(c) , if c E T(E)  , 
rE(C) = { Mp(vE(d, ) . . . . .  fE(dl,)), if C E Max \T(e ) ,  (10) 

(M-p( fE(dl) ,  . , f e (d j , ) ) ,  i f cEMinXT(E) ,  

w x y z 

FI6. 2. A partial game tree. FIG. 3. An expanded game tree. 



g6 R.L. RIVEST 

where  S(c)= { d a , . . .  , dk}. z The values ~L,(c) should be good approximat ions  
to ~E(c) if p is sufficiently large. 

However ,  we are less interested in the approximate  values than we are in 
their derivatives with respect  to each argument .  In this manner  we will be able 
to derive the requisite penalties. (These will be the negatives of  the logari thms 
of  the derivatives.) 

Let  

alE(x) 
D(x, y ) -  O~e(y ) (11) 

where y is any node  in E , ,  the subtree of  E roo ted  at x. Thus D(s, c) measures  
the sensitivity of  the roo t  value fiE(s) to changes  in the tip value rE(c) .  

We wish to expand next that expandable tip c with largest value D(s, c). We 
hope  thereby to reduce  the uncer ta inty  in rE(s) in the most  efficient manner .  

The  idea of  choosing the tip c with max imum D(s, c) can be formula ted  as a 
penal ty-based iterative heuristic. We define the weight on the edge between 
f(x) to x to be 

w(x) = - l o g ( D ( f ( x ) ,  x)) . 

By the chain rule for  derivatives, we have 

(12) 

D(s,x)= I-[ D(f(c),c). (13) 
cCA(x) 

Since we want  to expand the expandable  tip x with the largest D(s, x), we 
should choose  the expandable  tip with the least penalty,  since the penalt ies are 
defined by 

P,(x) = ~ w(c), (14) 
ceA(x)  

so that  the tip x with largest value D(s, x) is the one with least total penal ty  
~(x). 

We now redraw Fig. 2 as Fig. 4, using our  approximat ions  with p = 10. Each  
node  is labelled inside with rE(c) .  Each  edge f rom a configurat ion c to one of  
its children d is labelled with w(d). Below each tip c of  the tree is writ ten the 
penal ty  P,(c) in brackets.  Each  such P,(c) is the sum of  the weights w(d) on 
the edges between c and the root.  

2 We must assume from here on that ~(c) > 0 for all c. This does not affect the structure of the 
game, since we can add a constant ~ to all static values b(c) if necessary. However. it does preclude 
our using the "negamax" formulation of games [6]. 



GAME TREE SEARCHING 87 

[15.021 ~ 
W X 

[0.15] [2.181 

FIG. 4. Game tree with min/max approximations. 

Accord ing  to our  rule, w is the best node  to expand,  since the value at the 
root  depends  most  strongly on the value at w. 

We note  that our  ~e and w satisfy the computabi l i ty  requi rements  needed  for  
the penal ty-based implementa t ion  described above.  

We now redraw Fig. 4 as our  new Fig. 5, where  ~F.(c) is drawn inside node  c 
as before ,  and the pair  [a(c),  lr(c)] is placed to the right of  node  c. Similarly, 
Fig. 6 is our  revised version of  Fig.  5, after w has been  expanded.  In both  
figures the edges are labelled with the w(c) values as in Fig. 4 for the reader ' s  
convenience ,  a l though these do not need  to be explicitly stored. 

~ ,o .151  

W X 

[0.151 [2.181 

[ x , o ]  

FIG. 5. Game tree with a and rr values. 



88 R.L. RIVEST 

~ u,1.07] 

16.1 0.07 

. ~  [t,O] 

t 
0.09 

[ _ ~ y , O . 6 9 ]  

0.69 / 0.69 

',,~,,,[y.o] k,..._ 

y z 

F[~. 6. Expanded game tree with a and rr values. 

[w,1.00] 

2.12 

[z,o] 

x,0] 

We see from Fig. 6 that tip y is next to be expanded. Here  we are still 
following the most promising line of play for both players. Soon, however,  the 
search will return to expand node x, since P~(x) = 1.34 in Fig. 6 is not much 
larger than P~,(y)= 1.07. As the nodes under w are expanded and the tree 
under w gets larger, the dependence of ~E(U) on any leaf in w's tree will 
diminish, and eventually x will be selected as the next tip to be expanded. 

4. Implementation 

To implement  our min /max  approximation idea, one must decide how to cope 
with the computational  difficulty of computing the generalized p-means. 

