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We consider the problem of learning a concept from examples in the distribution- 
free model by Valiant. (An essentially equivalent model, if one ignores issues of 
computational difficulty, was studied by Vapnik and Chervonenkis.) We introduce 
the notion of dynamic sampling, wherein the number of examples examined may 
increase with the complexity of the target concept. This method is used to establish 
the learnability of various concept classes with an infinite VapnikChervonenkis 
dimension. We also discuss an important variation on the problem of learning from 
examples, called approximating from examples. Here we do nor assume that the 
target concept T is a member of the concept class %? from which approximations are 
chosen. This problem takes on particular interest when the VC dimension of V is 
infinite. Finally, we discuss the problem of computing the VC dimension of a finite 
concept set defined on a tinite domain and consider the structure of classes of a 
fixed small dimension. 0 1991 Academic PLZSS, IX 

1. INTRODUCTION 

1.1. Learning in the Distribution-free Model 

In this model, each concept C is a subset of a given instance space A’. 
For example, X might be { 0, 1 }” or real n-dimensional space R”. (In some 
cases it is more natural to use lJ, (0, I}” or u,, R” so that each instance 
is an n-bit vector or a vector of n reals, where n is arbitrary; we do not 
consider such variations here.) The class of concepts being learned will be 
denoted W. The unknown target concept T to be learned is assumed to be 
a member of V. 

* This paper was prepared with support from NSF Grant DCR-8607494, AR0 Grant 
DAAL-03-86-K-0171, and the Siemens Corporation. 
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In this model there is a fixed but arbitrary probability distribution P 
defined on A’. Each example (x, c) consists of an instance x and its 
classification c E ( +, - j as either a positive instance (x E T) or a negative 
instance (x 4 T) of the unknown target concept T. 

The learning algorithm L will have access to a source of examples of the 
unknown target concept T. Each time the algorithm obtains an example 
from this source it draws an element x E X independently according to P. 
This is sometimes called the “one-oracle” or the “one-button” model. (In a 
“two-button” model the learning algorithm can request either a positive or 
a negative example, and these examples are produced according to separate 
probability distributions. See Haussler et al. (1988) for more details.) In 
this paper we assume that every concept C (including the target concept) 
has a well-defined probability with respect to P; we do not address issues 
of measurability, etc., here. 

In addition to the source of the examples, the learning algorithm takes 
as input two parameters: E (the accuracy parameter) and 6 (the confidence 
parameter). After drawing a number of examples, the learning algorithm 
produces as output a description of a concept C, which may be different 
than the true target concept T. (Usually it is required that C E V, although 
other restrictions on C are sometimes considered.) The error rate of a con- 
cept C (with respect to the true concept T and the probability distribution 
P) is P(C@ T), the probability that C and T classify a randomly drawn 
example differently. (Here C @ T = (C - T) u ( T - C), the symmetric dif- 
ference of C and T.) We say that the concept C output by the learning 
algorithm is approximately correct if the error rate P(C0 T) is at most E. 
If (for a fixed concept class %:, probability distribution P, accuracy 
parameter E and confidence parameter S) the probability that the output is 
approximately correct is at least 1 - 6, we say that the learning algorithm 
is probably approximately correct on %; such a learning algorithm is said to 
pat-learn the concept class %‘, and 59 is said to be pat-learnable. 

The learning algorithm L requires two sorts of resources: computational 
time and examples; we define the time complexity and the sample com- 
plexity of L to be amount of each resource used. 

We say that L is a polynomial pat-learning algorithm for 97, and that the 
class V is polynomiallv pat-learnable, if L pat-learns %? with time com- 
plexity and sample complexity which are polynomial in l/s and l/6. 

Normally, a polynomial pat-learning algorithm can be made to run in 
static sampling mode, where a sample containing all of the necessary exam- 
ples is drawn before any computation is performed. Typically, pat-learning 
algorithms are consistent in that the concept C they return agrees with the 
classification of each example of the sample. 

