
Verifiable Mixing (Shuffling) of ElGamal Pairs

C. Andrew Neff∗

April 21, 2004†

Abstract

We give an improved presentation of the protocol first published
in [23]. That paper contained some minor misprints, and was thin
on formal proofs of correctness; both shortcomings are addressed in
the current version. We also make some brief comparisons with, and
criticisms of some more recent publications which build on the results
presented in [23]. In particular, we point out that, in contrast to other
protocols, the protocol of this paper is unconditionally sound.

1 Introduction

In [23], one of the first efficient protocols for verifiably shuffling, or mixing
a list of encrypted elements was given. In that paper, two different types of
mixes were considered. In one, the elements to be permuted were individual
group elements, while the second setting considered lists of ElGamal pairs.
The protocol in both cases was similar, and in both presentations, a multi-
plicative factor (in the exponent domain) was inadvertently omitted, giving
the impression that the protocols might not be correct.

In this paper, we correct the missing factor as well as eliminate some re-
dundant operations. We also include details of the formal correctness proofs
that were only sketched in the original. For the sake of brevity, we consider

∗aneff@votehere.net
†This work is still in progress.

Copyright c© 2003 VoteHere, Inc.

1 INTRODUCTION 2

only the ElGamal case. This is the setting most commonly found in elec-
tronic voting applications. The modifications required for mixing of group
elements are quite straightforward, and will be documented in a future work.

Recently, there have been other papers on the subject, and it is worth making
some brief comparisons. The original work ([23]) was founded on three novel
ideas:

1. Construct a general mix protocol from one that could only be con-
structed for input with “known exponents” (known by the prover,
that is).

2. Construct a “known exponent mix” from two principles:

(a) Evaluation of a pair of polynomials at a common random point.
(b) A generalization of the Chaum-Pedersen protocol to a protocol

for proving statements about the product of secret exponents.

Groth ([19]) uses the same approach to construct a verifiable mix protocol.
Similarities are somewhat obscured by notation, since Groth has chosen
to present the ideas in an abstract homomorphic group setting. There are
some shortcomings of the form of the protocol presented there that are worth
noting however:

1. Groth explicitly relies on the assumption that logg h is unknown to the
prover. While this assumption may be reasonable in some cases, when
applied to the multi-authority election setting, it results in an election
protocol that is not universally verifiable. This is because a subset of
authorities can collude to reconstruct the election private key, and then
use this information to forge one or more of their shuffle transcripts.
The criteria of universal verifiability requires that even if all authorities
collude, they are still prevented – at least by computational constraints
– from altering election results.

It is possible for Groth to fix this problem, but at the expense of
introducing more exponentiations (we expect 3k). Conversely, the
exponentiation count in this paper can be reduced if the unknown
logarithm assumption is used. (Specifically, equations 22 and 23, 31
and 32, 34 and 35 can be combined in pairs.)

2. Groth also relies on a basis of group elements for which whose loga-
rithms (to a common base) the prover can not find non-trivial linear
relations. The use of such a basis is undesirable on two counts:

Copyright c© 2003 VoteHere, Inc.

2 NOTATION 3

(a) A protocol based on this assumption can be at best computation-
ally sound.

(b) Reliance on such a basis “hides complexity”. In typical applica-
tion, the construction of these elements involves exponentiations
in order to project into the encoding subgroup. These expo-
nentiations are typically “large,” costing a few times that of a
exponentiation in the protocol itself. One can make an argument
that these exponentiations can be amortized over several mixes.
However, so too can some of the exponentiations in the protocol
of this paper. A fair comparison of complexity should carefully
set aside, and count separately, “precomputation steps.”

The protocol version we present is unconditionally sound. That is, even
unlimited computational resources do not help the prover forge a transcript
with an interactive verifier. While a non-interactive transcript may still be
forgeable with unlimited computational power, even this possibility can be
removed by introducing enough “parallel executions.” It is only computa-
tional zeroknowledge, which, in general is less desirable than honest-verifier
zeroknowledge. However, in this case, the difference is irrelevant: The orig-
inal secret is only protected by the same computational limitation. Thus,
it would be more effective for an adversary who wishes to break the secret
to attack the data that is input to the protocol, rather than the protocol
itself. In short, in this case, it seems undesirable to sacrifice unconditional
soundness for the sake of achieving honest-verifier zeroknowledge.

2 Notation

In the following, unless explicitly stated otherwise, n will be a positive inte-
ger, p and q will be prime integers, publicly known. Arithmetic operations
are performed in the modular ring Zp (or occasionally Zn), and g ∈ Zp will
have (prime) multiplicative order q. So, trivially, q | (p − 1). We further
assume that p has been chosen so that (q2, (p − 1)) = q. This means that
the multiplicative group Z∗p has a unique order q subgroup – a fact that we
will henceforth generally take for granted. We denote this subgroup by G.
Finally, we use g to denote a fixed generator of G, which has been publicly
accepted (i.e. agreed upon).

In each proof protocol, we refer to the prover (shuffler, or mixer) as P, and
to the verifier (auditor) as V.

Copyright c© 2003 VoteHere, Inc.

