
A Generalization of Paillier’s Public-Key System

with Applications to Electronic Voting

Ivan Damg̊ard, Mads Jurik and Jesper Buus Nielsen

Aarhus University, Dept. of Computer Science, BRICS?

Abstract. We propose a generalization of Paillier’s probabilistic public
key system, in which the expansion factor is reduced and which allows
to adjust the block length of the scheme even after the public key has
been fixed, without losing the homomorphic property. We show that
the generalization is as secure as Paillier’s original system and propose
several ways to optimize implementations of both the generalized and
the original scheme.
We construct a threshold variant of the generalized scheme as well as
zero-knowledge protocols to show that a given ciphertext encrypts one
of a set of given plaintexts, and protocols to verify multiplicative relations
on plaintexts.
We then show how these building blocks can be used for applying the
scheme to efficient electronic voting. This reduces dramatically the work
needed to compute the final result of an election, compared to the previ-
ously best known schemes. We show how the basic scheme for a yes/no
vote can be easily adapted to casting a vote for up to t out of L can-
didates. The same basic building blocks can also be adapted to pro-
vide receipt-free elections, under appropriate physical assumptions. The
scheme for 1 out of L elections can be optimized such that for a certain
range of the other parameter values, the ballotsize is logarithmic in L.

1 Introduction

In [18], Paillier proposes a new probabilistic encryption scheme based on com-
putations in the group Z∗

n2 , where n is an RSA modulus. This scheme has some
very attractive properties, in that it is homomorphic, allows encryption of many
bits in one operation with a constant expansion factor, and allows efficient de-
cryption. In this paper we propose a generalization of Paillier’s scheme using
computations modulo ns+1, for any s ≥ 1. We also show that the system can
be simplified (without degrading security) such that the public key can consist
of only the modulus n. This allows instantiating the system such that the block
length for the encryption can be chosen freely for each encryption, independently
of the size of the public key, and without losing the homomorphic property. The
generalization also allows reducing the expansion factor from 2 for Paillier’s orig-
inal system to almost 1. We prove that the generalization is as secure as Paillier’s

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

original scheme. We also provide a number of ways to optimize both the encryp-
tion and decryption operations, in particular a new algorithm for encryption
which, compared to a naive implementation of Paillier’s original scheme, saves
a factor of 4 in computing time. In general, it saves a factor of 4s compared to
a straightforward implementation of the generalized system.

We propose a threshold variant of the generalized system, allowing a number
of servers to share knowledge of the secret key, such that any large enough
subset of them can decrypt a ciphertext, while smaller subsets have no useful
information. We prove in the random oracle model that the scheme is as secure
as a standard centralized implementation.

We also propose a zero-knowledge proof of knowledge allowing a prover to
show that a given ciphertext encodes a given plaintext. From this we derive
other tools, such as a protocol showing that a ciphertext encodes one out of a
number of given plaintexts. Finally, we propose a protocol that allows verifica-
tion of multiplicative relations among encrypted values without revealing extra
information.

We look at applications of this to electronic voting schemes. A large number
of such schemes is known, but the most efficient one, at least in terms of the
work needed from voters, is by Cramer, Gennaro and Schoenmakers [8]. This
protocol provides in fact a general framework that allows usage of any proba-
bilistic encryption scheme for encryption of votes, if the encryption scheme has
a set of ”nice” properties, in particular it must be homomorphic. The basic idea
of this is straightforward: each voter broadcasts an encryption of his vote (by
sending it to a bulletin board) together with a proof that the vote is valid. All
the valid votes are then combined to produce an encryption of the result, using
the homomorphic property of the encryption scheme. Finally, a set of trustees
(who share the secret key of the scheme in a threshold fashion) can decrypt and
publish the result.

Paillier pointed out already in [18] that since his encryption scheme is ho-
momorphic, it may be applicable to electronic voting. In order to apply it in
the framework of [8], however, some important building blocks are missing: one
needs an efficient proof of validity of a vote, and also an efficient threshold vari-
ant of the scheme, so that the result can be decrypted without allowing a single
entity the possibility of learning how single voters voted.

These building blocks are precisely what we provide here. Thus we immedi-
ately get a voting protocol. In this protocol, the work needed from the voters is of
the same order as in the original version of [8]. However, the work needed to pro-
duce the result is reduced dramatically, as we now explain. With the El-Gamal
encryption used in [8], the decryption process after a yes/no election produces
gR mod p, where p is prime, g is a generator and R is the desired result. Thus
one needs to solve a discrete log problem in order to find the result. Since R is
bounded by the number of voters M , this is feasible for moderate size M ’s. But
it requires Ω(

√
M) exponentiations, and may certainly be something one wants

to avoid for large scale elections. The problem becomes worse, if we consider
an election where we choose between L candidates, L ≥ 2. The method given

for this in [8] is exponential in L in that it requires time Ω(
√
M

L−1
), and so is

prohibitively expensive for elections with large L.
In the scheme we propose below, this work can be removed completely. Our

decryption process produces the desired result directly. Moreover, we can scale
easily to larger values of M and L without choosing new keys, just by going to
a larger value of s.

We also give ways to implement efficiently constraints on voting that occur
in real elections, such as allowing to vote for precisely t out of the L candidates,
or to vote for up to t of them. In each of these schemes, the size of a single ballot
is O(k ·L), where k is the bit length of the modulus used1. We propose a variant
using a different technique where ballots have size O(max(k, L logM) · logL).
Thus for k ≥ L logM , this is much more efficient, and even optimal up to a
constant factor, since with less than logL bits one cannot distinguish between
the L candidates. Furthermore this scheme requires only 1 decryption operation,
even when L > 2.

Some of the results in this paper were presented in preliminary form in [9].

2 Related Work

In work independent from, but earlier than ours, Fouque, Poupard and Stern
[12] proposed the first threshold version of Paillier’s original scheme. Like our
threshold scheme, [12] uses an adaptation of Shoup’s threshold RSA scheme [19],
but beyond this the techniques are somewhat different, in particular because we
construct a threshold version for our generalized crypto system (and not only
Paillier’s original scheme). In [12] voting was also pointed out as a potential
application, however, no suggestion was made there for protocols to prove that
an encrypted vote is correctly formed, something that is of course necessary for
a secure election in practice.

In work done concurrently with and independent from ours, Baudron, Fou-
que, Pointcheval, Poupard and Stern [3] propose a voting scheme somewhat
similar to ours. Their work can be seen as being complementary to ours in
the sense that their proposal is more oriented toward the system architectural
aspects of a large scale election, and less toward optimization of the building
blocks. To compare to their scheme, we first note that there the modulus length
k must be chosen such that k − 1 > L logM . The scheme produces ballots of
size O(k · L). An estimate with explicit constants is given in [3] in which the
dominating term in our notation is 9kL.

Because our voting scheme uses the generalized Paillier crypto system, k can
be chosen independently from L,M , in particular the scheme can scale to any
size of election, even after the keys have been generated. But if we choose k as
in [3], i.e. k − 1 > L logM , then the ballots we produce have size O(k · logL).
Working out the concrete constants involved, one finds that our complexity is

1 All complexities given here assume that the length of challenges for the zero-
knowledge proofs is at most k.

dominated by the term 10k logL. So already for moderate size elections we have
gained a significant factor in complexity compared to [3].

In [16], Hirt and Sako propose a general method for building receipt-free
election schemes, i.e. protocols where vote-buying or -coercing is not possible
because voters cannot prove to others how they voted. Their method can be
applied to make a receipt-free version of the scheme from [8]. It can also be
applied to our scheme, with the same efficiency gain as in the non-receipt free
case.

When using the threshold version of our scheme, we assume for simplicity a
trusted dealer for setting up the keys initially, and we assume that the modulus
used is a safe prime product, similar to what is done in Shoup’s paper [19].
In [10], Damg̊ard and Koprowski propose techniques by which one can drop
these restrictions from Shoup’s scheme, at the expense of an extra intractability
assumption. The same idea can be easily applied to our scheme thus producing a
scheme without a trusted dealer and using a general RSA modulus. The threshold
version of our scheme can also be used for general secure multiparty computation
as shown by Cramer, Damg̊ard and Nielsen in [4].

3 A Generalization of Paillier’s Probabilistic Encryption

Scheme

The public-key crypto system we describe here uses computations modulo ns+1

where n is an RSA modulus and s is a natural number. It contains Paillier’s
scheme [18] as a special case by setting s = 1.

Consider a modulus n = pq, p, q odd primes, where gcd(n, φ(n)) = 1. When
p, q are large and randomly chosen, this will be satisfied except with negligible
probability. Such an n will be called admissible in the following. For such an n,
Z∗

ns+1 as a multiplicative group is a direct product G × H , where G is cyclic
of order ns and H is isomorphic to Z∗

n. This follows directly from the Chinese
remainder theorem and the fact that Z∗

ps+1 is cyclic of order (p−1)ps. Thus, the

factor group Ḡ = Z∗
ns+1/H is also cyclic of order ns. For an arbitrary element

a ∈ Z∗
ns+1 , we let ā = aH denote the element represented by a in the factor

group Ḡ.