There are models of learning other than oracle-based models. For exam- 
ple, a “functional model” has recently been shown to be equivalent to the 
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oracle model by Haussler et al. (1988); their paper contains a wealth of 
information about different models of learning. 

In this paper we will be concerned almost exclusively with the sample 
complexity of learning algorithms. 

1.2. Previous Results about Distribution-free Learning 

In order for a pat-learning algorithm to pat-learn a concept class %?, the 
measured error rate of each concept CE %? (measured on the examples 
seen) must be a good estimate of the true error rate P(T@ C) of that 
concept. Vapnik and Chervonenkis (1971) were able to find a nice 
characterization of classes of concepts %’ for which the measured error rate 
converges uniformly (over U) to the true error rate. 

For this purpose they introduce the notion of a dimension (usually 
called the Vapnikkchervonenkis dimension, or VC dimension) of a concept 
class and showed that a sufficient condition for the uniform convergence 
of the measured error rates to the true error rates is that the Vapnik- 
Chervonenkis dimension of %? be finite. 

DEFINITION 1.1. The Vapnik-Chervonenkis dimension of a concept 
class %? is the largest cardinality of a set of instances S, such that for every 
subset U E S there exists a concept C E G?? with U = S n C. 

Their work has been extended to handle much more general situations; 
see Pollard (1984) for a nice exposition. 

Blumer et al. (1986) were the first to draw the connection between dis- 
tribution-free learning and the VC dimension. They gave bounds on the 
number m(e, 6) of examples needed by a consistent pat-learning algorithm 
to pat-learn a concept class %‘, in terms of v’s VC dimension d: 

m(&,8)=0 
( 

~ln~+~logL , 

m(E,6)=R(~ln~+d). e 

> 

Specially, the upper bound proved is 

m(e,6)1max 

we shall use this result later. These results imply the following. 

(1) 

THEOREM 1.1 (Blumer, Ehrenfeucht, Haussler, and Warmuth, 1986). A 
concept class GZ is pat-learnable with static sampling if and only is GF? has 
finite VC dimension. 
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The lower bound was improved by Ehrenfeucht et al. (1987b) to 

(2) 

Based on their upper bound, Blumer et al. also showed many concept 
classes to be polynomially pat-learnable. More generally, if ?Z is a class 
with finite VC dimension and there exists a polynomial time algorithm 
to find a concept in q that is consistent with a given sample, then % is 
polynomially pat-learnable. Polynomial pat-learnable algorithms have 
been developed for specific problems such as k-CNF (Valiant, 1984) and 
decision lists (Rivest, 1987). See Kearns et al. (1987a, 1987b) for surveys of 
other known results in this area. 

1.3. Our Contributions 

We introduce the notion of dynamic sampling, wherein the number of 
examples examined increases with the complexity of the target concept. It 
turns out that dynamic sampling does indeed enrich the class of pac- 
learnable concepts, compared to static sampling. We show examples of 
concept classes which our scheme pat-learns (using dynamic sampling) 
despite the fact that the class has an infinite VC dimension and hence 
cannot be pat-learned with static sampling. 

In dynamic sampling, the pat-learning algorithm alternates between 
drawing examples and doing computations. A stage of the pat-learning 
algorithm consists of drawing a set of examples and performing the subse- 
quent computations. No a priori bound is assumed on the number of 
stages or the number of examples drawn. After a finite number of stages the 
algorithm halts and outputs a hypothesis. 

Similar results and techniques have recently (and independently) been 
obtained by others. For example, the notion of dynamic sampling appears 
in a proof by Haussler et al. (1988) that the size of target concept need not 
be known if one is willing to sacrifice the requirement that the learning 
algorithm should always halt. Based on this result, Blumer et al. (1987a) 
have shown how to pat-learn concept classes of infinite VC dimension. 
(There are some minor technical differences; while the overall approaches 
are essentially identical, we present effective techniques for minimizing the 
number of stages required by dynamic sampling; an issue they do not 
address. Also, our pat-learning algorithms always terminate whereas theirs 
halt only probabilistically.) Benedek and Itai (1988) give similar results in 
a slightly different model. 