2 NOTATION 4

We recall the Chaum-Pedersen proof of equality for discrete logarithms
([11]). For G,X,H, Y ∈ Zp this is a proof of knowledge for the relation

logGX = logH Y (1)

It is not known to be zero-knowledge, however it is known to be honest-
verifier zeroknowledge. These are sufficient for our main application where
the verifier is implemented via the Fiat-Shamir heuristic. (See [16] and [8].)

The main result of this paper uses a sub-protocol which can be viewed
as a natural multi-variable generalization of the Chaum-Pedersen protocol.
This construction was originally given in in [23], and referred to there as
the Iterated Logarithmic Multiplication Proof Protocol (ILMPP). For the
sake of brevity, we will not discuss the construction itself, or how to see it
as a multi-variable generalization of Chaum-Pedersen in this paper. The
interested reader may find this discussion in [23].

Following standard notation, we let Zn be the ring of integers mod n, Zn[x]
be the ring of polynomials over Zn, Zk

n be the standard k-dimensional vector
space over Zn, and Σk the group of permutations on {1, . . . , k}. In addition,
we refer to the following which is less standard:

Definition 1 For ~a = (a1, . . . , ak) ∈ Zk
p, and π ∈ Σk, define

~aπ = (aπ(1), . . . , aπ(k))

We note the following collection of well know results, since they will be
heavily used in the remainder of the paper. (See [21] and [33].)

Lemma 1 Let f(x) ∈ Zq[x], be a polynomial of degree d. Then there are at
most d values z1, . . . , zd ∈ Zq such that f(zi) = 0.

Corollary 1 Let f(x) , g(x) ∈ Zq[x] be two monic polynomials of degree at
most d, with f 6= g. Then there are at most d − 1 values z1, . . . , zd−1 ∈ Zq

such that f(zi) = g(zi).

Corollary 2 Let f(x) , g(x) ∈ Zq[x] be two monic polynomials of degree at
most d, with f 6= g. If t ∈R Zq (t is selected at random from Zq), then

P ({t : f(t) = g(t)}) ≤ d− 1
q

Copyright c© 2003 VoteHere, Inc.

2 NOTATION 5

Lemma 2 Suppose v = (v1, . . . , vk) and w = (w1, . . . , wk) are both elements
of Zk

q , and that H ⊂ Zk
q is a hyperplane through the origin (i.e. (0, . . . , 0) ∈

H). If v /∈ H, there is exactly one element, c ∈ Zq satisfying

w − c v ∈ H (2)

Corollary 3 If v, w and H are as in lemma 2, and if c is generated from
Zq at random, then

P ({w − c v ∈ H}) =
1
q

(3)

Lemma 3 Fix v = (v1, . . . , vk) ∈ Zk
q , v 6= 0, and a ∈ Zq. If r ∈R Zk

q is
chosen at random, then

P ({r : v · r = a}) =
1
q

Corollary 4 Fix v = (v1, . . . , vk) ∈ Zk
q , v 6= 0. If r ∈R Zk

q is chosen at
random, then

P ({r : v · r = 0}) =
1
q

Definition 2 Let

∆k
q
.= { (v1, . . . , vk) ∈ Zk

q : vi = vj for some 1 ≤ i 6= j ≤ k }
∆̄k

q
.= Zk

q − ∆k
q

∆̄k +
q

.= ∆̄k
q ∩ Z∗q

k

Lemma 4 Fix v = (v1, . . . , . . . vk) ∈ Zk
q , v 6= 0, and a ∈ Zq. If r ∈R ∆̄k +

q

is chosen at random (uniform distribution on ∆̄k +
q), and if k < q/2, then

P ({ r : v · r = a}) <
2
q

This estimate can be improved considerably, but it will suffice for our ap-
plication.

Definition 3 Let (X,Y) be an ElGamal pair with encryption parameters
(g, h), where h = gs with s “secret”. We say that the message, m, of (X,Y)
is Y/Xs.

Copyright c© 2003 VoteHere, Inc.

3 THE SIMPLE K-SHUFFLE 6

3 The Simple k-Shuffle

The first shuffle proof protocol we construct requires a restrictive set of
conditions – in short, that the prover knows the logarithms of the elements
to be permuted. It’s importance lies in the fact that it serves as an essential
step in the more general protocol to follow.

Definition 4 Suppose that G and Γ, and two sequences X1, . . . , Xk, and
Y1, . . . , Yk are all publicly known elements of G ⊂ Z∗p. Suppose also, that
the prover, P, knows γ = logG Γ, xi = logGXi and yi = logG Yi, for all
1 ≤ i ≤ k, where G is some generator of G, but that all these logarithms are
unknown to V.

P is required to convince V that there is some permutation, π ∈ Σk with
the property that, for all 1 ≤ i ≤ k,

Yi = Xγ
π(i) (4)

without revealing any information about xi, yi, γ, or π.

We call this problem the Simple k-Shuffle Problem. It can be solved as
follows:

3.1 Simple k-Shuffle Proof Protocol

SSA. 1. V generates a random t ∈ Zq , and gives t to P as a challenge.