Lemma 1. For any admissible n and s < p, q, the element n+ 1 has order ns

in Z∗
ns+1 .

Proof. Consider the integer (1 + n)i =
∑i

j=0

(
i
j

)
nj . This number is 1 modulo

ns+1 for some i if and only if
∑i

j=1

(
i
j

)
nj−1 is 0 modulo ns. Clearly, this is the

case if i = ns, so it follows that the order of 1 + n is a divisor in ns, i.e., it
is a number of form pαqβ , where α, β ≤ s. Set a = pαqβ, and consider a term(
a
j

)
nj−1 in the sum

∑a
j=1

(
a
j

)
nj−1. We claim that each such term is divisible by

a: this is trivial if j > s, and for j ≤ s, it follows because j! can then not have
p or q as prime factors, and so a must divide

(
a
j

)
. Now assume for contradiction

that a = pαqβ < ns. Without loss of generality, we can assume that this means

α < s. We know that ns divides
∑a

j=1

(
a
j

)
nj−1. Dividing both numbers by a,

we see that p must divide the number
∑a

j=1

(
a
j

)
nj−1/a. However, the first term

in this sum after division by a is 1, and all the rest are divisible by p, so the
number is in fact 1 modulo p, and we have a contradiction.

Since then the order of H is relatively prime to ns the above lemma implies
immediately that the element 1 + n := (1+n)H ∈ Ḡ is a generator of Ḡ, except
possibly for s ≥ p, q. So the cosets of H in Z∗

ns+1 are

H, (1 + n)H, (1 + n)2H, ..., (1 + n)ns−1H,

which leads to a natural numbering of these cosets. The following lemma captures
the structure of Z∗

ns+1 in a more concrete way:

Lemma 2. For any admissible n and s < p, q, the map ψs : Zns × Z∗
n →

Z∗
ns+1 given by (x, r) 7→ (1+n)xrns

mod ns+1 is an isomorphism, where ψs(x1 +
x2 mod ns, r1r2 mod n) = ψs(x1, r1)ψs(x2, r2) mod ns+1.

Proof. Let π : Z∗
n → Z∗

ns+1 be given by r 7→ ψs(0, r) = rns

mod ns+1. By the
above enumeration of the cosets of H it is enough to prove that π(r1r2 mod n) =
π(r1)π(r2) mod ns+1 and that π maps Z∗

n injectively to H . First, it is clear
that π(r) ∈ H . By looking at the binomial expansion it is easy to see that
rns ≡ (r + n)ns

(mod ns+1). This proves the homomorphic property directly
and by the pigeon hole principle implies that π is injective.

This lemma gives us the following encoding of the cosets: (1 + n)i = ψs(i, Z
∗
n).

The final technical observation we need is that ψ can be inverted given the
factorization of n. In particular, taking discrete logarithms base n+ 1 in Ḡ is
easy given the factorization.

Theorem 1. For any admissible n and s < p, q, the map ψs : Zns ×Z∗
n → Z∗

ns+1

given by (x, r) 7→ (1+n)xrns

mod ns+1 can be inverted in polynomial time given
λ(n), the least common multiple of p− 1 and q − 1.

Proof. We first show how to find i from (1 + n)i mod ns+1. If we define the
function L() by L(b) = (b− 1)/n then clearly we have

L((1 + n)i mod ns+1) = (i+

(
i

2

)
n+ ...+

(
i

s

)
ns−1) mod ns

We now describe an algorithm for computing i from this number.
The general idea of the algorithm is to extract the value part by part, so

that we first extract i1 = i mod n, then i2 = i mod n2 and so forth. It is easy
to extract i1 = L((1 + n)i mod n2) = i mod n. Now we can extract the rest by
the following induction step: In the j’th step we know ij−1. This means that
ij = ij−1 + k ∗ nj−1 for some 0 ≤ k < n. If we use this in

L((1 + n)i mod nj+1) = (ij +

(
ij
2

)
n+ ...+

(
ij
j

)
nj−1) mod nj

We can notice that each term
(

ij

t+1

)
nt for j > t > 0 satisfies that

(
ij

t+1

)
nt =(

ij−1

t+1

)
nt mod nj . This is because the contributions from k ∗ nj−1 vanish modulo

nj after multiplication by n. This means that we get:

L((1 + n)i mod nj+1) = (ij−1 + k ∗ nj−1 +

(
ij−1

2

)
n+ ...+

(
ij−1

j

)
nj−1) mod nj

Then we just rewrite that to get what we wanted

ij = ij−1 + k ∗ nj−1

= ij−1 + L((1 + n)i mod nj+1) − (ij−1 +

(
ij−1

2

)
n

+ ...+

(
ij−1

j

)
nj−1) mod nj

= L((1 + n)i mod nj+1) − (

(
ij−1

2

)
n+ ...+

(
ij−1

j

)
nj−1) mod nj

This equation leads to the following algorithm:

i := 0;
for j:= 1 to s do

begin

t1 := L(a mod nj+1);
t2 := i;
for k:= 2 to j do

begin

i := i− 1;
t2 := t2 ∗ i mod nj ;

t1 := t1 − t2∗nk−1

k! mod nj ;
end

i := t1;
end

Assume now that we are given c = (1 + n)irns

mod ns+1. We show how to
find i and r given λ. To find i compute

cλ = (1 + n)iλmodns

rnsλmodnsλ = (1 + n)iλmodns

.

Then using the above algorithm find iλ mod ns and extract i. Now compute
rns

= c(1 +n)−i mod ns+1 and compute a such that aλ+ 1 = 0 mod ns. This is
possible because gcd(λ, ns) = 1. Then

(rns

)
aλ+1

ns mod n = raλ+1 mod n = (rλ)ar mod n = r mod n = r .

We are now ready to describe our crypto system. In fact, for each natural
number s, we can build a crypto system CSs, as follows:

Key Generation On input the security parameter k, choose an admissible RSA
modulus n = pq of length k bits2. Also choose an element g ∈ Z∗

ns+1 such
that g = (1+n)jx mod ns+1 for a known j relatively prime to n and x ∈ H .
This can be done, e.g., by choosing j, x at random first and computing g;
some alternatives are described later. Let λ be the least common multiple
of p− 1 and q − 1. By the Chinese Remainder Theorem, choose d such that
d mod n ∈ Z∗

n and d = 0 mod λ. Any such choice of d will work in the
following. In Paillier’s original scheme d = λ was used, which is the smallest
possible value. However, when making a threshold variant, other choices are
better - we expand on this in the following section.
Now the public key is n, g while the secret key is d.

Encryption The plaintext set is Zns . Given a plaintext i, choose a random
r ∈ Z∗

n, and let the ciphertext be E(i, r) = girns

mod ns+1.
Decryption Given a ciphertext c, first compute cd mod ns+1. Clearly, if c =

E(i, r), we get

cd = (girns

)d = ((1 + n)jixirns

)d = (1 + n)jidmodns

(xirns

)dmodλ

= (1 + n)jidmodns

Now apply the algorithm from the proof of Theorem 1 to compute jid mod
ns. Applying the same method with c replaced by g clearly produces the value
jd mod ns, so this can either be computed on the fly or be saved as part of the
secret key. In any case we obtain the cleartext by (jid) · (jd)−1 = i mod ns.

Clearly, this system is additively homomorphic over Zns , that is, the product
of encryptions of messages i, i′ is an encryption of i+ i′ mod ns.

To facilitate comparison with Paillier’s original system, we have kept the
above system description as close as possible to that of Paillier. In particular,
the description allows choosing g in a variety of ways. However, as we shall see,
semantic security of the system is equivalent to a particular computational as-
sumption, no matter how we choose g, in particular we may as well simplify
matters and choose g = n + 1 always. This also allows a more efficient imple-
mentation. Therefore, in the following sections, when we refer to CSs, we usually
mean the above system with g = n+ 1.

3.1 Security

There are two basic flavors or strengths of security that one may consider, namely

2 Strictly speaking, we also need that s < p, q, but this is insignificant since in practice,
s will always be much smaller than p, q

– Is the scheme one-way, i.e., is it hard to compute the plaintext from the
ciphertext?

– Is the scheme semantically secure, i.e., does any information at all about the
plaintext leak, given the ciphertext?

We give first a short informal discussion on one-wayness, and then look at se-
mantic security in more detail.