One can make the argument  that one should just "bite the bullet" and 
compute the generalized means as specified above,  in spite of the large 
computational  cost involved in taking powers and roots. This would give the 
most "accurate"  result. 

Computing the generalized means exactly might also allow improved play in 
another  manner.  After  the search of the game tree is completed,  a move from 
the root needs to be selected and played. It is most natural to do this by first 
computing the backed-up estimate ~E(S) at the root. However ,  it may actually 
be bet ter  to use the min /max  approximation ~E(s), i.e. selecting the child of 
the root with maximum ~E(c) instead of the child with maximum bE(c ). This 



GAME TREE SEARCHING 89 

has the potential for improved play since the min/max approximation will 
favor a move whose min/max value can be achieved in several ways over a 
move whose min/max value can be achieved in only one way. (For example, 
note that M10(35, 40) > M10(30, 40) although max(35, 40) = max(30, 40).) The 
min/max approximation pays attention to good backup or secondary moves. 

Another  approach is to skip the computation of the generalized mean values 
altogether, and use the appropriate min or max values instead. (I.e. use b E 
instead of ~E everywhere.)  Since the generalized mean values are intended to 
approximate the min and max functions anyway, this may not introduce very 
much error. The main point of using the generalized mean values was for their 
derivatives, not for the values themselves. We call this variation the "reverse 
approximation" idea. 

We note that with the "reverse approximation" idea, the weight w(c) is 
computable from equation (6) as 

w(c) : log(n) + (p  - 1)-( log(bE(d))  - log(bE(c) )  ) (15) 

where c has n siblings, and where d is that sibling of c with the most favorable 
value b(d) for the player to move from f(c). Here  we might view the log(n) 
term as that portion of the penalty associated with descending another level in 
the tree, and the remaining terms as the penalty associated with making less 
than optimal moves. If the static evaluation function always returns integers in 
some range, then each vE(c ) is an integer in the same range, and each w(c) can 
be computed using table-lookups for the logarithm computations. Our im- 
plementation (described later) uses this idea, except that the value log(n) is 
replaced by a constant. 

It is not clear how to "optimally" choose the parameter  p. As p gets large, 
the heuristic should grow very deep but narrow trees. For small p, the heuristic 
should grow rather broad trees. (For p = 1, it would grow the tree in more or 
less of a breadth-first manner,  since all derivatives at the same level would be 
close.) One could conceivably use different p values at different levels of the 
tree. Choosing a large value of p corresponds to having a high degree of 
confidence in the accuracy of the values returned by the static evaluator, while 
a small p corresponds to a low degree of confidence. 

5. Experimental Results 

In this section we present some initial experimental results demonstrating that 
our approach can produce play superior to that produced by minimax search 
with alpha-beta pruning, for the same number of calls to the underlying 
"move"  operator.  However ,  when CPU time rather than calls to the move 
operator  is the limiting resource, minimax search with alpha-beta pruning 
seems to play better. 



90 R.L. R1VEST 

5.1. The game: Connect-Four 

We chose the game of C o n n e c t - F o u r  as a basis for our experiments  because it is 
commercially available and well known, yet simple to describe and implement.  

The game equipment  consists of a plastic frame, together with sets of red 
and black plastic tokens. The frame has a 6 × 7  array of cells arranged 
vertically; there are 7 columns of 6 cells each. It is possible to drop a token in 
at the top of any column; it then falls down to the lowest unoccupied cell in the 
column and is visible to both players. 

A legal move consists of dropping a token into any column which contains at 
least one unoccupied cell. 

Black moves first; after that the players alternate turns. 
The first player to create a line of four tokens of his color in a row wins the 

game. This line may be horizontal,  vertical, or diagonal. It is possible to have a 
tied game. 

5.2. The static evaluator 

In our implementat ion the m o v e  and u n m o v e  operators also implemented the 
static evaluation function. This static evaluation function was used by all 
game-playing strategies, so that differences in playing ability would not be due 
to differences in the static evaluators.  

By convention, Black is Max and Red is Min. The static evaluator returned 
integers in the range 1 to 1023 where 1 is reserved to denote a win by Red and 
1023 is reserved to denote a win by Black. The value 512 thus denotes a middle 
or neutral value. 

To describe the static evaluation function, we define a " segment"  to be set of 
four cells in a line (i.e. where a winning four-in-a-row can be placed). The 
s c o r e  f o r  a s e g m e n t  is defined to be zero if the segment contains no tokens or 
tokens of both colors. Otherwise it depends on the number  of tokens present 
and their color. For a segment containing only black tokens: one black token 
scores 1, two black tokens scores 10, and three black tokens score 50. If the 
tokens are red the signs are reversed. 