SSA. 2. P secretly computes

x̂i = xi − t (1 ≤ i ≤ k) (5)
ŷi = yi − γ t (1 ≤ i ≤ k)

(6)

We will assume that x̂i 6= 0 for all i, and hence that ŷi 6= 0 for all
i. (See remark 1, below.) P then secretly generates, randomly and

Copyright c© 2003 VoteHere, Inc.

3 THE SIMPLE K-SHUFFLE 7

independently from Zq , 2k − 1 elements, θ1, . . . θ2k−1, computes

Θ1 = G−θ1ŷ1

Θ2 = G (θ1x̂2−θ2ŷ2)

... =
...

Θi = G (θi−1x̂i−θiŷi)

... =
...

Θk = G (θk−1x̂k−θkŷk)

Θk+1 = G (γ θk− θk+1)

... =
...

Θ2k = G γ θ2k−1

(7)

and reveals the sequence Θ1, . . . ,Θ2k to V.

SSA. 3. V generates a random challenge, c ∈ Zq and reveals it to P.

SSA. 4. P computes 2k − 1 elements, α1, . . . , α2k−1, of Zq satisfying

αi = θi + c
i∏

j=1

(
x̂j

ŷj

)
1 ≤ i ≤ k (8)

αi = θi + c γi−2k k + 1 ≤ i ≤ 2k − 1

or, equivalently,

αi = θi + cγ−k
k∏

j=i+1

(
ŷj

x̂j

)
1 ≤ i ≤ k − 1 (9)

αi = θi + c γi−2k k ≤ i ≤ 2k − 1

and reveals the sequence αi to V. (Notice that the αi can be evaluated
recursively using only one Zq multiplication and one Zq division per
index.)

SSA. 5. V computes

U = G−t (10)
W = Γ−t = G−γt

X̂i = Xi U (1 ≤ i ≤ k)
Ŷi = YiW (1 ≤ i ≤ k)

(11)

Copyright c© 2003 VoteHere, Inc.

3 THE SIMPLE K-SHUFFLE 8

and checks each of the following 2k equations:

X̂c
1 Ŷ

−α1
1 = Θ1 (12)

X̂α1
2 Ŷ −α2

2 = Θ2

... =
...

X̂
αi−1

i Ŷ −αi
i = Θi

... =
...

X̂
αk−1

k Ŷ −αk
k = Θk

Γαk G−αk+1 = Θk+1

... =
...

Γα2k−1 G−c = Θ2k

V accepts the proof if and only if all of the equations in (12) hold.

(Note that the left hand side of each of the equations in 12 can be
evaluated using the technique of simultaneous multiple exponentiation
resulting in an effective reduction of the complexity of evaluating all of
them from 4k exponentiations to roughly 2.8k exponentiations. [20])

Before discussing the formal properties of this protocol we observe:

Remark 1 There is a negligible probability (less than k/q) that x̂i = 0
for one or more i (and thus, if P’s original assertion is true, yj = 0 for
an equal number of j). Clearly, this event is the same as that of V simply
guessing logGXi without any help from P. In an interactive execution of
the problem, the parties might simply remove the offending list elements
and restart with a smaller k, since now V knows an index pair, i, j with
t = logGXi = logΓ Yj . Preferably, in the case of a non-interactive execution,
P should, if possible, “re-frame” the original data in several ways rather than
reveal a “lucky guess” to V. One way P can do this is to pick a random µ
and replace G and Γ with Gµ and Γµ respectively.

Rather than get overly consumed with details at this point, we simply say
that the protocol fails to complete with probability bounded by k/q. For
typical values of q (> 2159) and any practical value of k (¿ 280), the protocol
is complete ([20], 10.18 Definition).

Copyright c© 2003 VoteHere, Inc.

3 THE SIMPLE K-SHUFFLE 9

Remark 2 An important part of the problem statement (definition 4 is the
“in subgroup assumption” thatXi and Yi are all elements of G. This assump-
tion is often overlooked because it is something that V can check without
any additional information from P. In [34], Wikström provides some tech-
niques for guaranteeing this condition without need for the usual “explicit”
check via exponentiation. The computational cost of explicitly checking is
roughly 10% of that of the main protocol, so using Wikström’s techniques
can provide a noticeable performance improvement. However, specific tech-
nique aside, some method for assuring the “in subgroup assumption” must
be used in any actual implementation of the protocol. This property is not
observable from simple inspection.

Remark 3 As has been observed in the case of Chaum-Pedersen, the size
of a non-interactive proof based on hash function, H, can be significantly
reduced by inverting the order of computation. Instead of providing proof
transcript T = ({Θi}, {αi}) and asking V to compute c = H({Xi}, {Yi}, {Θi}),
P can provide proof transcript T ′ = (c, {αi}). In this case, V would compute
the Θi from equation 7, and then check that c = H({Xi}, {Yi}, {Θi}).

Theorem 1 The Simple k-Shuffle Proof Protocol satisfies the following
properties:

T1.1. It is a four-move, public coin proof of knowledge for the relation-
ship in equation (4).

T1.2. It is complete. Specifically, the probability of completion failure
is bounded above by k/q if the condition noted in remark 1 are treated
as failures. Otherwise, the protocol always succeeds.

