
Computing the Margin of Victory in IRV Elections

Thomas R. Magrino
UC Berkeley

Ronald L. Rivest
MIT

Emily Shen
MIT

David Wagner
UC Berkeley

Abstract
Efficient post-election audits select the number of ma-

chines or precincts to audit based in part on the margin of
victory (the number of ballots that must be changed in or-
der to change the outcome); a close election needs more
auditing than a landslide victory. For a simple “first-past-
the-post” election, the margin is easily computed based
on the number of votes the first and second place candi-
dates received. However, for instant runoff voting (IRV)
elections, it is not immediately obvious how to compute
the margin of victory. This paper presents algorithmic
techniques for computing the margin of victory for IRV
elections. We evaluate our method by attempting to com-
pute the margin of victory for 25 IRV elections in the
United States. The margin of victory computed can then
be used to conduct post-election audits more effectively
for IRV elections.

1 Introduction

In this paper, we study the problem of computing the
margin of victory in instant runoff voting (IRV) elections.
We define the margin of victory of an election to be the
minimum number of ballots that, if they were different,
would change the winner of the election.

The margin of victory of an election is a fundamen-
tal concept; it quantifies how close a race actually was.
Also, the margin of victory suggests how much of a po-
litical mandate the winner can be thought of as receiving.

For a more traditional “first-past-the-post” election,
the margin of victory is trivial to compute—it is half the
difference in votes between the winner and the runner-
up, rounded up if necessary. (For our purposes we as-
sume that ties always break in a manner so as to produce
a changed outcome; otherwise the “tie-free” margin may
be one vote larger.)

For IRV elections, however, the margin of victory is
much more complicated to compute. Since a ballot lists

an order of preferences for candidates instead of a sin-
gle choice of candidate, the number of ways a ballot
can change is much greater. As we show later, the no-
tion of a “runner-up” is not even quite the same as it is
in a first-past-the-post election, since the candidate that
loses the last runoff round is not necessarily the candi-
date who would win if the minimum number of changes
were made to get another candidate to win.

The margin of victory is not only interesting in its
own right, but it is also important for implementing ef-
ficient post-election audits. A post-election audit com-
pares the electronic totals for a randomly-selected sam-
ple of precincts against the totals produced by hand-
counting the paper ballots for those precincts. See Nor-
den et al. [10] for an overview of post-election audits,
or Joe Hall’s excellent bibliography [9] for useful ref-
erences. Post-election audits are useful in detecting er-
rors or fraud; a “risk-limiting” post-election audit is fur-
ther designed to limit the risk that the wrong candidate is
named the winner. See Stark [13, 12, 14] for examples
of risk-limiting audit methods.

Since hand-counting paper ballots is relatively expen-
sive, an efficient post-election audit will audit relatively
few precincts for a landslide election, but will audit more
precincts when the election is close. The margin of vic-
tory measures how close the election is; it is thus a key
input to the construction of an efficient post-election au-
dit that provides a given level of statistical confidence.

In this paper, we develop algorithmic methods for
computing the margin of victory in IRV elections. The
natural algorithms for this problem run in time exponen-
tial in m, the number of candidates, because they involve
exploring a space of size about m! (the number of pos-
sible permutations of the m candidates). We achieve im-
proved efficiency using several heuristics. Our core tech-
nical approach involves use of branch-and-bound meth-
ods to rapidly prune the space we need to explore. We
explore the tree in a top-down fashion; at each internal
node we check whether we can skip the entire subtree.

In particular, we show how to use integer linear program-
ming to compute a lower bound on the margin of victory
for an entire subtree, which in many cases allows us to
prune exploration and skip that subtree. Our methods
are heuristic in nature—the worst-case running time of
our algorithm remains exponential in m—but we demon-
strate that they are often effective in practice.

The primary result of this work is to (partially) remove
one barrier to auditing of IRV elections. Some who are
opposed to IRV claim that auditing IRV is intractable [4],
due to the difficulty of precinct-based auditing of IRV
elections. In contrast, some IRV supporters argue for
single-ballot audits [5]. While single-ballot auditing of
IRV elections may be feasible, there has not been a fea-
sible way to compute the margin of victory in a IRV elec-
tion, and therefore there does not currently seem to be an
accepted method for performing single-ballot audits of
IRV elections that provide a given level of statistical con-
fidence.1 Our work addresses this barrier to the auditing
of IRV elections.

The contributions of this work are:

• We develop new algorithmic techniques to compute
the margin of victory in IRV elections.

• We demonstrate experimentally that these algo-
rithms are efficient in practice for many (but not all)
real-world IRV elections.

• These results shed light into a broader policy debate
surrounding IRV elections,2 and suggest that IRV
elections are not fundamentally incompatible with
effective post-election audits.

2 Background: How IRV Elections Work

In this section we explain what IRV elections are and
how they work.

In recent years, an increasing number of cities in the
United States have adopted the IRV election format,
which allows voters to rank the candidates in the or-
der that the voter prefers the candidates [6]. In some
places, such as San Francisco, the alternative name
ranked choice voting (RCV) is used to refer to IRV. IRV
elections have grown in popularity in recent years be-
cause they allow local officials to be elected with a ma-
jority vote without separate runoff elections.

1However, concurrent work by Sarwate et al. proposes an alterna-
tive approach to this problem [11].

2The selection of a voting system is always controversial. See
fairvote.org for some favorable discussion and presentation of
IRV, and http://rangevoting.org/Irvtalk.html for some dis-
cussion of some of IRV’s rather surprising and undesirable properties.
In this paper we focus on the auditability of IRV, and do not take a
position on the larger policy question of whether IRV is a good voting
system to be using in the first place.

Figure 1: Example of a ballot for a voter who prefers c
the most, followed by a, b, and d. We can think of this
as the permutation (c,a,b,d).

In IRV, voters cast ballots that list candidates in or-
der of preference. The ballot b contains a ranking
(c1,c2, . . . ,ck) of a subset of the candidates, where c1 is
the voter’s top choice, c2 is the voter’s second choice, and
so on. For example, in an IRV contest with candidates a,
b, c, and d, a voter who preferred c the most, followed by
a, b, and d, would mark her ballot as shown in Figure 1.
This ballot corresponds to the ranking (c,a,b,d). Voters
do not need to rank all candidates; for instance, (b,c) is
another possible ranking of candidates.

The winner is selected by simulating a series of runoff
elections. In each runoff round, the candidate with the
least number of votes is thereafter eliminated from con-
tention, while the other candidates survive to the next
runoff round. The winner is the last candidate remaining
after all other candidates have been eliminated.

In each runoff round, votes are tallied by counting
each ballot as a vote for its highest-ranked candidate who
has not yet been eliminated. If a ballot has no eligible
candidates listed, the ballot is exhausted and it does not
count towards anyone, as if the ballot were cast blank. In
each round, the candidate eliminated is the one with the
lowest number of votes tallied in this fashion (with ties
resolved according to local election law).