The static evaluation for a non-winning position is the sum of three 
components:  

(1) The neutral value 512. 
(2) A "move  bonus"  of 16 the player whose turn it is to play. (i.e. 16 for 

Black, or - 1 6  for Red).  
(3) The sum, over all possible segments,  of the score for that segment.  
This sum is truncated if necessary to keep it in the range 2 to 1022. 

5.3. Resource bounds 

In our playoffs, each strategy was allocated a fixed amount  of resources to use 



GAME TREE SEARCHING 91 

in computing its move.  This was a fixed bound per turn; a strategy could not 
save on the computat ion for one turn and use it later. 

Two different resource bounds were used: elapsed CPU time (measured in 
seconds), and calls to the basic " m o v e "  subroutine (measured in thousands of 
calls). Note that for the move bound,  the m i n /max  heuristic must explicitly pay 
for moving down the tree from the root every time. 

Since the game is relatively small, the resource bounds we used are also 
rather  modest.  

The implementat ion was done in C on a D E C  MicroVax workstation; the 
experiments  were run in parallel overnight on ten such workstations. 

5.4. Minimax search with alpha-beta pruning 

The implementat ion of minimax search with alpha-beta pruning was relatively 
straightforward. The usual depth-first search with a depth bound was em- 
ployed. A depth bound of two ply was initially searched, and then the search 
was repeatedly restarted with a larger depth boundary until the time or move 
bound was reached (i.e. iterative deepening was used). Then the result of the 
last complete search was used as alpha-beta 's  move.  (The inefficiency due to 
throwing away this last partial search we call " f ragmenta t ion inefficiency".) 
Typical search depths ran from 6 ply to more  than a dozen near the end of the 
game. No information was carried over  from a search at one depth to the 
search at the next. The children of a node were searched in order of their static 
evaluations, best-first. 

5.5. Penalty-based heuristic 

Our implementat ion of the m i n / m ax  heuristic worked as follows: 
(1) The ' reverse approximat ion"  was used; the value computed  for a node 

was its true backed-up ra in /max value, based on the tree computed so far. 
(2) The penalty on an edge was computed  to be 0.05 plus the absolute value 

of the difference between the natural logarithm of the value of the node and 
the natural logarithm of the value of his "bes t "  sibling (the one with the best 
backed-up score, as viewed from the point of view of the person making the 
choice). 

The constant 0.05 was chosen on the basis of earlier preliminary testing. It 
must be admitted that the performance  of the scheme was sensitive to this 
constant; further search is needed to make the computat ion of penalties more 
robust. 

5.6. Results 

For each experiment ,  we considered 49 different starting positions. Each 
starting position was defined by specifying the first two moves of the game. 



92 R.L. RIVEST 

TABLE 2. Experimental results 

Resource bound per turn MM wins AB wins Ties 

1 second 41 46 1 l 

2 second 40 42 16 
3 seconds 36 44 18 

4 seconds 39 52 7 
5 seconds 30 55 13 

Total 186 239 65 

1000 moves 47 35 16 

2000 moves 50 35 13 
3000 moves 42 47 9 

4000 moves 49 42 7 

5000 moves 61 31 6 

Total 249 190 51 

(There are exactly seven opening moves, and seven responses.) For each 
starting position, two games were p layed--one  with alpha-beta (AB) moving 
first, and one with min/max approximation (MM) moving first. Thus a 
complete experiment consists of 98 games. For each experiment, it was 
recorded how many times each strategy won, and how many ties occured. One 
experiment was run for each of five posible time bounds (1 second to 5 
seconds, in one-second intervals), and for five possible move bounds (1000 
moves to 5000 moves, in 1000-move increments). Thus, 490 games were played 
for each resource bound, and 980 games played altogether. 

We see that based on time usage alone, alpha-beta seems to be superior to 
our implementation of the min/max approximation approach. 

However,  if we base our comparison on move-based resource limits, the 
story is reversed: min/max approximation is definitely superior. 

We note that the number of distinct positions considered by alpha-beta was 
approximately three times larger than the number of distinct positions consi- 
dered by min/max when a time bound was in effect. When a move bound was 
in effect the number of distinct positions considered by each strategy was 
roughly equal; the fragmentation lossage of alpha-beta seemed to equal the 
inefficiencies of the min/max routine having to redescend the tree for each 
expansion. 