T1.3. The protocol is sound. If V generates challenges randomly, the
unconditional (i.e. no restrictions on computation power) probability
of a forged proof is less than or equal to

(k − 1)/q + 1/q = k/q (13)

T1.4. It is honest-verifier zero-knowledge.

T1.5. The number of exponentiations required to construct the proof
is 2k, and the number of exponentiations required to verify it is 4k+2.

Copyright c© 2003 VoteHere, Inc.

3 THE SIMPLE K-SHUFFLE 10

Proof:

T1.1 : Obvious.

T1.2 : The proof is contained in remark 1.

T1.3 : A forged proof can only be generated in two conditions, both of which
are not determined by the computation power of P:

T1.3.1. The challenge t is one of the special values for which

k∏

i=1

(t− xi) γ =
k∏

i=1

(γ t− yi) (14)

that is

γk
k∏

i=1

(t− xi) =
k∏

i=1

(γ t− yi) (15)

(Both of these equations are, of course, taken in Zq.)

T1.3.2. The challenge t is not one of the special values in 1 (above), which
implies (see [23]) that (x̂1, 0, . . . , 0,−ŷ2k) is not an element of the hy-
perplane generated by the 2k − 1 vectors

(−ŷ1 , x̂2 , 0 , . . . , 0)

(0 , −ŷ2 , x̂3 , 0 , . . . , 0)
...

(0 , . . . , −ŷ2k−2 , x̂2k−1 , 0)

(0 , . . . , 0 , −ŷ2k−1 , x̂2k)

(16)

By corollary 2, the probability of T1.3.1 is at most (k− 1)/q, and the
probability of T1.3.2 is 1/q by corollary 3.

T1.4 : A simulator generates αi, t and c all randomly and independently
(starting over if the negligible probability event, X̂i = 1, occurs). It then
determines Θi according to equation 12. The resulting distribution is the
same as that generated by a real prover and honest verifier.

T1.5 : Obvious.

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 11

4 Shuffles of ElGamal Pairs

The protocol of this section is essentially the same as that presented in [23],
section 6. Some notation has been clarified, and some redundant operations
eliminated. A factor of γ in the definition of one set of quantities was also
unintentionally omitted in the original. The correction has been added to
this presentation.

We briefly restate the problem context in the following definition.

Definition 5 Suppose that two sequences of pairs (X1, Y1), . . . , (Xk, Yk)
(input), and (X̄1, Ȳ1), . . . , (X̄k, Ȳk) (output), as well as “encryption param-
eters”, g and h, are all publicly known elements of G ⊂ Z∗p. Suppose also,
that the prover, P, knows β1, . . . , βk in Zq and π ∈ Σk such that for all
1 ≤ i ≤ k

(X̄i, Ȳi) = (gβπ(i)Xπ(i) , h
βπ(i)Yπ(i)) (17)

P is required to convince V this fact – that is, convince V of the existence of
βi and π satisfying equation 17 – without revealing any information about
βi or π.

We call this problem the ElGamal k-Shuffle Problem.

4.1 Sketch of the Protocol

Before diving into a detailed presentation of our solution, we will discuss a
motivational sketch of the details to follow.

The basic motivation for the protocol is to use lemmas 2 and 3 and their
corollaries. To do this, first consider defining, for a fixed permutation, π, βi

and ξi by
(X̄i, Ȳi) = (gβπ(i)Xπ(i) , h

ξπ(i)Yπ(i)) (18)

The goal is then to show that one can find some π such that βi = ξi for
all i. By the referenced lemmas, we can achieve this by showing that for a
random vector ~s = (s1, . . . , sk),

~s · ~β = ~s · ~ξ (19)

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 12

or, equivalently, for random ~s = ~rπ that

~s · ~̄x− ~r · ~x = ~s · ~̄y − ~r · ~y (20)

where we use the notation ~επ = (επ(1), . . . , επ(k)).

In order to demonstrate that equation 20 holds while still maintaining the
zeroknowledge property of the protocol, the coordinates of ~r and ~s must be
kept secret. This forces two steps in the protocol that somewhat obscure
the main thrust:

1. So that V can be sure that the coordinates of ~r are truly random
without having knowledge of them, P must first commit a hidden
random ~b to which V can then add a random “offset”.

2. So that V can check equation 20, P must also create random ~V and ~W
that serve the same purpose as obviously similar quantities in the stan-
dard Chaum-Pedersen proof. (These quantities are typically named A
and B.)

Finally, there is a third subtle issue that must be dealt with. In order
to fall back on the linear algebra lemmas we plan to use, one must first
fix a “reference permutation,” π0. Without this, P is free to search all
permutations for one, π, that satisfies equation 20, and it turns out that for
k! À q, an exhaustive search might prove successful even if ~r is completely
random. (Nevertheless, it seems that actually computing such a π may be
at least as difficult as solving the discrete logarithm problem. This is the
thrust of our conjecture 1.) To avoid depending on the conjecture however,
we introduce some additional commitments by P – roughly embodied by the
variables ~A, ~B, ~C and ~D. Their reason for existence may seem opaque at
first, but should be well clarified by careful inspection of the formal proofs
following the presentation of the protocol steps themselves.