This procedure for determining the winner of an IRV
contest is shown in pseudocode in Algorithm 1.

As an example, suppose we wanted to find the winner
of an IRV contest between candidates a, b, c, and d with
ballots cast as shown in Table 1. The series of runoff
rounds and the number of votes that each candidate re-
ceives during each round is shown in Table 2.

2

Algorithm 1 Calculating the winner of an IRV election
with candidates C and ballots B.

while |C|> 1 do
Reset the tallies for each candidate c ∈C to 0.
for each ballot b = (c1,c2, . . . ,ck) ∈ B do

Add 1 to the tally of the highest-ranked candidate
still in C.

Eliminate the candidate with the smallest count
from C.

return the remaining candidate in C.

Ranking of Candidates Number of Ballots
(a,c,b,d) 40
(b,c,d,a) 21
(c,a,b,d) 10
(c,a,d) 10
(d,b,c,a) 5

Table 1: An example election between candidates a, b,
c, and d. Each row shows the number of ballots cast
with a specified ranking. Rankings are given in order of
descending preference, so (a,b,c) means a was ranked
first, b was ranked second, and c was ranked third.

3 Computing the Margin of Victory

The problem of finding the margin of victory for an IRV
election is not a simple computation. Changing one bal-
lot might have complex effects on the eventual winner;
changing a single ballot might change which candidate
is eliminated in an earlier round, which can have cascad-
ing effects on all subsequent rounds.3

Naively, one might be tempted to compute the margin
of victory as the margin in the last round: i.e., one-half
the difference between the number of votes allocated to
the last two candidates in the final round. However, this
method is not correct.

Consider the example shown in Tables 1 and 2. The
last-round tie-free margin of victory is (60−26)/2+1 =
18, since by changing 18 ballots one can leave b with 44
votes in the last round and leave a with only 42 votes,
causing b to win the election. However, the true margin
of victory is much smaller than the last-round tie-free
margin. By changing 4 ballots, we can change who is
eliminated in the second round; we can cause b to be
eliminated in the second round instead of c. When b is
eliminated, all of the votes previously counted for b are
now redistributed to c, and c wins the election. There-
fore, the (tie-free) margin of victory can be much smaller
than the (tie-free) last-round margin.

3See, for example, the example given by Warren Smith at http:
//rangevoting.org/IRVamp.html

Number of Votes for
Round a b c d

1 40 21 20 5
2 40 26 20 —
3 60 26 — —

Table 2: An example of how the winner is determined,
given the ballots from Table 1. If a candidate is elim-
inated before a runoff round, this fact is indicated by a
dash. Candidate a wins the election.

Ranking of Candidates Number of Ballots
(b,d) 71
(d) 10
(d,b) 5

Table 3: Example of reduced election profile for candi-
dates b and d using the original profile in Table 1. All
ballots are now treated as if they only listed b and d,
omitting all other candidates they originally listed.

Similarly, we can see that the “apparent runner-up”
(the last candidate to be eliminated) is not necessarily the
candidate who missed winning by the smallest number of
ballots.

Also, it is not hard to come up with examples that
demonstrate that the margin of victory need not be equal
to any of the individual round margins (i.e., between the
candidate eliminated in that round and the candidate with
the next higher total).4

Ties. One complexity of IRV is how ties are handled,
in each round of the IRV algorithm. The method for han-
dling ties is jurisdiction-specific and is not always fully
specified, but it can potentially have a significant effect
on the outcome of an election. In this paper, we conser-
vatively assume that the adversary can control how ties
are resolved: if in some round multiple candidates are
tied for the lowest number of votes, we assume that the
adversary can select which candidate will be eliminated.
(If the adversary cannot in fact control the outcome of
ties, then our methods might slightly underestimate the
true margin of victory, but they will not overestimate it.)

3.1 Terminology

We start by defining a few terms we use in the description
of our algorithms.

4For example, for the profile (a): 30, (b): 35, (c,a): 38, (d): 60,
the margin of victory is 4 (changing votes from (c,a) to (a)), while the
round margins are 3, 2, and 11.

3

• A ballot signature is the ranking of the candidates
on the ballot. In other words, it is an ordered tu-
ple of candidates, ordered from most preferred can-
didate to least preferred. In this paper, we allow
the signature to be partial and not contain all of the
candidates; unlisted candidates are understood to be
preferred less than any listed candidate.

• The election profile is the list of ballots that are cast
in the election. The election profile is a multiset of
ballot signatures; it gives for each ballot signature
the number of occurrences of that signature in the
profile. Table 1 is an example of an election pro-
file. In our problem, we are given an election pro-
file (which corresponds to the publicly reported re-
sults), and we want to compute how many ballots
would need to be modified to change the winner.

• The elimination order associated with an IRV elec-
tion profile is a permutation of the candidates in the
election. It lists candidates ordered by which round
they are eliminated in, starting with the candidate
that is eliminated earliest, and ending with the elec-
tion winner (who isn’t actually eliminated, but it is
useful to list the winner here too). We can denote
the elimination order as (e1,e2, . . . ,em), where e1 is
the candidate that is eliminated earliest and em is
the winner of the IRV contest. For the example in
Table 1, the elimination order is (d,c,b,a).

• A ballot is modified when its signature is changed
to a different signature.

We assume that the election profile of the ballots
as reported after the election is available and given
to us. Thus, the original election profile is fixed
and known; in calculating the margin of victory, we
consider all potential modifications to this profile.
(This is equivalent to considering profiles that might
be the “true” election profile, from which our input
election profile might have been derived by modify-
ing ballots.)

• The margin of victory is the minimum number of
ballot modifications that must occur in order for a
different candidate to be declared the winner.

• Given an election profile P for a contest between
candidates C, and given a subset of candidates C′ ⊆
C, we call P′ the reduced election profile for C′ if it
is the result of taking each ballot in P and removing
any preferences involving candidates not in C′. For
example, consider the election profile in Table 1: its
reduced election profile for candidates b,d is shown
in Table 3.

3.2 A Building Block
We start by considering a simpler problem:

Problem 1. Given an election profile for an IRV elec-
tion and a permutation of the candidates π , what is the
minimum number of ballots one would have to change in
order for the elimination order of the resulting election
profile to be π?

In other words, how many ballots must we modify if we
want to force the elimination order to be π?

We use the solution to this problem as a subroutine in
our full algorithm for the margin of victory problem.

Solution. Problem 1 can be solved using integer lin-
ear programming. In particular, one can construct an in-
teger linear program whose objective function measures
the number of changed ballots, and whose constraints en-
force restrictions on what conditions must be satisfied in
order for the new election profile’s elimination order to
be π . We now describe one way to construct an integer
linear program to solve this problem.