We note that our implementation of minimax search with alpha-beta pruning 
called the move operator  approximately 3500 times per second, while our 
implementation of the min/max heuristic called the move operator  approxi- 
mately 800 times per second. When special-purpose hardware is used, or when 
the move operator is expensive to implement, the move-based comparison 
would be more relevant. For software implementations more development of 
the min/max approach is needed to reduce the computational overhead per 
call to the move operator.  



GAME TREE SEARCHING 93 

Overall, we find these experimental  results very encouraging. 
We note,  as Nau [9] points out, that there are many subtle methodological 

questions that arise when trying to compare heuristics by playing them off 
against each other,  since the "evenness"  of play or variation in quality of play 
during different portions of the game can have a dramatic influence on the 
results. 

This completes our  description of the initial experiments that have been 
performed demonstrating the quality of play produced by our heuristic. Of 
course, further empirical validation of these ideas is needed,  and the approach 
needs to be refined and made more efficient. Since our idea is relatively new, 
one may expect that further development  and optimizations may occur that 
could improve its competitiveness even further. 

6. Discussion 

We first discuss some of the general features of penalty-based schemes. 
First, we note that penalty-based schemes--l ike all iterative schemes- -  

requires that the tree being explored be explicitly stored. Unlike depth-first 
search schemes (e.g. minimax search with alpha-beta pruning), penalty-based 
schemes may not perform well unless they are given a large amount of memory 
to work with. 

Second, we note that the penalty-based schemes are oriented towards 
improving the value of the estimate ~E(s) at the root,  rather than towards 
selecting the best move to make from the root. For example, if there is only 
one move to make from the root,  then a penalty-based scheme may search the 
subtree below that move extensively, even though such exploration can't  affect 
the decision to be made at the root. By contrast, the B* algorithm [2], another  
iterative search heuristic, is oriented towards making the best choice, and will 
not waste any time when there is only one move to be made. 

Third, the penalty-based schemes as presented require that a tip be expan- 
ded by generating and evaluating all of the tip's successors. Many search 
schemes are able to skip the evaluation of some of the successors in many 
cases. 

Fourth,  we note that penalty-based schemes may appear inefficient com- 
pared to depth-first schemes, since the penalty-based schemes spend a lot of 
time traversing back and forth between the root  and the leaves of the tree,  
whereas a depth-first approach will spend most of its time near the leaves. We 
imagine that the penalty-based schemes could be adapted to show similar 
efficiencies, at the cost of not always selecting the globally least-penalty tip to 
expand. The algorithm would be modified in Step 7 to ascend to its successor 
some of the time and to redescend in the tree by returning to Step 3 in the 
other cases. (However ,  if b(x) = ~o the algorithm must ascend.) The decision to 
redescend may be made probabilistically, perhaps as a function of the depth of 



94 R.L. RIVEST 

x, or the change noted so far in ~-(x). For example, one might continue to 
redescend from the node x found in Step 3 until the number of leaves in E,  
exceeds the depth of x. We have not explored these alternatives. 

Finally, we observe that penalty-based schemes do spend some time evaluat- 
ing non-optimal lines of play. However ,  the time spent examining such lines of 
play decreases as the number of non-optimal moves in the line increases, 
according to the weights assigned to those non-optimal moves. 

We see how our "min /max  approximation" heuristic will allocate resources 
in a sensible manner,  searching shallowly in unpromising parts of the tree, and 
deeper  in promising sections. We might also call this approach the "decreasing 
derivative heuristic," since the nodes are expanded in order of decreasing 
derivative D(s, x). 

It is important to note that the efficiencies exhibited by alpha-beta pruning 
can also appear with our scheme. Once a move has been refuted (shown to be 
non-optimal),  its weight will increase dramatically, and further exploration 
down its subtree will be deferred. However,  this depends on the static 
evaluator returning meaningful estimates. If the static evaluator were to return 
only constant values except at terminal positions, our scheme would perform a 
breadth-first search. (We observe that the scheme of McAllester [7] performs 
like alpha-beta search in this case.) 

Other penalty-based schemes are of course possible. We note two in 
particular: 

(1) If we can compute an estimate p(c,d) that the actual play would 
progress from configuration c to successor configuration d, given that play 
reaches c, then we can define the weight w(d) to be - l o g ( p ( c ,  d)). With this 
definition, the tip node to be expanded next is the tip node estimated to be 
most likely to be reached in play. This idea was originally proposed by Floyd 
(see [6]), although it does not seem to have been seriously tried. 