Next we discuss another important variation on the problem of learning 
from examples. This is the problem of approximating from examples. Here 
we do not assume that the target concept T is a member of the concept 
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class V from which approximations are chosen. This problem takes on 
particular interest when the VC dimension of %7 is infinite. 

Finally, we state the problem of computing the VC dimension for a finite 
domain as a combinatorial problem, called the “discrete VC problem.” The 
discrete VC problem can be easily solved in time O(m’g’), where IZ is the 
number of points and r the number of concepts.’ It is not known if this 
problem is in P, and this sub-exponential upper bound makes the problem 
unlikely to be NP-complete. We give a combinatorial characterization for 
classes with VC dimension one. It is an open problem to characterize 
classes of higher VC dimensions. Recently, Megiddo and Vishkin (1988) 
showed a natural problem that is, in some sense, “complete” for nO(logn) 
time. It may be interesting to find if there is a connection between that 
problem and the discrete VC dimension problem. 

2. THE IDEA OF DYNAMIC SAMPLING 

We begin with a proof that any enumerable concept class is pac- 
learnable using dynamic sampling; this example illustrates the power of 
dynamic relative to static sampling, since an enumerable class of concepts 
may have infinite VC dimension. 

When using dynamic sampling, the pat-learning algorithm alternates 
between drawing examples and doing computations. A stage of the pac- 
learning algorithm consists of drawing a set of examples and performing 
the subsequent computations. Pat-learning a class with infinite VC dimen- 
sion may require an unbounded number of stages, as we shall show in 
Section 2.3. 

2.1. An example-Learning an Enumerable Concept Class 

Let %? = {C,, CZ, . ..} b e an (recursively) enumerable concept class, such 
that for each Ci membership in Ci is decidable. Note that $? may have 
infinite VC dimension. (For example, let N be the set of natural numbers, 
and let % be the set of all finite subsets of N.) We show that % is pac- 
learnable as follows. 

ALGORITHM “Enumerable-Learner.” 

1. Let i= 1. 

2. Draw enough examples so that the total number mi of examples 
drawn so far is at least (l/c) In (2i*/S). 

3. If Ci is consistent with all examples seen so far then output Ci. 
Otherwise increase i by 1 and return to step 2. 

’ We use Ig x to denote log, x throughout. 
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THEOREM 2.1. Enumerable-Learner can pac-learn any enumerable 
concept class %. 

Prooj”. Let T be the target concept. Call concept Ci “s-bad” if 
P( T@ Ci) 3 E. The probability that an e-bad concept Ci is output is at most 
(1 - &YJ, since this is an upper bound on the probability that C, is consis- 
tent with the m, examples seen so far. For m, > (1,‘~) In (2iz/S) the 
inequality (1 - E)~I < (6/i2)(6/n’) holds. Since 

(3) 

the probability that Enumerable-Learner outputs an s-bad concept is at 
most 

(4) 

A similar scheme appears in Angluin (1986) and Kearns et al. (1987a). 

2.2. Decomposable Concept Classes 

The result proved above does not handle concept classes which are 
uncountable. In this subsection we extend our result by introducing the 
notion of a decomposable concept class. (This notion was proposed inde- 
pendently by Benedek and Itai, 1988.) 

DEFINITION 2.1. A concept class V is decomposable if it can be written 
as the countable union 

where each concept subclass %d has VC dimension at most d. 

(It is equivalent to require merely that each Wi have finite VC dimen- 
sion.) 

In Proposition 2.1, we show that a union of d classes, each of VC dimen- 
sion d, can have VC dimension at most 3d. Therefore, without loss of 
generality, this decomposition can be done in such a way that Wi E gi + I for 
all i, and those concepts in ?Zd - Ce,_ i can naturally be said to have size d. 
For example, if each concept is represented by a binary string, we might let 
%d be the set of concepts whose binary representation contains at most 
d- 1 bits. Or, if X= [0, l] and %? is all finite unions of subintervals of X, 
then gd can be the set of concepts which are the union of at most d/2 
subintervals of [0, 11. In other cases, the “natural” size measure might be 
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polynomially related to d; our results can be easily extended to handle 
these cases. 