The homomorphic property of the scheme means that the problem of com-
puting the plaintext from the ciphertext (and the public key) is random self-
reducible: given any ciphertext c and public key n, g, one may choose i ∈
Zns , j ∈ Z∗

ns , r, r′ ∈ Z∗
n at random and try to decrypt the ciphertext c′ =

cgirns

mod ns+1 with respect to public key n, g′ where g′ = gjr′
ns

mod ns+1. If
this succeeds, one can find the original plaintext by multiplying by j and sub-
tracting i modulo ns. Note that c′, g′ is a random ciphertext-generator pair, no
matter how c, g were chosen. So any algorithm that can break a non-trivial frac-
tion of the ciphertexts and choices of g can also break a random instance with
significant probability. This motivates calling our scheme one-way if it is hard
to find the plaintext given a random public key n, g and a random ciphertext c.

We have

Proposition 1. If for some t the scheme CSt is one-way, then CSs is one-way
for any s > t. Especially CSs is one-way for any s if Paillier’s original scheme
CS1 is one-way.

Proof. Assume that s > t and that CSt is one-way. Assume for the sake of
contradiction that CSs is not one-way. Then given a public key n, g and a ci-
phertext ct from CSt, we can transform this to a decryption problem in CSs

instead. Concretely this means we consider ct as a number modulo ns+1 (instead
of nt+1), and choose as the public generator a random number g̃ ∈ Z∗

ns+1 , such
that g̃ mod nt+1 = g. We then randomize ct (modulo ns+1) as described above.
This produces a random instance of the decryption problem in CSs, so by as-
sumption we can find the plaintext m in CSs corresponding to ct. We have of
course that m ∈ Zns , and now clearly m mod nt is the plaintext corresponding
to ct in CSt, so that CSt is not one-way either.

If we want to claim that a cryptosystem “hides” the plaintext in any reason-
able sense, the one-way assumption is essentially the weakest possible assumption
one can make. In [7], Catalano, Gennaro and Howgrave-Graham show that this
assumption for CS1 implies that one can make a semantically secure system
hiding a logarithmic number of bits per ciphertext in the original system, and
that a somewhat stronger assumption implies a system hiding a linear number
of bits per ciphertext. It is easy to generalize these results to CSs. None of the
schemes constructed this way will be homomorphic, however.

The semantic security of our schemes can be based on the following assump-
tion, introduced by Paillier in [18], the decisional composite residuosity assump-
tion (DCRA):

Conjecture 1. Let A be any probabilistic polynomial time algorithm, and assume
A gets n, x as input. Here n has k bits, and is chosen as described above, and x
is either random in Z∗

n2 or it is a random n’th power in Z∗
n2 (that is, a random

element in the subgroup H defined earlier). A outputs a bit b. Let p0(A, k) be
the probability that b = 1 if x is random in Z∗

n2 and p1(A, k) the probability
that b = 1 if x is a random n’th power. Then | p0(A, k) − p1(A, k) | is negligible
in k.

Here, “negligible in k” as usual means smaller than 1/f(k) for any polynomial
f() and all large enough k.

We now discuss the semantic security of CSs. There are several equivalent
formulations of semantic security. We will use the following:

Definition 1. An adversary A against a public-key crypto system gets the pub-
lic key pk generated from security parameter k as input and outputs a mes-
sage m. Then A is given an encryption under pk of either m or a message
chosen uniformly in the message space, and outputs a bit. Let p0(A, k), re-
spectively p1(A, k) be the probability that A outputs 1 when given an encryp-
tion of m, respectively a random encryption. Define the advantage of A to be
Adv(A, k) = |p0(A, k) − p1(A, k)|. The crypto system is semantically secure if
for any probabilistic polynomial time adversary A, Adv(A, k) is negligible in k.

In [18], Paillier showed that his crypto system (which is equivalent in security
to our CS1) is semantically secure if and only if DCRA holds. This holds for
any choice of g, and follows easily from the fact that given a ciphertext c that
is either random or encrypts a message i, we have that cg−i mod n2 is either
random in Z∗

n2 or a random n’th power. In particular, assuming DCRA, one
may choose g = n + 1 always without degrading security. We now show that
security of CSs is equivalent to DCRA:

Theorem 2. For any s, the crypto system CSs is semantically secure if and only
if the DCRA is true. This holds even if s is allowed to increase polynomially in
the security parameter.

Proof. From a ciphertext in CSs, one can obtain a ciphertext in CS1 by reducing
modulo n2, this implicitly reduces the message modulo n. It is therefore clear
that if DCRA fails, then CSs cannot be secure for any s.

For the converse, we assume that CSs is not secure and we start by showing
a relation between security of CSs and that of CSt for values of t < s.

The message space of CSs is Zns . Thus any message m can be written in
n-adic notation as an s-tuple (ms,ms−1, ...,m1), where each mi ∈ Zn and m =∑s−1

i=0 mi+1n
i. Let Dn(ms, ...,m1) be the distribution obtained by encrypting the

message (ms, ...,m1) under public key n. If one or more of the mi are replaced
by ∗’s, this means that the corresponding position in the message is chosen
uniformly in Zn before encrypting.

Now, assume for simplicity that s is even, consider any adversary A against
CSs, and assume that Adv(A, k) ≥ 1/f(k) for some polynomial f() and infinitely

many values of k. For any such value, we can assume without loss of generality,
that we have p0(A, k) − p1(A, k) ≥ 1/f(k). Suppose we make a public key n
from security parameter k, show it to A, get a message (ms, ...,m1) from A and
show A a sample of Dn(∗, ..., ∗,ms/2, ...,m1). Let q(A, k) be the probability that
A now outputs 1. Of course, we must have

(∗) p0(A, k) − q(A, k) ≥ 1

2f(k)
or q(A, k) − p1(A, k) ≥

1

2f(k)

and one of these cases must be true for infinitely many values of k. In the first
case in (∗), we can make a successful adversary against CSs/2, as follows: we get
the public key n, show it to A, get (ms, ...,m1), and return (ms, ...,m1+s/2) as
output. We will get a ciphertext c that either encrypts (ms, ...,m1+s/2) in CSs/2,
or is a random ciphertext. If we consider c as an element in Z∗

ns+1 , we know it
is an encryption of some plaintext, which must have either (ms, ...,m1+s/2) or

s/2 random elements in its least significant positions. Hence cns/2

mod ns+1 is
an encryption of (ms, ...,m1+s/2, 0, ..., 0) or (∗, .., ∗, 0, ..., 0). We then make a

random encryption d of (0, .., 0,ms/2, ...,m1), give cn
s−1

d mod ns+1 to A and
return the bit A outputs. Now, if c encrypts (ms, ...,m1+s/2), we have shown to
A a sample of Dn(ms, ...,m1), and otherwise a sample of Dn(∗,ms/2, ...,m1). So
by assumption on A, this breaks CS1 with an advantage of 1/2f(k) for infinitely
many k.

In the second case of (∗), we can also make an adversary against CSs/2, as
follows: we get the public key n, show it to A, and get a message (ms, ...,m1). We
output (ms/2, ...,m1) and get back a ciphertext c that encrypts in CSs/2 either
(ms/2, ...,m1) or something random. If we consider c as a number modulo ns+1,
we know that the corresponding plaintext in CSs has either (ms/2, ...,m1) or
random elements in the least significant s/2 positions - and something unknown
in the top positions. We make a random encryption d of (∗, .., ∗, 0, ..., 0), show
cd mod ns+1 to A and return the bit A outputs. If c encrypted (ms/2, ...,m1), we
have shown A a sample from Dn(∗, .., ∗,ms/2,,m1), and otherwise a sample
from Dn(∗, ..., ∗). So again this breaks CSs/2 with an advantage of 1/2f(k) for
infinitely many k.

To sum up, we have: for any adversary A against CSs, s even, there exists an
adversary A′ against CSs/2, such that Adv(A′, k) ≥ 1/2f(k) for infinitely many
k. Similarly, for odd s, we can show existence of an adversary against either
CS(s+1)/2 or CS(s−1)/2 with advantage at least 1/2f(k) for infinitely many k.

Repeated use of this result shows that for any adversaryA against CSs, there
exists an adversary against CS1 with advantage at least 1/2sf(k) for infinitely
many k. Thus, since s is polynomially bounded as a function of k, CS1 is not
semantically secure, and this contradicts Paillier’s original result.

From the point of view of exact security analysis, one can note that from
the proof above, it follows that the maximal advantage with which CSs can be
broken is at most a factor of 2s larger than the corresponding advantage for CS1.
Thus, there is no great security risk in using large values of s, if one believes
that CS1 is secure in the first place.

3.2 Adjusting the Block length

As mentioned, we may choose g = n+ 1 always without losing security, and the
public key may then consist only of the modulus n. This means that we can
decide on a value for s at any point after the keys have been generated, or even
let the sender decide on the fly when he encrypts a message. Concretely, the
system will then work as follows:

Key Generation Choose an admissible RSA modulus n = pq. Now the public
key is n while the secret key is λ, the least common multiple of (p− 1) and
(q − 1).