(2) If we estimate for each node ¢ the probability that c is a forced win for 
Max (see [9] for discussions of this idea) then we can select the tip node to 
expand upon which our estimate at the root depends most heavily. This can be 
done, in a manner similar to our min/max approximation technique, beginning 
with the formulas in [9]. This idea was suggested by David McAllester. 

7. Open problems 

(1) How should one best choose which generalized mean value functions, or 
penalty functions, to use? 

(2) Can our ideas be combined effectively with more traditional ap- 
proaches? In particular, what is the best way to blend the efficiency of 
depth-first search with our ideas? 

(3) How well can these ideas be parallelized? (See [1] for a fascinating 
discussion on how to parallelize the alpha-beta heuristic.) 



GAME TREE SEARCHING 95 

(4) H o w  well does our  approach  work  in games where  sacrifices are 
impor tan t?  (Connec t -Fou r  seems not  to be such a game.)  Will useful sacrifice 
plays be discovered? 

(5) H o w  sensitive is our  approach  to "no i se"  in the static evaluat ion 
funct ion,  c o m p a r e d  to tradit ional  approaches ,  in terms of  the resulting quality 
of  play? 

(6) H o w  well does  the m i n / m a x  approximat ion  scheme work  on pathologi-  
cal games?  

8. Conclusion 

We have presented  a novel  approach  to game tree searching, based on 
approximat ing  the min and max functions by suitable general ized mean-va lue  
functions.  Exper imenta l  results indicate that  our  scheme outplays a lpha-beta  
with iterative deepening,  when  both  schemes are restricted to the same n u m b e r  
of  calls to the m o v e  opera tor .  

ACKNOWLEDGMENT 

I would  like to thank  Hans  Berl iner,  Charles  Leiserson,  and David  McAlles ter  
for  some st imulat ing discussions and comments .  Kai-Yee H o  and Mark  
Re inhold  helped to p roduce  the exper imental  results. The  referees made  
numerous  valuable suggestions on the presenta t ion  of  these results. 

REFERENCES 

1. Baudet, G., The design and analysis of algorithms for asynchronous multiprocessors, Compu- 
ter Science Tech. Rept. CMU-CS-78-116, Carnegie-Mellon University, Pittsburgh, PA, 1978. 

2. Berliner, H., The B* tree search algorithm: A best-first proof procedure, Artificial Intelligence 
12 (1979) 23-40. 

3. Barr, A. and Feigenbaum, E.A. (Eds.), The Handbook of Artificial Intelligence 1 (Kaufmann, 
1981) Section II.C. 

4. Campbell, M.S. and Marsland, T.A., A comparison of minimax tree search algorithms, 
Artificial Intelligence 20 (1983) 347-367. 

5. Hardy, G.H., Littelwood, J.E. and Polya, G., Inequalities (Cambridge University Press, 
Cambridge, U.K., 1934). 

6. Knuth, D.E. and Moore, R.W., An analysis of alpha-beta pruning, Artificial Intelligence 6 
(1975) 293-326. 

7. McAllester, D.A., A new procedure for growing min-max trees, Artificial Intelligence, to 
appear. 

8. Nau, D.S., An investigation of the causes of pathology in games, Artificial Intelligence 19 
(1982) 257-278. 

9. Nau, D.S., Pathology on game trees revisited, and an alternative to minimaxing, Artificial 
Intelligence 21 (1983) 221-244. 

10. Nau, D.S., Purdom, P. and Tzeng, C.-H., An evaluation of two alternatives to minimax, in: 
Proceedings on Uncertainty and Probability in Artificial Intelligence, University of California, 
Los Angeles, CA (1985) 232-235. 



96 R.L. RIVEST 

11. Nilsson, N.J., Searching Problem-solving and games-playing trees for minimal-cost solutions, 
Proc. IFIP 2 (1968) 1556-1562. 

12. Palay, A.J., Searching with Probabilities (Pitman, Boston, MA, 1985). 
13. Pearl, J., HEURISTICS: Intelligent Search Strategies for Computer Problem Solving (Addison- 

Wesley, Reading, MA, 1984). 
14. Roizen, I. and Pearl, J., A minimax algorithm better than alpha-beta? Yes and no, Artificial 

Intelligence 21 (1983) 199-220. 
15. Stockman, G.C., A minimax algorithm better than alpha-beta?, Artificial Intelligence 14 (1979) 

179-196. 

Received Augus t  1986; revised version received Apr i l  1987 