FROP~SITION 2.1. Let CI, . . . . C, be concept classes of whose VC-dimen- 
sions do not exceed d. Zf Y = r(d) is bounded by a polynomial function of d, 
then U i Ci has VC-dimension at most (2 + o( 1))d. 

ProoJ Let n be the dimension of the union, and let X be a largest set 
shattered by the union. For every 1 < i 6 r the number of subsets Y c X for 
which there is a SE Ci with S A X= Y does not exceed COGjGd (;), by 
Sauer’s lemma (see Vapnik, 1982). Since X is shattered by the union, 
CG GjG (, (r) 2 2” The proof follows now from a straightforward calcula- 
tion.2 1 

We should like the complexity of a pat-learning algorithm to be polyno- 
mial in the size of the target concept T being learned, where 

size(T)=min{d: TE%$}. 

One way to accomplish this is to provide size(T) as an additional input 
to the pat-learning algorithm. This reduces the problem to one of pac- 
learning the concept class %‘I u qZ . . . prize, which has finite VC dimension. 
However, this may be impossible in practice, so we rule this possibility out. 
We wish to have the pat-learning algorithm determine size(T) itself. 

DEFINITION 2.2. A concept class % is uniformly decomposable if it is 
decomposable and there exists an algorithm A which, given an index d and 
a sample, can produce a concept C E %d consistent with the sample, or else 
it outputs “none” if no such concept exists. Furthermore, if the algorithm 
A runs in time polynomial in d and the number of examples in the sample 
we say that %? is polynomiaI1.y uniformly decomposable. 

The following algorithm can pat-learn any uniformly decomposable 
concept class: 

ALGORITHM “Uniformly-Decomposable-Learner” 

1. Let d= 1. 

2. Draw enough samples so that the total number md of examples 
drawn so far is at least 

4 8d2 8d 13 
max -ln~,71n- . 

& E > 

* Note that since d is close to n we can approximate (i) by 2nH““n1, where H(x) is entropy 
function. 
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3. If there is a C E ‘$Zd which is consistent with all examples seen so far 
then output C. Otherwise increment d by 1 and return to step 2. 

THEOREM 2.2. Any uniformly decomposable concept class is pac- 
learnable, using dynamic sampling (procedure Uniformly-Decomposable- 
Learner). If the class is polynomially uniformly decomposable, then the time 
and sample complexity are polynomial in the size of the target concept being 
learned. 

Proof. First we argue that the algorithm pat-learns any uniformly 
decomposable concept class. The reason is that if a concept in the class is 
found to be consistent with the data, then with high probability it is not 
s-bad. Summing over all d, we show (as for the Enumerable-Learner), that 
the total probability of producing a concept which is s-bad is at most 6. 

The number of examples at each stage, md, is chosen according to Eq. (1) 
with confidence parameter 6/4d* and accuracy parameter E. Therefore, the 
probability that an s-bad concept is output in step 3, for a given value of 
d, is at most 6/4d*. Summing over all possible values of d, we get that the 
probability of an s-bad concept to be output is bounded by 6. It remains 
to show that the algorithm terminates. 

The value of d is incremented by 1 every stage, therefore after size(T) 
stages, where T is the target concept, either the algorithm has terminated 
or d = size(T). When d = size(T), there is a consistent concept in Cd 
(i.e., T), so the algorithm terminates at this stage. Furthermore, the number 
of examples seen by the algorithm is polynomial in size(T). For the case 
that the concept classes that polynomially uniformly decomposable, the 
running of the algorithm is polynomial in size(T) as well. 1 

As an illustration of the power of these techniques, the following classes 
are pat-learnable, even though they are uncountable and have infinite VC 
dimension: 

1. The concept class %‘ri whose members are finite unions of subinter- 
vals of [0, 11. 

2. The concept class ePR whose members are regions in the two- 
dimensional Euclidean plane defined by an inequality of the form y <f(x), 
where f is any polynomial of finite degree with real coefficients. 