For each ballot signature S, let nS denote the number
of ballots with signature S in the original election profile.
Define n = ∑S nS, so that n counts the total number of
ballots in the original election profile. The values of nS
and n are constants that are determined by the original
election profile and thus are given to us.

We introduce a number of variables for the linear pro-
gram. For each signature S in the new election profile,
we introduce the variable pS to represent the number of
ballots that were modified so their new profile is S (and
their original profile was something other than S). We
also introduce the variable mS to represent the number of
ballots that were modified from their original profile S to
some other profile. Finally, we introduce the variable yS
to represent the total number of ballots with signature S
in the new election profile, after the modifications have
been made.

The integer linear program then contains some basic
inequalities that capture the form that modifications can
take, and some special inequalities that require the elim-
ination order of the modified profile to be π .

The basic inequalities are as follows. We add one in-
stance of the following inequalities for each signature S:

nS + pS−mS = yS

n≥ yS ≥ 0
nS ≥ mS ≥ 0

pS ≥ 0

We also add the following inequality:

∑
S

pS = ∑
S

mS

4

These inequalities enforce the following constraints:

• The number of ballots with new signature S is the
number of ballots that originally had signature S,
plus the number that were changed from something
else to S, minus the number that changed from S to
something else.

• The number of ballots that end up with signature S
can not be more than the total number of ballots that
were cast in the race.

• The number of ballots that are modified to have sig-
nature S must be nonnegative.

• We may not change more ballots of signature S than
were originally reported.

• The number of ballots which originally had signa-
ture S and were then modified to have another sig-
nature must be nonnegative.

• The total number of ballots changed from some-
thing is equal to the total number of ballots changed
to something (conservation of flow).

In addition to the basic inequalities, we also add sev-
eral special inequalities to force the new election profile’s
elimination order to be π = (e1,e2, . . . ,em). For k≥ r, let
Sk,r be the set of ballot signatures that will be counted
towards candidate ek during round r, assuming that can-
didates are eliminated in the elimination order π . In other
words, Sk,r is the set of all signatures such that, if we re-
move candidates e1, . . . ,er−1 from the signature, ek will
then be ranked at the top. Put another way, Sk,r is the set
of all signatures such that ek is ranked at least as high as
all of er,er+1, . . . ,em. Note that if candidates are elimi-
nated following the elimination order π , then every ballot
whose signature is in Sk,r will be counted towards candi-
date ek in the rth round. With this definition, we are now
prepared to describe the special inequalities. For each
pair of distinct candidates ei and e j such that i < j, we
generate the following inequality.

∑
S∈Si,i

yS ≤ ∑
S∈S j,i

yS

This inequality enforces the requirement that in the ith
round, candidate j has at least as many votes as candi-
date i. Since in the ith round, the only candidates remain-
ing are ei,ei+1, . . . ,em, taken collectively the inequalities
for i imply that ei must be the candidate eliminated in the
ith round (assuming the previous rounds have followed
π). Therefore, if all special inequalities hold, the elimi-
nation order will be exactly π .

Finally, the objective function is the number of ballots
changed. We seek to minimize this objective function. In

Ranking of Candidates Number of Ballots
(a,b) 2
(b,a) 1

Table 4: A second example election profile for a contest
between candidates a and b.

other words, the integer linear program’s goal is

minimize ∑
S

pS.

In summary, our initial solution to Problem 1 is to
build the integer linear program described above and
solve it using a standard ILP solver. Define a proce-
dure distanceTo(π) that does exactly this; it returns
the minimum number of ballots that must be changed
in order to achieve an election profile whose elimination
order will be π , starting from the original election pro-
file. (The original election profile is exactly the set of
reported ballots.) While the worst-case running time of
an ILP solver is potentially exponential in the size of its
input, in practice we have found that these ILPs can be
solved efficiently.

Example. Consider the profile in Table 4. We start by
adding the following constraint:

2+ p(a,b)−m(a,b) = y(a,b)

This states that, after modifications are applied, the num-
ber of ballots that list a as the voter’s first choice and b
as her second choice is equal to 2 (the original number of
ballots that had this order of preferences) plus the num-
ber of ballots that were changed to signature (a,b) minus
the number of ballots that previously had (a,b) and were
subsequently modified. Also, we would add the follow-
ing constraints:

3≥ y(a,b) ≥ 0

2≥ m(a,b) ≥ 0

p(a,b) ≥ 0

These constraints state that, after modifications, the num-
ber of ballots with signature (a,b) must be non-negative
and cannot exceed 3 (the total number of ballots in the
election); the number of modified ballots that originally
had signature (a,b) must be between 0 and 2, since we
started with 2 ballots of this signature; and finally, the
number of ballots modified to have signature (a,b) must
be non-negative.

This captures the basic constraints for the signature
(a,b). We would add similar constraints for the other
signatures (b,a), (a), (b), and (). In addition, we would

5

add one more basic constraint to enforce that no ballots
are added or removed from the race:

∑
S

pS = ∑
S

mS

In other words, this equation is

p(a,b)+ p(b,a)+ p(a)+ p(b)+ p() =

m(a,b)+m(b,a)+m(a)+m(b)+m().

Suppose the desired elimination order is π = (a,b),
i.e., we wish to modify the ballots so a is eliminated first
and b second. We obtain the special inequality

y(a)+ y(a,b) ≤ y(b)+ y(b,a),

which simply states that, after modifications have been
made, the total number of ballots that have b as the first
choice must not be smaller than the total number of bal-
lots that have a as the first choice.

Finally, we set the objective function to be the sum
∑S pS, which is the number of ballots changed. We use an
integer linear programming solver to minimize the objec-
tive function, subject to the aforementioned constraints.
In other words, our integer linear program (ILP) tries
to achieve the new elimination order using the fewest
changes to the original set of ballots.

3.3 An Unoptimized Margin Algorithm
Next, we introduce a basic way to compute the margin
of victory for an IRV election. This approach is rela-
tively simple but highly inefficient. The idea is to exhaus-
tively enumerate all possible elimination orders that end
with someone other than the currently declared winner.
Then, for each such elimination order, we use our solu-
tion to Problem 1 (namely, the distanceTo procedure
described in Section 3.2) as a subroutine to determine
the smallest number of ballots that must be changed to
achieve this elimination order. We dub this “the unopti-
mized algorithm” for computing the margin of victory.

The unoptimized algorithm examines each alternative
elimination order that does not end with the reported
winner and runs distanceTo on that order, finding the
minimal number of changes needed to achieve that elimi-
nation order. It then returns the minimum value observed
as the margin of victory. This corresponds to the elimina-
tion order that achieves a different winner with the fewest
possible changes to the ballots. By definition, the value
returned by the unoptimized algorithm is the margin of
victory for an IRV election.