Encryption Given a plaintext i represented as a non-negative integer, choose
a s such that i < ns, choose a random r ∈ Z∗

n, and let the ciphertext be
E(i, r) = (1 + n)irns

mod ns+1.
Decryption Given a ciphertext c, compute cλ mod ns+1 (note that from the

length of c, one can decide the correct value of s except with negligible
probability). Clearly, if c = E(i, r), we get

cλ = ((1 + n)irns

)λ = (1 + n)iλmodns

(rns

)λmodλ = (1 + n)iλ mod ns+1

Now apply the algorithm from Theorem 1 to compute iλ mod ns and get
the message by multiplying by λ−1 modulo ns.

It is an immediate corollary to Proposition 1 and Theorem 2 that the above
scheme is one-way if CS1 is one-way respectively is semantically secure if the
DCRA holds.

4 Some Optimizations and Implementation Issues

4.1 An Alternative Encryption Function

Let ψs : Zns×Z∗
n → Z∗

ns+1 be the isomorphism given by (x, r) 7→ (1+n)xrns

mod
ns+1 in Lemma 2. In the above we encrypt an element i ∈ Zns by a random
element from the coset (1 + n)i = ψs(i, Z

∗
n). This element is chosen as c =

ψs(i, r) for random r ∈ Z∗
n. Note that if we reduce a ciphertext modulo n, we

obtain:
c mod n = (1 + n)xrns

mod n = rns

mod n

The Jacobi symbol modulo n is easy to compute, even without the factors (see
e.g. [2]), and since ns is odd and the Jacobi symbol is multiplicative, we see that
from c = ψs(i, r), we can compute the Jacobi symbol of r efficiently. Further, by
multiplying c by a number of form ψs(0, r̃), where r̃ is an arbitrary constant with
the same Jacobi symbol as r, we obtain a ciphertext c′ = ψs(i, r

′) = ψs(i, rr̃),
where r′ is guaranteed to have Jacobi symbol 1. It easily follows that the crypto
system which is like CSs, except that we restrict r to have Jacobi symbol 1, is
exactly as secure as CSs, under any notion of security. We now exploit this to
obtain an alternative and more efficient encryption function.

Using standard techniques we can generate a random RSA modulus n = pq
with known p and q such that p = 3 mod 4, q = 3 mod 4, gcd(p− 1, q − 1) = 2.
This means that the subgroup of quadratic residues SQ(n) is cyclic and has odd
order, say α. We can also ensure that all elements in this subgroup - except for a
negligible fraction - are generators. This can be done by picking p, q such that all
prime factors in p− 1, q − 1 except 2 are sufficiently large. One extreme special
case of this is when n is a safe prime product, which is an option we use later
for the threshold version of the scheme.

Let Z∗
n[+] be the elements with Jacobi symbol 1 in Z∗

n. We have that Z∗
n[+]

contains SQ(n), has order 2α and is also cyclic. Finally, −1 ∈ Z∗
n[+] \SQ(n) by

choice of n.
All this implies that if we choose at random x ∈ Z∗

n and let h = −x2 mod n
then, except with negligible probability, 〈h〉 = Z∗

n[+]. This then allows us to
generate a uniformly random element r from Z∗

n[+] as ha mod n, where a is a
uniformly random integer from [0, (p−1)(q−1)/2). However, since (p−1)(q−1)/2
is the secret key, this would allow only the owner of the secret key to en-
crypt, which would of course be useless. We can remedy this by using a result
from [13]. Let (n, h) be generated as above. Let a be a uniformly random inte-
ger from [0, (p − 1)(q − 1)/2) and let a′ be a uniformly random element from
[0, 2dk/2e). Then by [13, Theorem 3.2] the random variables (n, h, ha mod n) and
(n, h, ha′

mod n) are computationally indistinguishable assuming the intractabil-
ity of factoring, which is implied by the DCRA. This means that even though
ha′

mod n is not a uniformly random element from Z∗
n[+], it cannot be distin-

guished from a uniformly random element from Z∗
n[+] by any polynomial time

algorithm, which suffices for our application. This gives us the following crypto
system C̃Ss.

Key Generation Choose an admissible RSA modulus n = pq of length k bits,
where p ≡ q ≡ 3 (mod 4), gcd(p − 1, q − 1) = 2, and such that a random
square generates SQ(n) except with negligible probability. Choose a gener-
ator h of Zn[+] as described above. Now the public key is (n, h) while the
secret key is λ = (p− 1)(q − 1)/2, the least common multiple of (p− 1) and
(q − 1).

Encryption Given a plaintext i ∈ Zns choose a random a ∈ Z2dk/2e and let the
ciphertext be Ẽ(i, a) = (1 + n)i(ha mod n)ns

mod ns+1 = E(i, ha mod n).
Decryption As before.

The following theorem follows directly from the fact that ha mod n is pseudo-
random in Z∗

n under DCRA, that h can be generated given just n, and that the
security of CSs is unchanged when restricting the randomness to Jacobi symbol
1.

Theorem 3. For any s, the crypto system C̃Ss is semantically secure if and
only if the DCRA is true. This holds even if s is allowed to increase polynomially
in the security parameter.

From an exact security point of view, one should be aware that in order to
argue the security, we are using the DCRA twice: first to argue that C̃Ss is as

secure as CSs (namely ha mod n is pseudorandom) and then to argue that CSs

is secure. This means that if we want to build instances of C̃Ss that can be
broken with advantage no larger than instances of CSs with security parameter
k, we need to use moduli that are somewhat longer than k bits. How much longer
depends on exactly how strong assumptions we are willing to make, and on the
complexity of the reduction in the result of [13]. This may partly eliminate the

efficiency advantage we show below for C̃Ss. On the other hand, this issue can be
completely avoided by using more randomness, namely we choose a as a random
number modulo n/2, instead of a random k/2-bit number. Then ha mod n will
be statistically close to a random element in 〈h〉, without any assumptions, and

up to a negligible term, we have the same security for this variant of C̃Ss as for
CSs. This will only cost a factor of 2 in performance of the encryption.

4.2 Optimizations of Encryption and Decryption

Encryption. While encrypting, instead of computing (1 + n)m directly, we can
can compute it according to:

(1 + n)m = 1 +mn+

(
m

2

)
n2 + ...+

(
m

s

)
ns mod ns+1

this trades an exponentiation with a O(ns) size exponent for O(s) multiplications
by calculating the binomials using:

(
m

j

)
=

(
m

j − 1

)
m− j + 1

j

In the i’th step we calculate
(
m
i

)
ni mod ns+1, and since there is a multiplication

by ni it is enough to calculate the binomial modulo ns−i+1. To further optimize
the computations the (j!)−1nj can be precomputed. The pseudo algorithm for
calculating the (n + 1)m part of the encryption looks like this (where precomp
is an array of the precomputed values, precomp[j] := (j!)−1nj mod ns+1):

c := 1 +mn;
tmp := m;
for j:= 2 to s do

begin

tmp := tmp · (m− j + 1) mod ns−j+1;
c := c+ tmp · precomp[j] mod ns+1;

end

In the crypto system C̃Ss the elements from H is generated as (ha mod
n)ns

mod ns+1 which, if computed naively, certainly leads to no optimization.
However, a simple observation allows us to reduce the number of steps used in
this computation. Let hs = hns

mod ns+1. Then using the isomorphism from
Theorem 1, we have

(ha mod n)ns

mod ns+1 = ψs(0, h
a mod n) = ψs(0, h)

a = ha
s mod ns+1

It follows that Ẽ(i, a) = (1+n)iha
s mod ns+1. If we precompute and save hs, then

using standard methods for exponentiation with a fixed base, ha
s mod ns+1 can

be computed by an expected number of k/4 multiplications modulo ns+1 and
hence the entire encryption can be done in k/4 + 2s multiplications. Compared
to a straightforward implementation of CSs with the same k value, where 2 full
scale exponentiations are made, this saves a factor of about 4s in computing
time, and in particular this is four times as fast as Paillier’s original system.

Decryption. The technique of precomputing factors in binomial coefficients
to make encryption faster also applies to the corresponding computations in
decryption (see the algorithm in the proof of Theorem 1). Also in the same way
as with encryption, we can exploit the fact that the algorithm involves modular
multiplication of a variable by a power of n, which means the value of that
variable only needs to be known modulo a smaller power of n.

Another thing that can be optimized is the use of the L function. In the
algorithm from Theorem 1 the L function is calculated once per iteration of the
for-loop. Instead of doing this we can calculate the largest of these: L(a mod
ns+1) and use the property that L(a mod nj+1) = L(a mod ns+1) mod nj . This
means that we can remove all but 1 of the division and the modular reductions
we make are smaller.

The standard trick of splitting the computations up and doing them modulo
relatively prime parts of the modulus can also be used here with the moduli pj

and qj in the j’th run of the outer loop. One should be aware though that we need
to use different L functions for p and q, namely Lq(a) = ((a − 1 mod qs+1)/q) ·
p−1 mod qs and Lp(a) = ((a− 1 mod ps+1)/p) · q−1 mod ps.