3. The concept class 9&o whose members are defined by multilayer 
threshold circuits of arbitrary (finite) size and configuration in n-dimen- 
sional Euclidean space. 

We show that the first problem is also polynomially pat-learnable. We 
are not sure about the complexity of the second problem, and we conjec- 
ture that the third problem is intractable. 
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THEOREM 2.3. The concept class WFI is polynomially uniformly decom- 
posable. 

Proof: Decompose the class %rI such that each 5$ includes all the con- 
cepts with at most i/2 subintervals. To show that %‘ri is uniformly decom- 
posable we need to exhibit an algorithm, A,,, that given a sample and an 
index d, finds a consistent concept from %‘d (if one exists) or output “none” 
(if such a concept does not exist). Algorithm A,, is based on the observa- 
tion that the number of alternations (from positive examples to negative 
examples or vice versa) in a sample along the interval [0, l] is at most 
twice the number of subintervals in the target concept. If the number of 
alternations is greater than d then A,, outputs “none,” else it outputs a 
concept with minimal number of subintervals that is consistent with the 
sample. (Clearly, the output concept is in Vd.) Since A,, runs in polynomial 
time in the sample size, &, is polynomially uniformly decomposable. 1 

COROLLARY 2.1. The concept class VF1 is polynomially pat-learnable. 

Our approach does not seem to help much for answering some open 
questions, such as whether DNF is polynomially pat-learnable. While the 
approach presented above (e.g., Enumerable-Learner) can be used to show 
that the sample complexity for pat-learning DNF is not too great, ques- 
tions of computational complexity still remain unsolved. 

The converse to Theorem 2.2 holds for classes that are polynomially pac- 
learnable. In such a case there is a polynomial (in size(c)) upper bound on 
the number of examples that we can draw while pat-learning a specific 
concept c. We can use the decomposition induced by the function size and 
refine it such that it will meet our definition of a decomposable class. 

However, Benedek (to appear) has shown that the converse to Theorem 
2.2 does not hold, in general. That is, there are concept classes that are not 
decomposable but are pat-learnable (using dynamic sampling). His proof 
is based on the class %c, whose members are countable unions of subinter- 
vals of [0, 11. In (Benedek and Itai, 1988) it was shown that %X-i is not 
decomposable. The crux of his learning algorithm is that any concept 
ci E (e,,, has a concept c2 E %‘ri, such that P(c, @ c2) < E. 

It remains as an open problem to find a natural concept class that is 
provably not pat-learnable in our model. 

Another open question is that of consistency: a learning algorithm is said 
to be consistent if its output always correctly classifies all of the examples 
the learning algorithm has seen. While consistency is not required of a 
learning algorithm, Haussler et al. (1988) have proven that there exists a 
general procedure for transforming an inconsistent static sampling proce- 
dure to a consistent static sampling procudure. Their proof does not apply 
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to dynamic sampling algorithms, and it remains an open question as to 
whether such a transformation is possible. 

2.3. The Number of Stages 

A stage of a dynamic sampling pat-learning algorithm consists of 
drawing a sample and then doing a computation. The number of stages 
is the number of times a sample is drawn. In Uniformly-Decomposable- 
Learner the number of stages may be as large as n = size(p). We next show 
that this can be improved for the concept class qF,. 

THEOREM 2.4. To pat-learn the concept class %& the number of stages 
required is 0 (lg lg n ). 

Proof In each stage update the value of d to d2 rather than d+ 1. 
(Note that the decomposition of Q$, is such that if kj then %Yi’ic gi.) [ 

For the class Q&, we now prove that this bound is tight. 

THEOREM 2.5. Any algorithm that pat-learns %&, with respect to the 
untform distribution using a number of examples that is bounded by a polyno- 
mial in the number n of subintervals of the target concept requires at least 
Q(log log n) stages. 