Examples. In the 2-candidate example election profile
in Table 4 we can see the unoptimized algorithm does

Algorithm 2 “Unoptimized algorithm” for finding the
margin of victory for an IRV contest with candidates C,
winner w, and election profile P.
bestSoFar← ∞

for each permutation π of C that does not end with w
do
dist← distanceTo(π)
if dist< bestSoFar then
bestSoFar← dist

return bestSoFar

the same thing as what would be done in a “first-past-
the-post” race. It considers the only other possible elim-
ination order (a,b), in which a loses to b, and it finds the
fewest number of modifications that would be needed for
this elimination order to occur. In this case, the margin
of victory is half the difference between the number of
votes for a and b.

For the election profile in Table 1, the unoptimized
algorithm would iteratively call distanceTo() for ev-
ery single permutation of the four candidates that does
not designate a as the winner (since a was the originally
reported winner). There are 3× 3! = 18 such permu-
tations of the four candidates, so Algorithm 2 invokes
distanceTo() 18 times.

Efficiency analysis. The unoptimized algorithm is rel-
atively inefficient, because it considers exponentially (in
m) many elimination orders. In particular, there are
(m−1)×(m−1)! permutations of the candidates that do
not end with the originally reported winner, so Algorithm
2 performs (m−1)×(m−1)! iterations of its main loop.
Thus, the number of calls to the distanceTo() proce-
dure is Θ(m!), ensuring that the unoptimized algorithm
will take time exponential in m.

Each iteration of the loop invokes an ILP solver. While
in principle, this could itself take time exponential in the
size of its input (since integer linear programming is NP-
hard), in our experience the ILP solver’s running time
has typically not been the gating factor.

In the remainder of this paper, we focus on remedying
the inefficiency of the unoptimized algorithm for contests
with a large number of candidates, by trying to reduce the
number of calls to distanceTo().

3.4 Our Branch-and-Bound Algorithm
We now introduce an alternative approach that explores
only a subset of the possible elimination orders. We use a
branch-and-bound technique, motivated by the following
lower bound.

Lemma 1. Let C = {e1, . . . ,em} be a set of m candidates
and C′ = C \ {e1}. Then, distanceTo((e1, . . . ,em)) ≥

6

distanceTo((e2, . . . ,em)), where the latter is calculated
on the reduced election profile for C′.

Proof. Let m1 be the minimum number of ballots that
need to be modified to achieve the elimination order
(e1, . . . ,em) for profile P, and let m2 be the minimum
number of ballots that need to be modified to achieve
the elimination order (e2, . . . ,em) for reduced profile P′

(P restricted to candidates {e2, . . . ,em}).
We wish to show that m2 ≤ m1.
By definition of m1, there is a way to change m1 votes

in P to get a new profile P2 such that the elimination order
for P2 is (e1, . . . ,em). That is, P2 satisfies the following
properties:

• e1 has the fewest first-choice votes.

• the reduced profile P′2 (P2 restricted to candidates
{e2, . . . ,em}) has the elimination order (e2, . . . ,em).

Since we obtained P2 from P by modifying m1 ballots,
we can obtain P′2 from P′ by modifying at most m1 bal-
lots, by just restricting the ballot modifications between
P and P2 to the candidates {e2, . . . ,em}. Therefore, m1 is
an upper bound on m2.

Corollary 1. distanceTo((ek, . . . ,em)) (calcu-
lated on the reduced election profile for can-
didate set {ek, . . . ,em}) is a lower bound for
distanceTo((e1, . . . ,em)).

This gives us a lower bound on distanceTo(π), for
any elimination order π , which can be used in a branch-
and-bound algorithm. The algorithm explores a search
tree, whose leaves are full elimination orders for the can-
didates C, and whose internal nodes represent elimina-
tion orders for a reduced election profile (i.e., for a subset
of the candidates). We use the lower bound in Lemma 1
to prune portions of the tree. When we can prove that an
elimination order requires a larger number of modified
ballots than the best one seen so far, we do not need to
explore that elimination order.

In particular, we construct the search tree so that each
internal node provides a lower bound on the values at
all the leaves underneath it. We annotate each leaf
with its corresponding distanceTo() value. For exam-
ple, the leaf for elimination order (e1, . . . ,em) is anno-
tated with distanceTo((e1, . . . ,em)). Its parent corre-
sponds to elimination order (e2, . . . ,em) of the reduced
election profile for {e2, . . . ,em}, and is annotated with
distanceTo((e2, . . . ,em)) (calculated for this reduced
election profile).

The algorithm is designed to find the smallest leaf
value. We keep track of the smallest leaf value seen so
far, say v. Then, if we encounter an internal node whose
value is v or greater, we can skip over the entire subtree

Ranking of Candidates Number of Ballots
(Alice, Clarence, Bob) 12
(Bob, Alice, Clarence) 6
(Clarence, Bob, Alice) 7

Table 5: A example election profile for a contest between
candidates Alice, Bob, and Clarence.

rooted at that node, since none of its descendants can be
smaller than the best seen so far.

As an example, consider the election profile in Table 1.
The resulting search tree is shown in Figure 2. When
visiting the node (b,d), we build the reduced election
profile that includes only the candidates b and d and then
compute distanceTo((b,d)) using this reduced profile.

In this example, we find distanceTo((b,d)) = 28,
so we annotate the node (b,d) with the lower bound
≥ 28. Corollary 1 tells us that the leaves (a,c,b,d) and
(c,a,b,d) will receive values ≥ 28. If we have previ-
ously explored a leaf with value less than or equal to 28,
we do not need to explore the subtree rooted at (b,d).

Our branch-and-bound algorithm explores the search
tree in “smallest-first” order. In particular, we prioritize
nodes to explore based on the lower bound given by its
parent, exploring nodes with smaller lower bounds ear-
lier than nodes with greater lower bounds. We use a pri-
ority queue to store the “fringe” (the nodes that have not
been explored yet), using each node’s lower bound as its
priority. This algorithm is designed to prune large parts
of the search tree early by discovering a lower bound
for them that is larger than the distanceTo value for
some other leaf that has already been explored. If prun-
ing is effective, many fewer calls to the ILP solver will be
needed, potentially making the branch-and-bound algo-
rithm considerably more efficient than the unoptimized
algorithm. The pseudocode for our branch-and-bound
algorithm is given in Algorithm 3.

We extend the basic branch-and-bound algorithm us-
ing heuristics to select which nodes to explore first when
there is more than one with the same lower bound. These
additional heuristics can be used as secondary priority
keys to attach to each node as it is put into the priority
queue. In our implementation of the algorithm, we chose
to use 2 additional keys to prioritize nodes, which are
described in Appendix A.

Example. Let us explore an example of how this would
work for the election profile in Table 5, which shows
a contest between the fictitious candidates Alice, Bob,
and Clarence. We start the algorithm by placing the two
reduced elimination orders (Bob) and (Clarence) on the
priority queue (fringe) with priority zero.