4.2 ElGamal k-Shuffle Proof Protocol

EGA. 1. P generates, for 1 ≤ i ≤ k, ui, wi and additionally τ0 all randomly
and independently from Zq. Further, P generates ai uniformly from
∆̄k +

q . (This constraint ~a ∈ ∆̄k +
q is not technically required for the

success of the protocol. It should become clear shortly that we merely

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 13

propose it for essentially the same reason that we proposed the con-
straint x̂i 6= 0 in SSA. 2. See remark 4, below.) P also generates ν,
and γ from Z∗q randomly and independently. P then computes

Γ = gγ (21)
Ai = gai

Ci = Aγ
π(i) = gγ aπ(i)

Ui = gui

Wi = gγwi

and

Λ1 = gτ0 +
∑k

i=1
wiβπ(i)

k∏

i=1

X
wπ−1(i)−ui

i (22)

Λ2 = hτ0 +
∑k

i=1
wiβπ(i)

k∏

i=1

Y
wπ−1(i)−ui

i (23)

P then reveals the ordered sequences Ai, Ci, Ui, and Wi along with Γ,
Λ1 and Λ2 to V.

EGA. 2. For 1 ≤ i ≤ k, V chooses ρi randomly and independently from Zq,
computes

Bi = gρi/Ui (24)

and returns the sequence ρi as a challenge to P.

EGA. 3. P computes
bi = ρi − ui (25)

for 1 ≤ i ≤ k. (See remark 4, below.) P then computes

di = γ bπ(i) (26)

Di = Bγ
π(i) = gdi

and reveals the sequence Di to V.

EGA. 4. V generates λ ∈ Zq randomly, and returns it to P as a challenge.

EGA. 5. For 1 ≤ i ≤ k, P secretly computes the exponents

ri = ai + λ bi (27)
si = γ rπ(i)

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 14

(Again, see remark 4, below.) In addition, P computes for each
1 ≤ i ≤ k

σi = (γ wi + di)/γ = wi + γ−1di = wi + bπ(i) (28)

and also

τ = −τ0 +
k∑

i=1

biβi = −τ0 +
k∑

i=1

bπ(i)βπ(i) (29)

and reveals both τ and the sequence σi to V.

EGA. 6. P and V then execute the simple k-shuffle, SSk

(
~R, ~S, G, Γ

)
, where

~R = (R1, . . . , Rk) = (gr1 , . . . , grk) (30)
~S = (S1, . . . , Sk) = (gs1 , . . . , gsk)

(Note that P need not explicitly compute Ri and Si in order to con-
struct the proof, while V can compute Ri and Si as Ri = AiB

λ
i and

Si = CiD
λ
i .)

EGA. 7. Finally, V evaluates

Φ1 =
k∏

i=1

X̄σi
i X

−ρi
i (31)

Φ2 =
k∏

i=1

Ȳ σi
i Y −ρi

i (32)

and checks that

Γσi = WiDi (33)
Λ1 g

τ = Φ1 (34)
Λ2 h

τ = Φ2 (35)

(Once again, note that the individual terms of the k-fold products in
equations 31 and 32 can be evaluated using the technique of simul-
taneous multiple exponentiation resulting in an effective reduction of
the complexity of evaluating each of the two right hand sides from 2k
exponentiations to roughly 1.4k exponentiations. [20])

V accepts the proof if and only if both of the following:

EGA.7.1. Equations 33, 34 and 35 are all satisfied.

EGA.7.2. V accepts the simple shuffle proof of step 6.

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 15

Remark 4 As was the case with the Simple k-Shuffle protocol (remark 1),
there are certain “zero conditions” that we would prefer to protect against
when executing the protocol non-interactively. Again, these events are as
unlikely as V simply guessing equivalent information about the input/output
data without any help from P, and could just as well be ignored. These
conditions are

~a ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (36)

~b ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (37)

~ρ ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (38)

These, of course, imply

~c ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (39)

~d ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (40)

~σ ∈ ∆k
q ∪ (Zk

q − Z∗q
k) (41)

Additionally, carrying over the convention of remark 1, there is the condition
that step 6 “fails to complete,” that is, x̂i = 0 for some i.

As was the case previously, we can adopt the convention that the protocol
fails to complete in these cases. Obviously the probability of any of these
events occurring is bounded above by the sum of their individual probabili-
ties:

2 ((k/q) + k(k − 1)/2) + k/q = k(k + 2)/q (42)

Remark 5 Again, an important part of the problem statement (definition 4
is the “in subgroup assumption” that Xi, Yi, X̄i and Ȳi are all elements of
G. The warnings of remark 2 are equally important here. However, it is
not necessary to do additional “in subgroup verification” for the elements
of the sub-protocol in step 6. In the case of a typical mix-net application, it
suffices for V to check the “in subgroup property” only on the output values,
X̄i and Ȳi.

Remark 6 It is worth noting that for very small k, (k! ¿ q), the protocol
can be executed without constructing, Ai or Ci, and simply using Ri = Bi

and Si = Di. In fact, the theorem that follows still holds, but with a forgery
probability of roughly k!/q instead of k/q. The reason for this should be
obvious from the theorem proof. It does not appear possible to obtain
an unconditionally sound protocol without the additional variables when

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 16

k! is large, however it may be possible to eliminate them and obtain a
computationally sound protocol. Whether or not this is true depends on the
following conjecture. Of course, the advantage of eliminating these variables
is that the overall exponentiation count is reduced by 4k.