In this case, decryption can be speeded up by precomputing pj , qj for 1 ≤
j ≤ s, and the nk−1k!−1 mod pj , nk−1k!−1 mod qj for 2 ≤ k ≤ j ≤ s.

Performance Evaluations. In figure 1 and 2 the generalized crypto system
is compared to the El-Gamal and RSA crypto systems. The table is focused on
a fixed plaintext size and variable size of security parameter for the general-
ized cryptosystem. This comparison corresponds to a scenario where you need a
certain fixed plaintext size (for instance a large scale election) and it might be
sufficient with a smaller security parameter. It shows that if the security param-
eter doesn’t need to have the same size as the encryption block then a significant
performance improvement can be achieved.

In figure 3 there is a comparison with the number of milli-seconds it takes
to encrypt a bit using same security parameter, but a variable block size. It
shows that using El-Gamal and the generalized crypto system achieves almost
the same rates of encryption. It also shows - as expected - that the encryption
time per bit increases somewhat with larger s values. Thus, if small ciphertext
expansion and large block size is important, this can be achieved at a reasonable
performance penalty; but if speed is the only important parameter, s = 1 is the
best choice.

Fig. 1. Comparison with 2048 bit plaintext size, using java implementation

Generalized
El-Gamal Pailllier RSA

s = 1 s = 2

Security 2048 2048 1024 2048
Ciphertext size 4096 4096 3072 2048

Expansion factor 2 2 1.5 1

Encryption (ms) 1980 1969 578 8
Decryption (ms) 996 1030 312 272

Fig. 2. Comparison with 4096 bit plaintext size, using java implementation

Generalized Paillier
El-Gamal s = 1 s = 2 s = 3 s = 4 RSA

Security 4096 4096 2048 1366 1024 4096
Ciphertext size 8192 8192 6144 5462 5120 4096

Expansion factor 2 2 1.5 1.33 1.25 1

Encryption (ms) 15205 15264 4397 2370 1591 32
Decryption (ms) 7611 7779 2290 1281 873 2001

Fig. 3. ms per bit encrypted/decrypted on a 750 MHz Pentium III using java imple-
mentation

Security Generalized Paillier
parameter El-Gamal s = 1 s = 2 s = 4 RSA

Encryption

1024 0.264 0.262 0.284 0.387 0.002
2048 0.967 0.955 1.067 1.480 0.004
4096 3.711 3.705 4.146 5.755 0.008
8192 14.467 14.507 16.244 22.617 0.015

Decryption

1024 0.132 0.149 0.153 0.214 0.039
2048 0.489 0.503 0.559 0.780 0.132
4096 1.865 1.898 2.128 2.958 0.486
8192 7.286 7.349 8.244 11.461 1.854

5 Some Building Blocks

5.1 A Threshold Variant of the Scheme

What we are after in this section is a way to distribute the secret key to a
set of servers, such that any subset of at least w of them can do decryption
efficiently, while less than w have no useful information. Of course this must be
done without degrading the security of the system.

In [19], Shoup proposes an efficient threshold variant of RSA signatures. The
main part of this is a protocol that allows a set of servers to collectively and
efficiently raise an input number to a secret exponent modulo an RSA modulus
n. A little more precisely: on input a, each server returns a share of the result,
together with a proof of correctness. Given sufficiently many correct shares, these
can be efficiently combined to compute ad mod n, where d is the secret exponent.

As we explain below it is quite simple to transplant this method to our case,
thus allowing the servers to raise an input number to our secret exponent d
modulo ns+1. So we can solve our problem by first letting the servers help us
compute E(i, r)d mod ns+1. Then if we use g = n + 1 and choose d such that
d = 1 mod ns and d = 0 mod λ, the remaining part of the decryption is easy to
do without knowledge of d.

We warn the reader that this is only secure for the particular choice of d we
have made, for instance, if we had used Paillier’s original choice d = λ, then
seeing the value E(i, r)d mod ns+1 would allow an adversary to compute λ and
break the system completely. However, in our case, the exponentiation result can
safely be made public, since it contains no trace of the secret λ.

A more concrete description: Compared to [19] we still have a secret exponent
d, but there is no public exponent e, so we will have to do some things slightly
differently towards the end of the decryption process. We will assume that there
are l decryption servers, and a minimum of w ≤ l/2 of these are needed to make
a correct decryption. We will use as modulus n a product of safe primes, i.e.,
n = pq, where p, q, p′ = (p− 1)/2, q′ = (q − 1)/2 are primes.

We will need as a subroutine a zero-knowledge proof that for given values
u, ũ, v, ṽ ∈ Z∗

ns+1 , it holds that logu(ũ) = logv(ṽ). Here, it is guaranteed that all
values are in the group of squares modulo Z∗

ns+1 , and that v generates the entire
group of squares. Note that this group is always cyclic of order nsp′q′, since n is
a safe prime product.

A protocol for this can be easily derived from the corresponding one in [19],
and works as follows:

Protocol for equality of discrete logs.

Input: u, ũ, v, ṽ ∈ Z∗
ns+1 . Private input for P : y such that y = logu(ũ) = logv(ṽ)

(in our application, the length of y will be at most (s+ 1)k bits, where k is the
modulus length).

1. P chooses a number r at random of length (s + 2)k + t bits and sends
a = ur mod ns+1, b = vr mod ns+1 to the verifier V . Here, t is a (secondary)
security parameter.

2. V chooses a random challenge e of length t bits.

3. P sends to V the number z = r + ey and V checks that uz = aũe mod
ns+1, vz = bṽe mod ns+1

This protocol can be made non-interactive using the Fiat-Shamir heuristic and
a hash function H : the prover computes a, b as above, sets e = H(a, b, u, ũ),
computes the reply z as above and defines the proof to be (e, z). To verify such
a proof, one checks that e = H(uzũ−e, vzṽ−e, u, ũ). Note that we do not need
to include v, ṽ in the input to H because in our application, they are fixed and
chosen by an honest dealer. Assuming the random oracle model, i.e., replacing
H by a random function, one can show soundness and zero-knowledge of this
protocol. This is done in exactly the same way as in [19] since, like Shoup, we
are working in a cyclic group with only large prime factors in its order. We leave
the details to the reader.

Key generation

Key generation starts out as in [19]: we find 2 primes p and q, that satisfies
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are primes and different from p and
q. We set n = pq andm = p′q′. We decide on some s > 0, thus the plaintext space
will be Zns . We pick d to satisfy d = 0 mod m and d = 1 mod ns. Now we make
the polynomial f(X) =

∑w−1
i=0 aiX

i mod nsm, by picking ai (for 0 < i < w) as
random values from {0, · · · , ns ∗m− 1} and a0 = d. The secret share of the i’th
authority will be si = f(i) for 1 ≤ i ≤ l and the public key will be (n, s). For
verification of the actions of the decryption servers, we need the following fixed
public values: v, generating the cyclic group of squares in Z∗

ns+1 and for each
decryption server a verification key vi = v∆si mod ns+1, where ∆ = l!.

Encryption

To encrypt a message M , a random r ∈ Z∗
n is picked and the cipher text is com-

puted as c = (n+1)Mrns

mod ns+1. As seen in the previous schemes a generator
h can be chosen to improve efficiency. Since this only affects the encryption it
will not affect the security of the threshold decryption scheme.

Share decryption

The i’th authority will compute ci = c2∆si , where c is the ciphertext. Along with
this will be a zero-knowledge proof as described above that logc4(c2i) = logv(vi),
which will convince us, that he has indeed raised to his secret exponent si.

Share combining

If we have the required w (or more) number of shares with a correct proof, we
can combine them into the result by taking a subset S of w shares and combine
them to

c′ =
∏

i∈S

c
2λS

0,i

i mod ns+1 where λS
0,i = ∆

∏

i′∈S\i

−i
i− i′

∈ Z

The value of c′ will have the form c′ = c4∆2f(0) = c4∆2d. Noting that 4∆2d =
0 mod λ and 4∆2d = 4∆2 mod ns, we can conclude that c′ = (1 + n)4∆2M mod
ns+1, where M is the desired plaintext, so this means we can compute M by ap-
plying the algorithm from Theorem 1 and multiplying the result by (4∆2)−1 mod
ns.

Compared to the scheme proposed in [12], there are some technical differ-
ences, apart from the fact that [12] only works for the original Paillier version
modulo n2: in [12], an extra random value related to the public element g is part
of the public key and is used in the Share combining algorithm. This is avoided
in our scheme by the way we choose d, and thus we get a slightly shorter public
key and a slightly simpler decryption algorithm.

The system as described requires a trusted party to set up the keys. This
may be acceptable as this is a once and for all operation, and the trusted party
can delete all secret information as soon as the keys have been distributed.
However, using multiparty computation techniques it is also possible to do the
key generation without a trusted party, in particular, ideas from [10] can be used
to give a reasonably efficient solution.