7

(b)

≥ 0

(c)

≥ 0

(d)

≥ 0

(a,b)

≥ 17

(c,b)

≥ 17

(d,b)

≥ 0

(a,c)

≥ 0

(b,c)

≥ 0

(d,c)

≥ 0

(a,d)

≥ 38

(b,d)

≥ 28

(c,d)

≥ 38

(d,a,b)

(c,a,b)

(d,c,b)

(a,c,b)

(a,d,b)

≥ 32

(c,d,b)

≥ 32

(c,a,d,b)

(a,c,d,b)

(b,a,c)

≥ 3

(d,a,c)

≥ 0

(a,b,c)

≥ 12

(d,b,c)

≥ 0

(a,d,c)

≥ 18

(b,d,c)

≥ 8

(d,b,a,c)

= 3

(b,d,a,c)

= 8

(d,a,b,c)

(a,d,b,c)

= 19

(b,a,d,c)

(a,b,d,c)

(c,a,d)

(b,a,d)

(c,b,d)

(a,b,d)

(b,c,d)

(a,c,d)

(c,d,a,b)

(d,c,a,b)

(a,d,c,b)

(d,a,c,b)

(b,c,a,d)

(c,b,a,d)

(a,c,b,d)

(c,a,b,d)

(a,b,c,d)

(b,a,c,d)

Figure 2: The search tree of reduced elimination orders
for an election with candidates C = {a,b,c,d}, original
winner a, and election profile given by Table 1. The
nodes explored by our branch-and-bound algorithm are
annotated with the distanceTo() value for that elimi-
nation order. Notation: (a,b) is annotated with ≥ 17, in-
dicating that distanceTo((a,b)) = 17 (on the reduced
election profile for {a,b}). This implies that (c,d,a,b)
and (d,c,a,b) would receive a value at least 17, so they
do not need to be explored. The final margin of victory
computed was 3 ballots, corresponding to elimination or-
der (d,b,a,c).

Algorithm 3 Our branch-and-bound algorithm for com-
puting the margin of an IRV race with set of candidates
C, winner w, and election profile P.

Let fringe be a priority queue.
for each candidate c ∈C \{w} do

Add (c) to fringe with priority 0.
while fringe is not empty do

Pop the lowest priority elimination ordering in
fringe. Suppose it is π = (e1, . . . ,ek).
if π is a complete elimination ordering then

return distanceTo(π).
for each candidate c ∈C such that c 6∈ π do

Let d← distanceTo((c,e1, . . . ,ek)) (computed
on the reduced ballot profile for candidate set
{c,e1, . . . ,ek}).
Push (c,e1, . . . ,ek) onto fringe with priority d.

(B) ≥ 0 (C) ≥ 0

(A,B) ≥ 0 (C,B) ≥ 7 (A,C) ≥ 6 (B,C) ≥ 0

(C,A,B) = 1 (A,C,B) (B,A,C) (A,B,C) = 4

Figure 3: Tree corresponding to the example race be-
tween Alice, Bob and Clarence. We use the first initial
of each candidate in the tree to save space.

8

We then move into the main loop and pop one of the
two elimination orders, say (Clarence), from the fringe
(either elimination order would work since they both
have priority zero). We extend this elimination order by
a single candidate in all possible ways to obtain the two
orders (Alice, Clarence) and (Bob, Clarence). For each,
we compute the reduced election profile and then invoke
distanceTo(), receiving the values 6 and 0 respectively.
We insert these two nodes into the fringe with these pri-
orities.

In the next iteration, we pop the smallest node off
the fringe, say (Bob). Again, we extend this by
a single candidate to obtain the two extensions (Al-
ice, Bob) and (Clarence, Bob), compute reduced elec-
tion profiles, invoke distanceTo(), and insert them
into the fringe with appropriate priorities, which are
0 and 7 respectively in this case. At this point, the
fringe contains {(Bob, Clarence) 7→ 0, (Alice, Bob) 7→
0, (Alice, Clarence) 7→ 6, (Clarence, Bob) 7→ 7}.

In the third iteration, we pop one of the lowest-priority
elimination orders from the fringe, say (Bob, Clarence).
The only possible extension is (Alice, Bob, Clarence).
We invoke distanceTo((Alice, Bob, Clarence)), which
returns 4, and insert it into the fringe with priority 4.

In the fourth iteration, we pop (Alice, Bob) and push
(Clarence, Alice, Bob) with priority 1. In the fifth itera-
tion, we pop (Clarence, Alice, Bob) and find that it is a
complete ordering, so we are done and we know that the
margin of victory for this race is 1. The corresponding
search tree is displayed in Figure 3.

3.5 Reducing ILP Sizes

Next, we show another optimization that reduces the size
of each ILP. It turns out that the basic approach in Sec-
tion 3.2 introduces more variables than necessary. That
approach introduces three variables per ballot signature.
We show how to reduce the number of variables by in-
troducing an equivalence relation on ballot signatures.

Fix an elimination order π . Consider a ballot sig-
nature S. Then all that matters about S is the n-tuple
f (S) = (c1, . . . ,cn), where ci indicates which candidate
the ballot S will be counted towards in the ith round of
the IRV algorithm, when following elimination order π .
If we have two ballot signatures S,S′ where f (S) = f (S′),
then we consider them equivalent: S ∼ S′. As far as the
IRV algorithm is considered, when we follow elimina-
tion order π and when S ∼ S′, S and S′ are interchange-
able; they have the same effect. Consequently, all that
matters is the total number of ballots in the equivalence
class [S] of ballot signatures equivalent to S.

For example, suppose we are examining elimination
order (a,b,c). Then the ballot signature (b,a,c) is equiv-
alent to the ballot signature (b,c): both ballot signatures

count towards candidate b in the first two rounds, and
then count towards candidate c in the third round. There-
fore, a situation where we have 5 ballots with signature
(b,a,c) and 3 ballots with signature (b,c) is equivalent
to a situation where we have 8 ballots with signature
(b,a,c) and none with signature (b,c). All that matters
is the total number of ballots in this equivalence class.

This allows us to reduce the size of the ILP. Rather
than introducing three variables pS,mS,yS per ballot sig-
nature, we introduce three variables p[S],m[S],y[S] per
equivalence class. We define p[S] = ∑S′∈[S] pS′ , and simi-
larly for m[S] and y[S]. Since the ILP of Section 3.2 can be
expressed solely in terms of the p[S],m[S],y[S] variables,
these are all we need.

This optimization significantly reduces the size of the
ILPs we solve. For instance, in an election with m can-
didates, where each voter is allowed to rank all m can-
didates, the basic approach generates an ILP with Θ(m!)
variables; this optimization reduces the number of vari-
ables to Θ(2m) (there is one equivalence class per subset
of the m candidates). In an election where each voter
is only allowed to rank 3 candidates, the savings are
smaller but still significant: the optimization reduces the
number of variables from 3m(m− 1)(m− 2)+ o(m3) to
3
(m

3

)
+ o(m3), an approximately 6-fold reduction. We

have found that this optimization reduces the running
time of our algorithm, by reducing the time it takes to
solve each ILP.