Proof First we show that Q(n) examples are required for a worst case 
concept with at most n subintervals. (We cannot use a VC dimension argu- 
ment (e.g. Eq. (2)), since the probability distribution is fixed.) Divide the 
interval [0, l] into n equal length subintervals. For every subinterval, with 
probability $ all the points in subinterval are a positive instance of the 
target concept, and with probability 4 all the points in the subinterval are 
a negative instance of the target concept. (This is done for each subinterval 
independently.) Clearly, the target concept can be expressed as a union of 
at most n subintervals. If the pat-learning algorithm draws less than n/2 
examples, then from at least n/2 subintervals it did not receive an example. 
For each point from a subinterval it did not receive an example from, the 
probability that it is correct is i. Since the fraction of the unseen sub-inter- 
vals from all the subintervals is at least f, the expected error rate is at least 
a. However, if the total error rate exceeds 6 + (1 - 6)s then pat-learning 
can not be achieved. By choosing, say, E = 6 = &, we force the pat-learning 
algorithm to draw at least n/2 examples for some concept. 

Since the algorithm uses a polynomial size sample, there are constants e 
and c such that the number of examples of the algorithm is bounded above 
by cn’. Without loss of generality both e and c are greater than 1. (In 
general, c may depend on E and 6. Since both E and 6 are fixed, we can 
regard c as a constant.). Let S, be the number of examples drawn by the 
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end of stage i. Note that there is a concept in ?&, consistent with the sam- 
ples drawn up to stage i which has at most Si subintervals. Thus, if the 
algorithm proceeds to stage i + 1, it can draw at most cS~ - Si additional 
examples in stage i + 1, otherwise the bound on the sample size may be 
violated. Therefore, Sj+ 1 , < cSf, so we can bound Si from above by ce2’. 
Note that Soclog, log, n) = o(n). We assumed that the number of examples is 
at least n/2, hence, the number of stages is Q(log log n). i 

One can consider a variation in which the algorithm is not required to 
be polynomial. In this case a similar proof will show that the number of 
stages are Q( 1). Finally, we show that not every concept class if infinite VC 
dimension requires an unbounded number of stages. 

THEOREM 2.6. Let W,,, denote the concept class of all subsets of the 
natural numbers. Then WN can be pat-learned with a two-stage learning 
algorithm. 

ProoJ In the first stage we draw a sample of size (2/e) lg (Z/S). Let M 
denote the largest integer appearing in this sample. With probability at 
least 1 - 6/2 the probability associated with integers greater than M is at 
most e/2. In the second stage we consider the induced problem of learning 
the restriction of the target concept to the natural numbers at most M. This 
reduces the problem to one having a finite VC dimension (i.e., M), which 
can be solved with a static sampling algorithm with parameters s/2 and 
w I 

A simple generalization of this argument applies in a straightforward 
manner whenever the instance space is countable. 

3. APPROXIMATING FROM EXAMPLES 

The problem of “learning from examples” is to find a good approxima- 
tion for the target concept T, given that T is from the class 9?. This assumes 
that we have a priori, or background, knowledge that the target concept is 
indeed from the class $9. This assumption may often be unrealistic. It is 
often more natural to assume that %? contains concepts which may be 
“close” to T, even though T itself might not be a member of 59. 

How should one proceed if it is not known a priori that TE %‘? The algo- 
rithms given in the literature, and those in the previous sections, are built 
around the assumption that T E %‘, so that they are guaranteed that there 
will always be a concept in % with zero true error rate (and thus zero error 
rate as measured on the examples seen). If T$V, there may be no concept 
in % which has zero measured error rate. Even worse, it may be the case 
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that every concept in +? has true error rate greater than some fixed value 
B > 0. In what follows let 

B=inf.(P(C@ T): CE~}. 