Note that the key generation phase requires that a value of the parameter s
is fixed. This means that the system will be able to handle messages encrypted
modulo ns′+1, for any s′ ≤ s, simply because the exponent d satisfies d =
1 mod ns′

, for any s′ ≤ s. But it will not work if s′ > s. If a completely general
decryption procedure is needed, this can be done as well: If we assume that λ is
secret-shared in the key set-up phase, the servers can compute a suitable d by
running a secure protocol that first inverts λ modulo ns to get some x as result,
and then computes the product d = xλ (over the integers). This does not require
generic multiparty computation techniques, but can be done quite efficiently
using techniques from [20]. Note that, while this does require communication
between servers, it is not needed for every decryption, but only once for every
value of s that is used.

We can now show in the random oracle model that this threshold version is
as secure as a centralized scheme where one trusted player does the decryption3,
in particular the threshold version is secure relative to the same complexity
assumption as the basic scheme. This can be done in a model where a static
adversary corrupts up to w − 1 players from the start. Concretely, we have:

Theorem 4. Assume the random oracle model and a static adversary that cor-
rupts up to w − 1 players from the beginning. Then we have: Given any cipher-
text, the decryption protocol outputs the correct plaintext, except with negligible
probability. Given an oracle that on input a ciphertext returns the corresponding
plaintext, the adversary’s view of key generation and of the decryption protocol
can be efficiently simulated with a statistically indistinguishable distribution.

3 In fact the random oracle will be needed only to ensure that the non-interactive
proofs of correctness of shares will work. Doing these proofs interactively instead
would allow us to dispense with the random oracle

The proof follows very closely the corresponding proof in [19]. So here we only
sketch the basic ideas: correctness of the scheme is immediate assuming that
the adversary can contribute incorrect values for the ci’s with only negligible
probability. This, in turn, is ensured by soundness of the zero-knowledge proofs
given for each ci.

For the simulation, we start from the public key n. Then we can simulate
the shares si1 , ..., siw−1

of the bad players by choosing them as random numbers
modulo ns+1. This will be statistically indistinguishable from the real values
which are chosen modulo nsp′q′. Since d is fixed by the choice of n, this means
that the shares of uncorrupted players and the polynomial f are now fixed as
well, in particular we have f(i1) = si1 , ..., f(iw−1) = siw−1

. But d, f are not easy
for the simulator to compute.

However, if we simulate v by choosing it as a ciphertext with known plain-
text m0, i.e., v = (n + 1)m0r2ns

mod ns+1, we can also compute what vf(0)

would be, namely vf(0) = vd mod ns+1 = (1 + n)m0 mod ns+1. Let S be the set
0, i1, ..., iw−1 of w indices, and let

λS
j,i = ∆

∏

i′∈S\i

j − i

i− i′

be the Lagrange coefficients for interpolating the value of a polynomial in point
j (times ∆) from its values in points in S. Then we can compute correct values
of vj for uncorrupted players as

vj =
∏

i∈S

(vf(i))λS
j,i .

When we get a ciphertext c as input, we ask the oracle for the plaintext m. This
allows us to compute cd = (1 + n)m mod ns−1. Again this means we can inter-
polate and compute the contributions ci from the uncorrupted players. Finally,
the zero-knowledge property is invoked to simulate the proofs that these ci are
correct.

5.2 Some Auxiliary Protocols

Suppose a prover P presents a skeptical verifier V with a ciphertext c and claims
that it encodes plaintext i, or more precisely that he knows r such that c =
E(i, r). A trivial way to convince V would be to reveal also the random choice
r, then V can verify himself that c = E(i, r) = (1 + n)irns

mod ns+1. However,
for use in the following, we need a solution where no extra useful information is
revealed.

It is easy to see that this is equivalent to convincing V that c(1 + n)−i mod
ns+1 is an encryption of 0, or equivalently that it is an ns’th power. So we now
propose a protocol for this purpose which is a simple generalization of the one
from [15].

We note that this and the following protocols are not zero-knowledge as
they stand, only honest verifier zero-knowledge. However, first zero-knowledge

protocols for the same problems can be constructed from them using standard
methods and secondly, in our applications, we will always be using them in a
non-interactive variant based on the Fiat-Shamir heuristic, which means that we
cannot obtain zero-knowledge, we can, however, obtain security in the random
oracle model. As for soundness, we prove that the protocols satisfy so called
special soundness (see [5]), which in particular implies that they satisfy standard
knowledge soundness.

Protocol for ns’th powers

Input: n, u
Private Input for P : v ∈ Z∗

n, such that u = E(0, v).

1. P chooses r at random in Z∗
n and sends a = E(0, r) to V

2. V chooses e, a random t bit number, and sends e to P .
3. P sends z = rve mod n to V . V checks that u, a, z are prime to n and that
E(0, z) = aue mod ns+1, and accepts if and only if this is the case.

It is now simple to show

Lemma 3. The above protocol is complete, honest verifier zero-knowledge, and
satisfies that from any pair of accepting conversations (between V and any
prover) of form (a, e, z), (a, e′, z′) with e 6= e′, one can efficiently compute an
v such that u = E(0, v), provided 2t is smaller than the smallest prime factor of
n.

Proof. For completeness, we just plug into the equation that V checks, by Lemma
2 we get aue = E(0, r)E(0, v)e = E(0, rve mod n) = E(0, z) mod ns+1.

For honest verifier simulation, the simulator chooses a random z ∈ Z∗
n, a

random e, sets a = E(0, z)u−e mod ns+1 and outputs (a, e, z). This is easily
seen to be a perfect simulation.

For the last claim, observe that since the conversations are accepting, we
have E(0, z) = aue mod ns+1 and E(0, z′) = aue′

mod ns+1, so we get

E(0, z/z′ mod n) = ue−e′

mod ns+1

Since e− e′ is prime to n by the assumption on 2t, choose α, β such that αns +
β(e − e′) = 1. Let ū = u mod n and set v = ūα(z/z′)β mod n. Notice that
uns

mod ns+1 = E(0, u mod n) = E(0, ū). We then get

E(0, v) = E(0, ū)αE(0, z/z′)β = uαns

uβ(e−e′) = u mod ns+1

so that v is indeed the desired ns’th root of u.

In our application of this protocol, the modulus n will be chosen by a trusted
party, or by a multiparty computation such that n has two prime factors of
roughly the same size. Hence, if k is the bit length of n, we can set t = k/2 and
be assured that a cheating prover can make the verifier accept with probability
≤ 2−t.

The lemma immediately implies, using the techniques from [5], that we can
build an efficient proof that an encryption contains one of two given values,
without revealing which one it is: given the encryption C and the two candi-
date plaintexts i1, i2, prover and verifier compute u1 = C/gi1 mod ns+1, u2 =
C/gi2 mod ns+1, and the prover shows that either u1 or u2 encrypt 0 and also
proves knowledge of one of the corresponding ns’th roots. This can be done
using the following protocol, where we assume without loss of generality that
the prover knows v1 such that u1 = E(0, v1), and where M denotes the honest-
verifier simulator for the ns-power protocol above:

Protocol 1-out-of-2 ns’th power

Input: n, u1, u2

Private Input for P : v1, such that u1 = E(0, v1)

1. P chooses r1 at random in Z∗
n. He invokes M on input n, u2 to get a con-

versation a2, e2, z2. He sends a1 = E(0, r1), a2 to V
2. V chooses s, a random t bit number, and sends s to P .
3. P computes e1 = s − e2 mod 2t and z1 = r1v

e1

1 mod n. He then sends
e1, z1, e2, z2 to V .

4. V checks that s = e1 + e2 mod 2t, E(0, z1) = a1u
e1

1 mod ns+1, E(0, z2) =
a2u

e2

2 mod ns+1, and u1, u2, a1, a2, z1, z2 are relatively prime to n. He accepts
if and only if this is the case.

The proof techniques from [5] and Lemma 3 immediately imply

Lemma 4. Protocol 1-out-of-2 ns’th power is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (a1, a2, s, e1, z1, e2, z2), (a1, a2, s

′, e′1, z
′
1, e

′
2, z

′
2) with

s 6= s′, one can efficiently compute v, such that either u1 = E(0, v) or u2 =
E(0, v), provided 2t is less than the smallest prime factor of n.

Our final building block allows a prover to convince a verifier that three
encryptions contain values a, b and c such that ab = c mod ns. For this, we
propose a protocol inspired by a similar construction found in [6].