4 Evaluation

In this section we evaluate the effectiveness of our
branch-and-bound algorithm by using it to find the mar-
gin of victory for a variety of public IRV elections.

4.1 Dataset
We tested our branch-and-bound algorithm on 25 differ-
ent elections.5 Table 6 gives a detailed description of
each. A few of the races were notably trivial in that they
only had 2 candidates in the race, but we include the re-
sults since the elections were still run as IRV races (e.g.,
some voters placed both candidates on their ballot).

4.2 Methodology
We implemented our algorithm in C++ on an Intel Core
i7 processor. We used the IBM CPLEX library with an
academic research license as our integer linear program-
ming solver. We tried several other ILP solvers; CPLEX

5The Aspen, CO data was obtained from
http://irvfactcheckfactcheck.blogspot.com/2010/06/valid-ballot-
what-does-it-mean-for-irv.html which is not affiliated with the Aspen
City Clerk.

9

Location Year Office m Max cand.
per ballot

Aspen, CO 2009 City Council 11 9
Aspen, CO 2009 Mayor 5 5
Berkeley, CA 2010 Auditor 2 3
Berkeley, CA 2010 District 1 City Council Rep. 5 3
Berkeley, CA 2010 District 4 City Council Rep. 5 3
Berkeley, CA 2010 District 7 City Council Rep. 4 3
Berkeley, CA 2010 District 8 City Council Rep. 4 3
Burlington, VT 2006 Mayor 6 6
Oakland, CA 2010 Auditor 3 3
Oakland, CA 2010 District 2 City Council Rep. 3 3
Oakland, CA 2010 District 2 School Board Dir. 2 3
Oakland, CA 2010 District 4 City Council Rep. 8 3
Oakland, CA 2010 District 4 School Board Dir. 3 3
Oakland, CA 2010 District 6 City Council Rep. 4 3
Oakland, CA 2010 District 6 School Board Dir. 2 3
Oakland, CA 2010 Mayor 11 3
Pierce County, WA 2008 City Council 4 3
Pierce County, WA 2008 County Assessor 7 3
Pierce County, WA 2008 County Executive 5 3
Pierce County, WA 2009 County Auditor 4 3
San Francisco, CA 2007 Mayor 18 3
San Leandro, CA 2010 District 1 City Council Rep. 4 3
San Leandro, CA 2010 District 3 City Council Rep. 2 3
San Leandro, CA 2010 District 5 City Council Rep. 3 3
San Leandro, CA 2010 Mayor 7 3

Table 6: The elections we tested our algorithm on. Here m denotes the number of candidates running in the contest,
and the final column indicates the maximum number of candidates that a voter could rank on their ballot.

seemed to perform the best. We used the additional sec-
ondary keys described in Appendix A.

We used the local election board’s rules for the number
of candidates that could be listed on a single ballot in the
race.6 In many cases, voters were only permitted to rank
up to 3 candidates. This reduces the number of variables
created for each integer linear program, since there are
fewer possible ballot signatures that could appear for the
particular contest.

The main metric we used for evaluating the effective-
ness of our algorithm was the total number of integer
linear programs the algorithm had to solve before com-
pleting, regardless of the size of the integer linear pro-
gram. Whenever feasible, we checked the computed an-
swer against the solution returned by the “unoptimized
algorithm” (Algorithm 2), in order to perform a “sanity

6We computed the margin of victory for all of these elections with
respect to the IRV algorithm given in Algorithm 1, even though in some
of the elections (e.g., Aspen, CO) the IRV rules used to run the actual
election may have been slightly different. As a result, the margin of
victory we have calculated for each race might differ from the actual
margin of victory for that election’s version of IRV.

check.”

4.3 Results
The running time of our algorithm is influenced most
strongly by the number of candidates in the race and the
number of candidates that each voter can rank. The num-
ber of candidates in the race directly determines the num-
ber of possible elimination orders, which strongly influ-
ences the number of ILPs that must be solved. The num-
ber of candidates that each voter can rank, along with the
total number of candidates in the race, determines how
many different ballot signatures are possible, which de-
termines the number of variables in each ILP and thus
has a strong influence on the time to solve each ILP.

When we were able to compute the margin, we saw
reasonable performance: under 2 hours of computation
time. Moreover, for large elections our branch-and-
bound algorithm significantly reduced the number of in-
teger linear programs that had to be solved, compared
to the unoptimized algorithm. Table 7 summarizes the
results of our performance evaluation.

10

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10 11

Ti
m

e
(i

n
se

co
nd

s)

Number of Candidates

Number of Candidates versus Time (in seconds)

Figure 4: Graph of number m of candidates in a race versus the amount t of time in seconds to compute. The line
shown is a best-fit line for t, namely, t = e(am+b) with a = 1.3471 and b =−6.84145.

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 11

N
um

be
ro

fI
L

Ps
so

lv
ed

Number of Candidates

Number of Candidates versus Number of ILPs solved

Figure 5: Graph of number m of candidates in a race versus the number K of ILPs we solved using our algorithm. The
line shown is a best-fit line for K, namely, K = e(am+b) with a = 1.03223 and b =−1.06821.

11

m n Number of ILPs Computing Number of Computing Contest
using Algorithm 2 Time using ILPs using Time using

Algorithm 2 Algorithm 3 Algorithm 3
(seconds) (seconds)

2 45986 1 0.017 2 0.021 Berkeley 2010 Auditor
2 15243 1 0.017 2 0.012 Oakland 2010 D2 School Board
2 14040 1 0.018 2 0.023 Oakland 2010 D6 School Board
2 23494 1 0.017 2 0.022 San Leandro 2010 D3 City Council
3 122268 4 0.061 8 0.038 Oakland 2010 Auditor
3 15243 4 0.079 8 0.077 Oakland 2010 D2 City Council
3 23884 4 0.074 8 0.093 Oakland 2010 D4 School Board
3 23494 4 0.065 8 0.078 San Leandro 2010 D5 City Council
4 4862 18 0.397 25 0.267 Berkeley 2010 D7 City Council
4 5333 18 0.498 26 0.283 Berkeley 2010 D8 City Council
4 14040 18 0.599 27 0.148 Oakland 2010 D6 City Council
4 23494 18 0.297 25 0.257 San Leandro 2010 D1 City Council
4 43661 18 0.364 22 0.193 Pierce 2008 City Council
4 159987 18 0.310 22 0.230 Pierce 2009 County Auditor
5 312771 96 2.566 53 0.611 Pierce 2008 County Executive
5 2544 96 6.810 69 0.885 Aspen 2009 Mayor
5 6426 96 4.139 89 1.088 Berkeley 2010 D1 City Council
5 5708 96 4.052 68 0.831 Berkeley 2010 D4 City Council
6 9865 600 [Timeout] 162 3.358 Burlington 2006 Mayor
7 23494 4320 509.530 298 3.165 San Leandro 2010 Mayor
7 312771 4320 447.837 318 5.068 Pierce 2008 County Assessor
8 23884 35280 [Timeout] 4996 153.594 Oakland 2010 D4 City Council

11 122268 36288000 [Timeout] 26205 2646.488 Oakland 2010 Mayor
11 2544 36288000 [Timeout] 15119 6571.894 Aspen 2009 City Council
18 149465 6046686277632000 [Timeout] [Timeout] [Timeout] San Francisco 2007 Mayor

Table 7: The running time of our algorithm (Algorithm 3, including the optimizations from Section 3.5) on various
IRV elections. Algorithm 2 refers to the unoptimized algorithm. m denotes the number of candidates, and n denotes
the number of ballots cast in the election.