We therefore define the problem of “approximating T using G$ from 
examples” as the problem of producing, given as input 

1. a source of examples labeled according to the target concept T, 

2. an accuracy parameter E, and 

3. a confidence parameter 6, 

a concept C E %? whose error rate is at most B + E, with probability at most 
1 - 6. An algorithm for solving this problem is called an approximation 
algorithm for the class ‘+?. Note that b is not an input to the approximation 
algorithm. If an approximation algorithm exists for %’ then we say that V 
is an approximation class. If this procedure runs in time polynomial in l/s, 
l/6, and the size of C then we say that %? is a polynomial approximation 
cluss. 

When TE %?, we have /I = 0, and this problem reduces to the problem of 
pat-learning from examples. 

When 55’ has finite VC dimension, then 5~? is an approximation class. 
(This result follows simply from the results of Vapnik and Chervonenkis, 
1971.) The procedure is merely to draw enough examples, and then return 
the concept with the lowest measured error rate. 

What happens when %’ has infinite VC dimension? 
Suppose further that G?? is “strongly uniformly decomposable” in that it 

is decomposable and there exists a procedure which, given as inputs d and 
a sample, returns the concept in GF?~ which has minimum error rate on the 
sample. 

Can we then modify our procedure Uniformly-Decomposable-Learner to 
show that %? is an approximation class in general? 

The answer seems to be no. Let us define 

fin=iclf{P(C@ T): CEW~}, 

and consider the case that 

As we go to larger and larger d’s, the true error rate for the best concept 
of size d gets smaller and smaller. The problem is, how can the learner 
predict that p #O? 
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We face here the problem of trading-off between “complexity of the 
hypothesis” (i.e., concept size) and “fit to the data” (i.e., true error rate). 
The problem of striking this trade-off well is a classic one-a standard 
example is the problem of fitting a polynomial to a set of points represent- 
ing noisy measurements, where the degree of the polynomial is unspecified. 
The trade-off is often achieved by minimizing a function which is the sum 
of some function of the concept size and some function of the amount of 
information needed to describe all of the classifications in the sample, given 
a description of the concept for free. (This is the “minimum description 
length principle” as proposed by Rissanen, 1978; see also Quinlan and 
Rivest, 1989.) However, in our case the size of the sample is not fixed, but 
is up to the learning algorithm; thus the MDLP approach is not applicable. 

In some cases it may be possible to estimate /l well from the data. For 
example, if V consists of all finite subsets of the integers which contain the 
integer 1 (assuming that T$ %‘), then p is just P(l), which can be estimated 
from the observed frequency of 1 in the data. This class has infinite VC 
dimension but is a polynomial approximation class. In general, however, 
the value of /I is not easy to estimate, and the algorithm is faced with the 
problem of trying to guess whether by increasing d sufficiently the value of 
fld will drop. Conversely, we note that if %? is an approximation class, then 
/? can be estimated accurately. 

It may be that this problem may only be tractable, in general, when the 
algorithm is also given as input an upper bound p^ 2 /?, and the algorithm 
must produce as output a concept C whose true error rate is at most j + E, 
with high probability. The techniques we have given previously can be 
modified to handle this case. (The problem of pat-learning from examples 
is essentially the case /? = 0.) 

Thus we see that while pat-learning from examples generalizes nicely to 
the case of infinite VC dimension, approximating from examples does not 
seem to generalize as well. This is unfortunate since, as noted above, one 
does not always have an a priori guarantee that the target concept is in the 
concept class. 

4. DISCRETE VC PROBLEM 

In this section we define the computational problem of computing the 
VC dimension of a finite family of concepts defined over a finite domain 
and give some simple results about its complexity. We then give a com- 
bitorial characterization of such families when the VC dimension is one. 

4.1. Definition of the Problem 

We represent a concept class %?, I%1 = r, over a finite domain %, [.Y[ = n, 
by an r x n matrix A4 such that Mi., = 1 iff xIe Ci. Each row of A4 
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represents a concept in %?, and each column represents a point in 37. We 
define the VC dimension of the matrix A4 to be the VC dimension of the 
concept class represented by M. The model of computation is a random 
access machine, where reading an entry from the matrix requires one time 
unit. 