Conjecture 1 The following problem is NP hard (perhaps reducible to Subset-
Sum):

Problem 1 Suppose that ~a , ~b ∈ Zk
q , and that for all π ∈ Σk,

~a 6= ~bπ (43)

For ~e ∈R Zk
q , find σ ∈ Σk such that

~e · ~a = ~eσ · ~b (44)

or equivalently, such that

k∑

i=1

eiai =
k∑

i=1

eσ(i)bi (45)

We now return to the analysis of the main protocol.

Theorem 2 The ElGamal k-Shuffle Proof Protocol satisfies the following
properties:

T2.1. It is a seven-move, public coin proof of knowledge for the rela-
tionship in equation (17).

T2.2. It is complete. Specifically, the probability of completion failure
is bounded above by

k(k + 2)/q

if the conditions noted in remark 4 are treated as failures. Other-
wise, the protocol always succeeds. (Of course, in a non-interactive
implementation, P is free to “retry” by starting with new values of Γ,
etc.)

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 17

T2.3. The protocol is sound for k < q/2. Specifically, if V generates
challenges randomly, the unconditional (i.e. no restrictions on compu-
tation power) probability of a forged proof is less than

(2k + 1)/q + 2/q = (2k + 3)/q (46)

T2.4. Assuming the Diffie-Hellman Decision Problem is hard, it is com-
putational zero-knowledge.

T2.5. The number of exponentiations required to construct the proof
is 8k + 4, and the number of exponentiations required to verify it is
12k + 4.

Proof:

T2.1 : It is obvious that the protocol is public coin. As presented, the move
count is ten. However, all but the last two moves of the Simple Shuffle
execution in step EGA..6 can be executed in parallel with the previous steps
of the main protocol.

T2.2 : The proof is contained in remark 4.

T2.3 : We prove this by way of the following lemmas.

Lemma 5 If for more than k values of λ, there is a permutation, πλ satis-
fying

si = γ rπλ(i) (47)

then for all 1 ≤ i ≤ k, there exists a j such that

ci = γ aj (48)
di = γ bj

Proof: Fix any one i. Since πλ(i) can take on at most k values, there must
be two distinct values of λ satisfying 47, λ1 and λ2, with πλ1(i) = πλ2(i) = j.
From the definition of ri and si (verified by V in step EGA.6) we have

bj + λ1 dj = γ(ai + λ1 ci) (49)
bj + λ2 dj = γ(ai + λ2 ci)

Taking differences of both sides completes the proof.

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 18

Corollary 5 Under the conditions of lemma 5 there is a unique permutation
π0 ∈ Σk satisfying

ci = aπ0(i) (50)
di = bπ0(i) (51)

Proof: Since ai 6= aj for i 6= j, the conclusion is trivial.

Corollary 6 If P can, with probability greater than

k/q + (k + 1)/q = (2k + 1)/q (52)

produce a Simple k-Shuffle transcript which is accepted by V, then the
equations in 50 hold.

Proof: If the equations in 50 do not hold, then there are fewer than
k + 1 values of λ for which equations 47 hold. P can then only succeed in
producing a Simple k-Shuffle proof accepted by V if either of the following
two (non-exclusive) conditions hold:

• V chooses one of the k exceptional values of λ.

• P creates a forged shuffle proof (accepted by V).

The probability of the latter event, is by the previous section results, bounded
above by (k + 1)/q. The probability of the former is obviously bounded by
k/q. Hence the probability of either is bounded by the sum of the individual
probabilities.

Lemma 6 If the equations in 50 hold, and suppose that for some 1 ≤ i ≤ k

logg(X̄i/Xπ0(i)) 6= logh(Ȳi/Yπ0(i))

Let P be the (unconditional) probability that V chooses ρi and λ so that
both equations 34 and 35 hold. Then

P <
2
q

(53)

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 19

Proof: Define βi, εi, λ1 and λ2 by

βπ0(i)
.= logg(X̄i/Xπ0(i)) (54)

επ0(i)
.= logh(Ȳi/Yπ0(i)) − βπ0(i) (55)

λ1 = logg Λ1 (56)
λ2 = logh Λ2 (57)

The assumption of the corollary statement is that ε = (ε1, . . . , εk) 6= ~0. Since
equations 24 and 33 hold,

If we take logg of both sides of equation 34 and logh of both sides of equa-
tion 35, and invoke equations 31, 32, 24 and 33 we obtain

λ1 + τ =
k∑

i=1

bπ0(i)x̄i −
k∑

i=1

bixi + K1 (58)

λ2 + τ =
k∑

i=1

bπ0(i)ȳi −
k∑

i=1

biyi + K2 (59)

where K1 and K2 are constant over all choices of ρi and λ. Using equa-
tions 54 and 55 as

λ1 + τ =
k∑

i=1

bπ0(i)(xπ0(i) + βπ0(i)) −
k∑

i=1

bixi + K1 (60)

λ2 + τ =
k∑

i=1

bπ0(i)(yπ0(i) + βπ0(i) + επ0(i)) −
k∑

i=1

biyi + K2 (61)

or, by reordering the first sum on the right hand side of each equation,

λ1 + τ =
k∑

i=1

biβi + K1 (62)

λ2 + τ =
k∑

i=1

bi(βi + εi) + K2 (63)

Subtracting equation 62 from equation 63 gives

k∑

i=1

bi εi = K0 (64)

where K0 is a constant over all choices of ρi and λ. The conclusion of the
lemma thus follows directly from lemma 4.