Perhaps the biggest surprise was that, in all but two
cases, the margin of victory exactly matched the last-
round margin. The two exceptions were the 2008 Pierce
County Assessor race and the 2009 Aspen City Council
race. In both cases the margin of victory turned out to
be less than one-third of the last-round margin. The mar-
gin of victory for each of the contests we were able to
process is shown in Table 8.

4.4 Limitations of our Method
Our branch-and-bound algorithm was unable to compute
the margin of victory for only one of the elections we
tested, the 2007 San Francisco Mayoral election.

The 2007 San Francisco Mayoral contest had too
many candidates for the algorithm to finish in a reason-
able amount of time. Even with our pruning methods,
the algorithm explores a very large number of tree nodes

(elimination orders). In short, our branch-and-bound al-
gorithm as it currently stands does not scale to IRV elec-
tions with large numbers of candidates.

We note that in some auditing approaches, it may be
desirable to use the margin-of-victory computation mul-
tiple times, as it may be invoked each time a portion of
the audit is completed. The efficiency of the margin-of-
victory computation is particularly relevant in such cases.

5 Future Directions

In this section, we discuss some future directions for our
work.

5.1 Improvements to our Algorithm
We suspect that further efficiency improvements to our
algorithm may be possible. We list several possible di-

12

Contest n Margin Last-round margin
Berkeley 2010 Auditor 45986 15356 15356
Oakland 2010 D2 School Board 15243 4830 4830
Oakland 2010 D6 School Board 14040 4826 4826
San Leandro 2010 D3 City Council 23494 8338 8338
Oakland 2010 Auditor 122268 17081 17081
Oakland 2010 D2 City Council 15243 2175 2175
Oakland 2010 D4 School Board 23884 3620 3620
San Leandro 2010 D5 City Council 23494 742 742
Berkeley 2010 D7 City Council 4862 364 364
Berkeley 2010 D8 City Council 5333 878 878
Oakland 2010 D6 City Council 14040 2603 2603
San Leandro 2010 D1 City Council 23494 3131 3131
Pierce 2008 City Council 43661 2007 2007
Pierce 2009 County Auditor 159987 8396 8396
Pierce 2008 County Executive 312771 2027 2027
Aspen 2009 Mayor 2544 89 89
Berkeley 2010 D1 City Council 6426 1174 1174
Berkeley 2010 D4 City Council 5708 517 517
Burlington 2006 Mayor 9865 388 388
San Leandro 2010 Mayor 23494 116 116
Pierce 2008 County Assessor 312771 1111 3650
Oakland 2010 D4 City Council 23884 2329 2329
Oakland 2010 Mayor 122268 1013 1013
Aspen 2009 City Council 2544 35 162

Table 8: The margin of victory in each election, computed using our algorithm. n denotes the number of ballots cast.

rections (as yet unimplemented and untested).

Weak candidates. In elections with many candidates,
often there are many weak candidates, i.e., candi-
dates who receive few votes (e.g., write-in candidates).
These candidates cannot advance far, but our algorithm
nonetheless examines many elimination orders where
weak candidates survive into later rounds.

It is interesting to develop algorithmic optimizations
that specifically target this situation. Fix a known upper
bound u on the margin of victory. Fix an election pro-
file P. For candidates a,b, let n∗(a) denote the number
of ballots that rank a higher than b (or that rank a any-
where and do not rank b at all), and let n1(b) denote the
number of ballots that rank b as the first choice. Write
a≺ b if n∗(a)+2u < n1(b). Note that n∗(a) is an upper
bound on the number of ballots that might count towards
a in any round of the IRV algorithm executed on profile
P, and n1(b) is a lower bound on the number of ballots
that might count for b. If these differ by more than 2u,
then no modification of u or fewer ballots can cause a to
be eliminated later than b. In other words, if a ≺ b and
distanceTo(π) ≤ u, then a must occur before b in π ,
i.e., π = (. . . ,a, . . . ,b, . . .). Consequently, we can use the

partial order ≺ to narrow our search.
This suggests an algorithm. Initially, set u to the last-

round margin and compute the relation ≺ by examining
all m(m−1) pairs of candidates. Say that π is inconsis-
tent with ≺ if there exist a pair of candidates a≺ b such
that either (i) b appears before a in π , or (ii) π is a partial
elimination order that mentions a but not b. Now, search
the tree of elimination orders as in the branch-and-bound
algorithm, but skipping over nodes (and their subtrees)
that are inconsistent with ≺. At any point where we find
a complete elimination order whose distanceTo value
is smaller than u, we can optionally update u and ≺. It
seems plausible that, when there are many weak candi-
dates and only a few strong candidates, this optimiza-
tion might significantly improve the performance of our
algorithm—however, we have not tested it.

Further bounds. In Section 3.4, we showed how to
lower-bound distanceTo((e1, . . . ,em)) by examining a
suffix (ek, . . . ,em) of the elimination order. We note that
one can also obtain lower bounds from a prefix as well.

More formally, if {c1, . . . ,ck},B are two candidate-
sets whose disjoint union is C, let 〈c1, . . . ,ck,B〉 de-
note the set of all elimination orders of the form

13

(c1, . . . ,ck,b1, . . . ,bm−k) such that b1, . . . ,bm−k forms
a permutation of B. Given 〈c1, . . . ,ck,B〉, we
can form an ILP problem as described in Sec-
tion 3.2, but omitting the constraints corresponding
to the last m − k rounds of the IRV election. Let
distanceTo(〈c1, . . . ,ck,B〉) denote the result of solv-
ing this ILP. We note that distanceTo(〈c1, . . . ,ck,B〉)≤
distanceTo((c1, . . . ,ck,b1, . . . ,bm−k)) for all permuta-
tions of B. Consequently, we obtain a lower bound anal-
ogous to Corollary 1, but for the prefix rather than the
suffix.