Protocol Multiplication-mod-ns

Input: n, g, ea, eb, ec

Private Input for P : a, b, c, ra, rb, rc such that ab = c mod n and ea = E(a, ra),
eb = E(b, rb), ec = E(c, rc)

1. P chooses random values d ∈ Zns , rd, rdb ∈ Z∗
n and sends to V encryptions

ed = E(d, rd), edb = E(db, rdb).
2. V chooses e, a random t-bit number, and sends it to P .
3. P opens the encryption ee

aed = E(ea+ d, re
ard mod n) by sending f = ea+

d mod ns and z1 = re
ard mod n. Finally, P opens the encryption ef

b (edbe
e
c)

−1 =

E(0, rf
b (rdbr

e
c)

−1 mod n) by sending z2 = rf
b (rdbr

e
c)

−1 mod n.
4. V verifies that the openings of encryptions in the previous step were correct,

that all values sent by P are relatively prime to n, and accepts if and only
if this was the case.

Lemma 5. Protocol Multiplication-mod-ns is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (ed, edb, e, f, z1, z2), (ed, edb, e

′, f ′, z′1, z
′
2) with e 6= e′,

one can efficiently compute the plaintext a, b, c corresponding to ea, eb, ec such
that ab = c mod ns, provided 2t is smaller than the smallest prime factor in n.

Proof. Completeness is clear by inspection of the protocol. For honest verifier
zero-knowledge, observe that the equations checked by V are ee

aed = E(f, z1)

mod ns+1 and ef
b (edbe

e
c)

−1 = E(0, z2) mod ns+1. From this it is clear that we
can generate a conversation by choosing first f, z1, z2, e at random, and then
computing ed, edb that will satisfy the equations. This only requires inversion
modulo ns+1, and generates the right distribution because the values f, z1, z2, e
are also independent and random in the real conversation. For the last claim,
note first that since encryptions uniquely determine plaintexts, there are fixed
values a, b, c, d contained in ea, eb, ec, ed, and a value x contained in edb. The
fact that the conversations given are accepting implies that f = ea+ d mod ns,
f ′ = e′a+d mod ns, fb−x−ec = 0 = f ′b−x−e′c mod ns. Putting this together,
we obtain (f − f ′)b = (e − e′)c mod ns or (e − e′)ab = (e − e′)c mod ns. Now,
since (e− e′) is invertible modulo ns by assumption on 2t, we can conclude that
c = ab mod ns (and also compute a, b and c).

The protocols from this section can be made non-interactive using the stan-
dard Fiat-Shamir heuristic of computing the challenge from the first message
using a hash function. This can be proved secure in the random oracle model.

Furthermore, although the protocols here have been phrased so that they can
be used to prove statements on values encrypted in CSs, they can also be directly
used in the same way for values encrypted under the more efficient variant C̃Ss.
This follows from the fact that if for a given u ∈ Z∗

ns+1 , you know i, ṽ such that

u = Ẽ(i, ṽ), we have that u = E(i, hṽ mod n), in other words you can efficiently
compute v such that u = E(i, v). Thus a prover can use u in any of the above
protocols pretending it was encrypted using CSs. Note that this applies to both
ciphertexts that are input to the protocols, and those that are generated by the
prover during executions.

6 Efficient Electronic Voting

In [8], a general model for elections was used, which we briefly recall here: we have
a set of voters V1, ..., VM , a bulletin board B, and a set of tallying authorities
A1, ..., Av. The bulletin board is assumed to function as follows: every player
can write to B, and a message cannot be deleted once it is written. All players
can access all messages written, and can identify which player each message
comes from. This can all be implemented in a secure way for instance using
an already existing public key infrastructure and server replication to prevent
denial of service attacks. We assume that the purpose of the vote is to elect a
winner among L candidates, and that each voter is allowed to vote for t < L
candidates.

In the following, h will denote a fixed hash function used to make non-
interactive proofs according to the Fiat-Shamir heuristic. Also, we will assume
throughout that an instance of the threshold version of Paillier’s scheme with
public key n, g has been set up, with the Ai’s acting as decryption servers. We
will assume that ns > ML, which can always be made true by choosing s or n
large enough.

The notation ProofP (S), where S is some logical statement will denote a bit
string created by player P as follows: P selects the appropriate protocol from
the previous section that can be used to interactively prove S. He computes the
first message a in this protocol, computes e = h(a, S, ID(P)) where ID(P) is his
user identity in the system and, taking the result of this as the challenge from
the verifier, computes the answer z. Then ProofP (S) = (e, z). The inclusion of
ID(P) in the input to h is done in order to prevent vote duplication. To check
such a proof, note that all the auxiliary protocols are such that from S, z, c one
can easily compute what a should have been, had the proof been correct. For
instance, for the protocol for ns powers, the statement consists of a single number
u modulo ns+1, and the verifier checks that zns

= aue mod ns+1, so we have
a = zns

u−e mod ns+1. Once a is computed, one checks that e = h(a, S, ID(P)).
A protocol for the case L = 2 is now simple to describe. This is equivalent

to a yes/no vote and so each vote can be thought of as a number equal to 0 for
no and 1 for yes:

1. Each voter Vi decides on his vote vi, he calculates Ei = E(vi, ri), where ri
is randomly chosen. He also creates
ProofVi (Ei or Ei/(1 + n) is an encryption of 0)
based on the 1-out-of-2 ns’th power protocol. He writes the encrypted vote
and proof to B.

2. Each Aj does the following: first set E = 1. Then for all i: check the proof
written by Vi on B and if is it valid, then E := E ·Ei mod ns+1. Finally, Aj

executes his part of the threshold decryption protocol, using E as the input
ciphertext, and writes his result to B.

3. From the messages written by the Aj ’s, anyone can now reconstruct the
plaintext corresponding to E (possibly after discarding invalid messages).
Assuming for simplicity that all votes are valid, it is evident that E =∏

iE(vi, ri) = E(
∑

i vi mod ns,
∏

i ri mod ns+1). So the decryption result
is

∑
i vi mod ns which is

∑
i vi since ns > M .

Security of this protocol (in the random oracle model) can be proved based
on the security results we have shown for the sub-protocols used, and based
on semantic security of Paillier’s encryption scheme. Since the voting schemes
in this paper play the role of example applications of our crypto system and
auxiliary protocols we do not give a formal proof here. However, in [14], Groth
presents a full proof of security for our voting scheme according to the definition
of Canetti.

There are several ways to generalize this to L > 2. Probably the simplest way
is to hold L parallel yes/no votes as above. A voter votes 1 for the candidates he

wants, and 0 for the others. This means that Vi will send L votes of the following
form (where j = 1, .., L):

Eij =E(vij , rij),

P roofVi(Eij or Eij/(1 + n) is an encryption of 0)

To prove that he voted for exactly t candidates, he also writes to B the number∏
j rij mod n. This allows the talliers to verify that

∏
j E(vij , rij) is an encryp-

tion of t. This check is sufficient, since all individual votes are proved to be 0
or 1. It is immediate that decryption of the L results will immediately give the
number of votes each candidate received.

The size of a vote in this protocol is seen to be O(Lk), where k is the bit length
of n, by simple inspection of the protocol. The protocol requires L decryption
operations. As a numeric example, suppose we have k = 1000,M = 64000, L =
64, s = 1 and we use challenges of 80 bits in the proofs. Then a vote in the above
system has size about 32 Kbyte.

We note that this easily generalizes to cases where voters are allowed to vote
for up to t candidates: one simply introduces t ”dummy candidates” in addition
to the actual L. We then execute the protocol as before, but with t+L candidates.
Each voter places the votes he does not want to use on dummy candidates.

A more efficient method for large t is to add only 1 dummy candidate who
is to receive all unused votes. Each voter must still prove that the product of
all his encryptions decrypts to t. So it is sufficient to prove in addition that
the number of votes on the dummy candidate is small enough in order that a
reduction modulo ns cannot take place when the votes of this voter are added.
This can be done by taking the bit string representing the number of votes on the
dummy candidate: b0...bl where 2l ≤ t < 2l+1. The voter then makes encryptions
eij = E(bj2

j , rij) for all 0 ≤ j ≤ l and makes a proof for each of these:

ProofVi(eij or eij/(1 + n)2
j

is an encryption of 0)

The votes for the dummy candidate can then be calculated as EiL =
∏l

i=0 ei.

Then it is verified as above that
∏L

i=0Eij is the encryption of t. This only uses
L+ 1 blocks and L+ log t proofs.

6.1 A variant with smaller vote size

If the parameters are such that L log2M < (k − 1) · s and t = 1, then we can
do significantly better than above. These conditions will be satisfied in many
realistic situations, such as for instance in the numeric example above.

The basic idea is the following: a vote for candidate j, where 0 ≤ j < L, is
defined to be an encryption of the number M j . Each voter will create such an en-
cryption and prove its correctness as detailed below. When all these encryptions
are multiplied we get an encryption of a number of form a =

∑L
j=0 ajM

j mod ns,
where aj is the number of votes cast for candidate j. Since L log2M < (k−1)·s so

that ML < ns, this relation also holds over the integers, so decrypting and writ-
ing a in M -ary notation will directly produce all the aj ’s. It remains to describe
how to produce encryption hiding a number of form M j , for some 0 ≤ j < L,
and prove it was correctly formed. We do this in the following two subsections.