Copyright c© 2003 VoteHere, Inc.

4 SHUFFLES OF ELGAMAL PAIRS 20

The claims of T2.3 follow easily by combining the preceding lemmas and
corollaries.

T2.4 : A simulated protocol transcript is generated as follows:

T2.4.1. Generate Γ, Ai, ρi, Bi and λ as in the actual protocol execution.

T2.4.2. Compute Ui = gρiB−1
i .

T2.4.3. Generate σi, Ci and Di randomly, and compute Wi = ΓσiD−1
i ,

subject to the constraints in 39-41.

T2.4.4. Compute ~R as in the actual protocol execution and Si by Si = CiD
λ
i .

T2.4.5. Simulate the Simple k-Shuffle protocol.

T2.4.6. Generate τ randomly from Zq.

T2.4.7. Compute Λ1 and Λ2 from equations 31 and 32 respectively.

Let S and S ′ be the distributions of real and simulated ElGamal shuffle
protocol transcripts respectively, with distributions, Dπ and Dm for π and
m. We assume that the distribution of encryption exponents, r, on the
original list of ElGamal pairs is uniform random. That is the shuffle input,
{(Xi, Yi)} satisfies Xi = gri , where ri are uniform random. Let D and D ′

be the distributions of real and simulated Diffie-Hellman distributions, that
is

D = {(gr, hr)} (65)
D ′ = {(gr, hs)}

where r and s are random and independent.

The precise statement of T2.4 is

Theorem 3 Suppose that there exists DS that can distinguish between S
and S ′ for some k with probability 1/2 + ε and work W . Then DD can
be constructed from DS that distinguishes between D and D ′ with the same
probability, and work 2W .

Copyright c© 2003 VoteHere, Inc.

5 ELGAMAL SEQUENCES 21

Proof: Let S1 = {(φ1i, ψ1i)}k
i=1 and S2 = {(φ2i, ψ2i)}k

i=1 be independent
sequences of pairs from D or D ′. We construct a ElGamal shuffle transcript
from S1 and S2. The transcript distribution will be from S if the pairs are
from D, and will be from S ′ if they are from D ′.

T3.1. Choose π from Dπ, and mi from Dm.

T3.2. Generate ri and βi randomly as they would be generated in an actual
instance of the shuffle protocol. Compute

Xi = gri

Yi = hrimi

X̄i = gβπ(i)+rπ(i)

Ȳi = hβπ(i)+rπ(i)mπ(i)

T3.3. Generate a random η in Z∗q , and set Γ = hη.

T3.4. Generate %i, and ςi, 1 ≤ i ≤ k all randomly and independently, and
set

Ai = φ1i

Bi = φ2i

Ci = ψη
1 π(i)

Di = ψη
2 π(i)

T3.5. Generate the remaining shuffle transcript variables exactly as gener-
ated in the transcript simulation, T2.4.1 - T2.4.7.

The task of establishing the desired properties of the resulting distribution
is tedious but straightforward.

T2.5 : Obvious.

5 ElGamal Sequences

Copyright c© 2003 VoteHere, Inc.

5 ELGAMAL SEQUENCES 22

If the ballot in an election consists of more than one question, it can some-
times be useful to have voters encrypt their “voted ballot” as a sequence
of ElGamal pairs rather than as a single pair. In this case, the input and
output to the shuffle are of the form (Xji, Yji) and (X̄ji, Ȳji) respectively,
1 ≤ i ≤ k, 1 ≤ j ≤ NQ, where k is the number of “cast ballots” and NQ is
the number of “answers” on the ballot. It is required to shuffle the ballots,
without changing the order of each message within a given ballot. More
formally, the problem is stated as follows:

Definition 6 Suppose that two sequences of sequences of pairs (X(j, i), Y (j, i))
(input), and (X̄(j, i), Ȳ (j, i)) (output), 1 ≤ i ≤ k, 1 ≤ j ≤ NQ, as well
as “encryption parameters”, g and h, are all publicly known elements of
G ⊂ Z∗p. Suppose also, that the prover, P, knows β(j, i) in Zq and π ∈ Σk

such that for all 1 ≤ i ≤ k and 1 ≤ j ≤ NQ

(X̄(j , i), Ȳ (j , i)) = (gβ(j , π(i))X(j , π(i)) , hβ(j , π(i))Y (j , π(i))) (66)

P is required to convince V this fact – that is, convince V of the existence of
β and π satisfying equation 17 – without revealing any information about β
or π.

We call this problem the ElGamal Sequence Shuffle Problem.