DEFINITION 4.1. The discrete VC dimension problem is the following: 
given an Y x n &l valued matrix, M, to determine the VC dimension of M. 

To determine if the VC dimension of an r x n matrix M is less than d 
takes time O(r&); it suffices to check all (z) possible combinations of d 
columns. 

THEOREM 4.1. The VC dimension problem can be solved in time O(& ‘). 

Proof From every set of columns, of size d, we can check if it includes 
an d x 2d sub-matrix that has all the combinations. The computation is 
done by scanning the columns, row by row, and checking that all the 2d 
combinations of d bits appear. (Note that r B 2”. To determine if the VC 
dimension of an r x n matrix A4 is less than d it suffices to check all (z) 
possible combinations of d columns. The Theorem follows from the above 
argument and the fact that the VC dimension of a concept class with r 
concepts is at most Ig r. 1 

4.2. A Combinatorial Characterization 

We now present a combinatorial characterization of matrices whose VC 
dimension is one. 

THEOREM 4.2. A O-I valued matrix M has VC dimension 1 iff it can 
be reduced to the empty matrix by a sequence of operations of one of the 
following two forms: 

1. Delete-column. Delete any column which contains less than two zeros 
or less than two ones. 

2. Delete-row. Delete any row which is identical with a previous row in 
the matrix. 

Proof The delete-row has the effect of removing a concept which is 
already represented by some other row in the matrix, so this operation can 
not affect the VC dimension of the matrix. 

If M has VC dimension at least 2, then A4 has at least two columns and 
four rows such that all rows of the the induced submatrix are distinct. Thus 
those two columns will never be deleted by a delete-column operation. 
Therefore if the VC dimension is at least 2, then it remains so after a delete- 
column operation. 
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It remains to show that if neither delete-row nor delete-column is 
applicable, then A4 has VC dimension at least two. 

Define the Score of a column to be the maximum of the number of zeros 
it contains and the number of ones it contains. Let k be a column of maxi- 
mum score, and assume without loss of generality that column k has at 
least as many ones as zeros. (See Fig. 1.) Column k must have at least two 
zeros, since delete-column is not applicable. Let i, and i, be two rows in 
which column k has zeros, and let j be some column in which i, and i, have 
different values. (Column j must exist because delete-row does not apply.) 

Now column j can not have more l’s than column k, so there is a 
row (say lo), where column k contain has a 1 and column j has a 0. But at 
the same time, it is impossible that M, = 0 whenever M, = 1, for then the 
score of column j exceeds the score of column k. Therefore there is a row 
1,) where M,,, = MI,j = 1. But then columns j and k are labeled in all 
possible ways by concepts i,, il, 0, I and I,, so that the VC dimension of 
M is at least two. 1 

It remains an open problem to find a combinatorial characterization for 
VC dimensions greater than one, and to find a more efficient algorithm for 
the discrete VC dimension problem. 

It is interesting to note that the minimum dominating set in a graph can 

k j 

FIGURE 1 

643/90; l-4 
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be solved in a similar time to that of the VC dimension problem (nouog”) 
time). Recently, Megiddo and Vishkin (1988) showed that if the minimum 
dominating set can be solved in polynomial time, then every CNF with m 
clauses and O(log*m) variables can be solved in polynomial time. On the 
other hand, the problem can be reduced to a general satisliability problem 
of length L and O(log’ L) variables. It will be interesting to find there is a 
connection between that problem and the discrete VC dimension problem. 

5. CONCLUSIONS 

Our main result is an extension of distribution-free learning model to the 
case of infinite VC dimension; this greatly enlarges the class of concept 
classes which are pat-learnable. We have examined the closely related 
problem of approximating from examples and have seen that our results 
probably do not generalize to this problem. Finally, we have considered the 
problem of computing the VC dimension for finite concept classes on finite 
domains and have provided a new combinatorial characterization of the 
case that the VC dimension is one. A number of open problems, conjec- 
tures, and new research directions have been proposed. 
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