We note that this idea generalizes to t > 1, at some loss of efficiency: we
simply allow each voter to cast t votes, each of the form just described. If we
want to prevent voters from voting for the same candidate t times, we can use
the homomorphic property to compute encryptions of all pairwise differences
of votes, and the voter must prove that these are all non-zero. To show that
m is non-zero, given the encryption E(m, r), the voter provides an encryption
E(m−1 mod ns, r′) and uses the multiplication-mod-ns protocol to prove that
the product of the two plaintexts is 1.

The case of L = 2l+1 For simplicity, we will first describe how to prove
correctness of a vote in the case where L is of the form L = 2l+1 for some l, and
treat the general case below. Let b0, ..., bl be the bits in the binary representation

of j, i.e. j = b02
0+b12

1+...+bl2
l. Then clearly we haveM j = (M20

)b0 ·...·(M2l

)bl .
Each factor in this product is either 1 or a power of M . This is used in the
following algorithm for producing the desired proof (where P denotes the prover):

1. P computes encryptions e0, ..., el of (M20

)b0 , ..., (M2l

)bl . For each i = 0...l he

also computes ProofP (ei/(1 + n) or ei/(1 + n)M2i

is an encryption of 0).

2. Let Fi = (M20

)b0 · ... · (M2i

)bi , for i = 0...l. P computes an encryption fi of
Fi, for i = 1..l. We set f0 = e0. Now, for i = 1...l, P computes

ProofP (Plaintexts corr. to fi−1, ei, fi satisfy

Fi−1 · (M2i

)bi = Fi mod ns),

based on the multiplication-mod-ns protocol. The encryption fl is the desired
encryption.

It is straightforward to verity from the ei, fi and all the proofs computed that
fl is an encryption of a number of form M j . Furthermore, simply because there
are l + 1 encryptions e0, .., el each determining one bit of j, it is clear that
0 ≤ j < 2l+1 = L.

It is straightforward to see that a vote in this system will have length
O(k logL) bits (still assuming, of course, that L log2M ≤ (k − 1) · s).

With parameter values as in the numeric example before, a vote will have size
about 7 Kbyte, a factor of almost 5 better than the previous system. Moreover,
we need only 1 decryption operation as opposed to L before.

The case of general L If L is not of the nice form we assumed above, we
may attempt to adapt the above solution as follows: first define l by: 2l+1 is
the smallest 2-power with 2l+1 > L, and then run the above protocol with no
further changes. There are two drawbacks to this idea: first, it allows voters

to vote for non-existing candidates, namely j’s for which L ≤ j < 2l+1, and
second this also implies that we must have 2l+1 log2M ≤ (k − 1) · s, otherwise
we may get overflow when votes are added, and the result will be incorrect. If
we could prevent voters from voting for non-existing candidates, we would only
need L log2M ≤ (k− 1) · s, so this simple-minded solution may force us to have
a block length larger than what is strictly necessary, in the worst case almost
twice as large.

One way to get around this is to add an extra step to the verification of a
vote where, given the encryptions e0, ..., el determining the bits of j, the voter
proves in zero-knowledge that j < L.

To this end, first recall that we defined j = b02
0 + b12

1 + ...+ bl2
l, and that

for each encryption ei that is provided, it is shown that it encrypts M bi2
i

. Define
βi = (M2i − 1)−1 mod ns. It is now easy to see that

e′i = ((ei(1 + n)−1)βi mod ns+1) mod n2

= (ei(1 + n)−1)βimodn mod n2

is an encryption of bi in CS1, and furthermore a verifier can compute this
value without interaction, from already public information. Going to CS1 means
that the complexity of the protocol to follow becomes independent of s. From
this point there are several ways to proceed, we sketch one simple option here:

Let L be represented by bits B0, ..., Bl. We can now exploit the following
fact:

j < L iff ∃ i, such thatBl = bl, · · · , Bi+1 = bi+1, Bi = 1, bi = 0

Notice that di = ((2Bi − 1)(2bi − 1) + 1)/2 is a binary value that is 1 if Bi = bi
and 0 otherwise. Since Bi is public, the verifier can compute an encryption of
di from e′i without interaction. Clearly, the product Di = dl · · · di+1Bi(1 − bi)
is 1 precisely if i is an index confirming that L > j. It is also easy to see that
by providing encryptions of the values (dldl−1), (dldl−1dl−2), ..., (dl · · · d1) and
of the Di’s, the prover can show that the encryptions of the Di’s contain correct
values, using 2l multiplication proofs. Finally, the prover needs to show that one
of the Di = 1 for some i. This can be done by a trivial generalization of the one-
of-two protocol we showed earlier. In total, this solution will have complexity
O(k logL) bits (assuming that L log2M ≤ (k − 1) · s). This is asymptotically
the same as before, but with a larger constant. We note that Lipmaa et al. in
[17] have recently proposed a conceptually simpler solution for general L which
is more efficient than ours by a constant factor.

References

1. Algorithmic Number Theory, Volume I: Efficient Algorithms. Foundations of Com-
puting Series. The MIT Press, Cambridge, Massachusetts; London England, 1996.

2. L. Blum, M. Blum, and M. Shub: A simple secure unpredictable pseudo-random

number generator, SIAM Journal on Computing, 15(2): pp. 364-383, May 1986.
3. O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard and J. Stern: Practical

Multi-Candidate Election Scheme, Proceedings of PODC 2001.
4. R. Cramer, I. Damg̊ard and J. Nielsen: Multiparty Computation from Threshold

Homomorphic Encryption, Proceedings of EuroCrypt 2001, Springer Verlag LNCS
series 2045, pp.280-300.

5. R. Cramer, I. Damg̊ard and B. Schoenmakers: Proofs of partial knowledge, Pro-
ceedings of Crypto 94, Springer Verlag LNCS series 839, pp. 174-187.

6. R. Cramer, S. Dziembowski, I. Damg̊ard, M. Hirt and T. Rabin: Efficient Multi-

party Computations Secure against an Adaptive Adversary, Proceedings of Euro-
Crypt 99, Springer Verlag LNCS series 1592, pp. 311-326.

7. D. Catalano, R. Gennaro and N. Howgrave-Graham: The bit security and Paillier’s

encryption scheme and its applications, Proceedings of EuroCrypt 2001, Springer
Verlag LNCS series 2045, pp. 229-243.

8. R. Cramer, R. Gennaro and B. Schoenmakers: A Secure and Optimally Efficient

Multi-Authority Election Scheme, Proceedings of EuroCrypt 97, Springer Verlag
LNCS series 1233, pp. 103-118.

9. I. Damg̊ard and M. Jurik: A Generalisation, a Simplification and some Appli-

cations of Paillier’s Probabilistic Public-Key System, Proceedings of Public Key
Cryptography 2001, Springer Verlag LNCS series 1992, pp. 119-136.

10. I. Damg̊ard and M. Koprowski: Practical Threshold RSA Signatures Without a

Trusted Dealer, Proceedings of EuroCrypt 2001, Springer Verlag LNCS series 2045,
pp. 152-165.

11. Y. Frankel, P. MacKenzie and M. Yung: Robust Efficient Distributed RSA-key

Generation, proceedings of STOC 98, pp. 663-672.
12. P.-A. Fouque, G. Poupard and J. Stern: Sharing Decryption in the Context of

Voting or Lotteries, Proceedings of Financial Crypto 2000.
13. O. Goldreich and V. Rosen: On the security of modular exponentiation with appli-

cation to the construction of pseudorandom generators, Cryptology ePrint Archive,
record 2000/064, http://eprint.iacr.org/, December 2000.

14. J. Groth: Extracting Witnesses From Proofs of Knowledge in the Random Oracle

Model , Manuscript, December 2001, Eprint archive report nr. 2002/002.
15. L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol fitted to

Security Microprocessor Minimizing both Transmission and Memory, Proceedings
of EuroCrypt 88, Springer Verlag LNCS series 330, pp. 123-128.

16. M. Hirt and K. Sako: Efficient Receipt-Free Voting based on Homomorphic En-

cryption, Proceedings of EuroCrypt 2000, Springer Verlag LNCS series 1807, pp.
539-556.

17. H. Lipmaa, N. Asokan and V. Niemi: Secure Vickrey Auctions without Threshold

Trust, IACR Eprint archive, 2001/95.
18. P. Paillier: Public-Key Cryptosystems based on Composite Degree Residue Classes,

Proceedings of EuroCrypt 99, Springer Verlag LNCS series 1592, pp. 223-238.
19. V. Shoup: Practical Threshold Signatures, Proceedings of EuroCrypt 2000, Springer

Verlag LNCS series 1807, pp. 207-220.
20. J. Bar-Ilan and D. Beaver: Non-Cryptographic Fault-Tolerant Computing in a Con-

stant Number of Rounds, Proceedings of the ACM Symposium on Principles of
Distributed Computation, 1989, pp. 201-209.