More generally, we can also combine these two ideas,
to obtain a lower bound on distanceTo(π) corre-
sponding to each consecutive sequence of candidates
from π . If A,{c1, . . . ,ck},B are three candidate-sets
whose disjoint union is C, let 〈A,c1, . . . ,ck,B〉 de-
note the set of all elimination orders of the form
(a1, . . . ,a|A|,c1, . . . ,ck,b1, . . . ,b|B|) where the a’s form
a permutation of A and the b’s a permutation of B. We
can compute the reduced election profile for candidates
{c1, . . . ,ck} ∪ B, build an ILP but omitting constraints
corresponding to the last |B| rounds, and then solve
the IRV to obtain distanceTo(〈A,c1, . . . ,ck,B〉).
The key fact is that distanceTo(〈A,c1, . . . ,ck,B〉) ≤
distanceTo((a1, . . . ,a|A|,c1, . . . ,ck,b1, . . . ,b|B|)) al-
ways holds.

Thus, for each elimination order π , we obtain many
lower bounds on distanceTo(π). It seems conceivable
that there may be a way to build a more efficient branch-
and-bound algorithm that uses all of these bounds simul-
taneously to prune the search tree, rather than just Corol-
lary 1. However, we have not explored this direction.

5.2 Computational Complexity

While we have, as a practical matter, made progress on
the problem of computing the margin of an IRV election,
it is still open whether this problem is actually solvable
in time polynomial in the number m of candidates and
the number n of votes cast.

There has been a substantial body of research, begin-
ning with a series of works by Bartholdi, Orlin, Tovey,
and Trick [2, 1, 3], studying the worst-case compu-
tational complexity of manipulation (strategic voting)
problems for various voting rules. See [7] and [8] for
overviews of this line of research. In particular, Bartholdi
and Orlin [1] showed that the problem of manipulating of
IRV is NP-complete. Given this earlier work and the sim-
ilarity between strategic voting problems and the margin
problem, it is natural to conjecture that computing the
margin of victory of an IRV election is also NP-complete.
However, we have not yet proven this conjecture.

6 Conclusions

The margin of victory is a fundamental notion for post-
election audits, because many post-election auditing
schemes require knowledge of the margin of victory in
order to design an efficient sampling strategy that is guar-
anteed with high probability to catch (and, for a risk-
limiting audit, correct) errors sufficient to have changed
the election outcome. Also, the margin of victory has
public and political relevance, because it quantifies how
close the election was.

In this paper, we presented a relatively efficient
method for computing the margin of many IRV elections.
Our algorithm is able to compute the margin of victory
for all but one of the real-world IRV elections we tested.

In one case we were unable to compute the margin of
victory. This failure could be attributed to an unusually
large number of candidates in the race (which usually
does not occur in smaller cities for local elections). In
most cases, however, we show that our algorithm works
relatively efficiently in practice. Our results show that,
in most cases, the margin of victory could be determined
within a few hours after the election is tabulated.

Acknowledgements

This work was partially supported by National Science
Foundation grant CNS-0524745. Any opinions, findings,
conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References
[1] BARTHOLDI, J. J., AND ORLIN, J. B. Single transferable vote

resists strategic voting. Social Choice and Welfare 8, 4 (1991),
341–354.

[2] BARTHOLDI, J. J., TOVEY, C. A., AND TRICK, M. A. The com-
putational difficulty of manipulating an election. Social Choice
and Welfare 6 (1989), 227–241.

[3] BARTHOLDI, J. J., TOVEY, C. A., AND TRICK, M. A. How
hard is it to control an election. Mathematical and Computer
Modelling 16 (1992), 27–40.

[4] DOPP, K. Realities mar instant runoff voting - 18 flaws and 4 ben-
efits. http://electionmathematics.org/ucvAnalysis/

US/RCV-IRV/InstantRunoffVotingFlaws.pdf, Feb. 2009.

[5] Ranked voting and election integrity. http://archive.

fairvote.org/?page=2438, Dec. 2009.

[6] Where instant runoff is used. http://www.fairvote.org/

where-instant-runoff-is-used, 2010.

[7] FALISZEWSKI, P., HEMASPAANDRA, E., AND HEMASPAAN-
DRA, L. A. Using complexity to protect elections. CACM 53, 11
(Nov 2010), 74–82.

[8] FALISZEWSKI, P., AND PROCACCIA, A. D. AI’s war on ma-
nipulation: Are we winning? AI Magazine 31, 4 (Dec 2010),
53–64.

14

[9] HALL, J. L. Post-election manual auditing of paper
records: Bibliography. http://www.josephhall.org/

papers/auditing_biblio.pdf, 2007.

[10] NORDEN, L., BURSTEIN, A., HALL, J. L., AND CHEN, M.
Post-election audits: Restoring trust in elections. Brennan Center
for Justice at The New York University School of Law and The
Samuelson Law, Technology and Public Policy Clinic at the Uni-
versity of California, Berkeley School of Law (Boalt Hall), Aug.
2007.

[11] SARWATE, A., CHECKOWAY, S., AND SHACHAM, H. Risk-
limiting audits for nonplurality elections. Tech. Rep. CS2011-
0967, UC San Diego, June 2011. https://cs.ucsd.edu/

~scheckow/papers/nonplurality2011.html.

[12] STARK, P. B. Efficient post-election audits of multiple contests:
2009 california tests. Refereed paper presented at 2009 Confer-
ence on Empirical Legal Studies.

[13] STARK, P. B. Super-simple simultaneous single-ballot
risk-limiting audits. In 2010 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections (EVT/WOTE’10).
http://www.usenix.org/events/evtwote10/tech/

full_papers/Stark.pdf.

[14] STARK, P. B. Risk-limiting post-election audits: P-values from
common probability inequalities. IEEE Transactions on Informa-
tion Forensics and Security 4 (2009), 1005–1014.

A Additional Priority Values

As mentioned in Sections 3.4 and 4.2, we used the
distanceTo value as the primary priority for each node,
and we used secondary and tertiary priority values to
break ties.

We used the multiplicative inverse of the number of
candidates included in the elimination order as the sec-
ondary priority. The goal is to quickly find a possible full
solution early on in the algorithm (i.e., to quickly reach a
leaf). This key causes our algorithm to simulate a depth-
first search among all possible nodes of the same primary
priority, if there are many nodes with the same primary
priority.

Our tertiary priority for a partial elimination order of
length k was the number of candidates in this order which
were not found in the last k rounds of the reported elimi-
nation order. For example, the node (d,b) would receive
a tertiary priority value of 1, since the last two rounds
of the reported elimination involved (b,a). This choice
of tertiary priority was based on a notion that the margin
of victory might be more likely occur in an elimination
order that is similar to the original, reported elimination
ordering.

However, these secondary and tertiary priorities did
not yield a significant improvement for the algorithm’s
performance, compared to using only the primary prior-
ity.

15