Since it is specifically required that the ordering with respect to the j index
remain constant, this problem can be easily solved by invoking the protocol
of the last section:

5.1 ElGamal Sequence Shuffle Proof Protocol

EGAR. 1. V generates ej , 1 ≤ j ≤ NQ, randomly and independently, and
computes

X̂i =
NQ∏

j=1

Xej (i , j) (67)

Copyright c© 2003 VoteHere, Inc.

5 ELGAMAL SEQUENCES 23

Ŷi =
NQ∏

j=1

Y ej (i , j)

X̌i =
NQ∏

j=1

X̄ej (i , j)

Y̌i =
NQ∏

j=1

Ȳ ej (i , j)

and presents the ElGamal k-Shuffle problem (X̂i, Ŷi), (X̌i, Y̌i) to P.

EGAR. 2. P and V execute an ElGamal k-shuffle proof protocol on this
data. For this, P obviously knows π, and also knows

βπ(i) =
NQ∑

j=1

ej β(j , π(i)) (68)

EGAR. 3. V accepts the sequence shuffle proof, if and only if this ElGamal
k-shuffle proof is accepted.

It immediately follows from corollary 4 that the properties of this protocol
are nearly identical to those of the ElGamal k-Shuffle protocol on which it
is based (theorem 2). The forgery probability bound should be increased by
k/q to take into account the possibility that ej is chosen “badly” for one or
more i, and the exponentiation count should be increased by 4kNQ.

Remark 7 A careful reader will notice that it suffices to always choose e1 =
1 rather than randomly. By small modification to the counting argument
that is the basis for lemma 3, and corollary 4, one can see that the forgery
probability remains the same, but the number of additional exponentiations
is reduced from 4kNQ to 4k(NQ−1). This, of course, is to be expected since
additional exponentiations should not be required when NQ = 1.

Copyright c© 2003 VoteHere, Inc.

REFERENCES 24

References

[1] M. Abe. Mix-Networks on Permutation Networks - ASIACRYPT 99,
Lecture Notes in Computer Science, pp. 258-273, Springer-Verlag, 1999.

[2] M. Abe and F. Hoshino. Remarks on Mix-Network Based on Permu-
tation Networks. Proceedings 4th International Workshop on Practice
and Theory in Public Key Cryptography PKC 2001, Lecture Notes in
Computer Science, pages 317-324, Springer-Verlag, 2001.

[3] J. Benaloh. Secret Sharing Homomorphisms: Keeping Shares of a Se-
cret Secret. Advances in Cryptology - CRYPTO ’86, Lecture Notes in
Computer Science, pp. 251-260, Springer-Verlag, Berlin, 1987.

[4] J. Benaloh, M. Yung. Distributing the power of a government to en-
hance the privacy of voters. ACM Symposium on Principles of Dis-
tributed Computing, pp. 52-62, 1986.

[5] S. Brands. An Efficient Off-line Electronic Cash System Based On The
Representation Problem. CWI Technical Report CS-R9323, 1993.

[6] R. Cramer, I. Damgrd, B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. Advances in Cryptol-
ogy - CRYPTO ’94, Lecture Notes in Computer Science, pp. 174-187,
Springer-Verlag, Berlin, 1994.

[7] R. Cramer, M. Franklin, B. Schoenmakers, M. Yung. Multi-authority
secret-ballot elections with linear work. Advances in Cryptology - EU-
ROCRYPT ’96, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1996.

[8] R. Cramer, R. Gennaro, B. Schoenmakers. A secure and optimally ef-
ficient multi-authority election scheme. Advances in Cryptology - EU-
ROCRYPT ’97, Lecture Notes in Computer Science, Springer-Verlag,
1997.

[9] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-88, 1981.

[10] D. Chaum. Zero-knowledge undeniable signatures. Advances in Cryp-
tology - EUROCRYPT ’90, Lecture Notes in Computer Science, volume
473, pages 458-464, Springer-Verlag, 1991.

Copyright c© 2003 VoteHere, Inc.

REFERENCES 25

[11] D. Chaum and T.P. Pedersen. Wallet databases with observers. Ad-
vances in Cryptology - CRYPTO ’92, volume 740 of Lecture Notes in
Compute Science, pages 89-105, Berlin, 1993. Springer-Verlag.

[12] A. De Santis, G. Di Crescenzo, G. Persiano and M. Yung. On Monotone
Formula Closure of SZK. FOCS 94, pp. 454-465.

[13] W. Diffie, M. E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644-654, 1976.

[14] T. ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469-472, 1985.

[15] A. Fujioka, T. Okamoto, K. Ohta. A practical secret voting scheme for
large scale elections. Advances in Cryptology - AUSCRYPT ’92, Lecture
Notes in Computer Science, pp. 244-251, Springer-Verlag, 1992.

[16] A. Fiat, A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. Advances in Cryptology - CRYPTO
’86, Lecture Notes in Computer Science, pp. 186-194, Springer-Verlag,
New York, 1987.

[17] J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle.
To appear in CRYPTO 2001.

[18] R. Gennaro. Achieving independence efficiently and securely. Proceed-
ings 14th ACM Symposium on Principles of Distributed Computing
(PODC ’95), New York, 1995.

[19] J. Groth. A Verifiable Secret Shuffle of Homomorphic Encryptions. Pro-
ceedings of the 6th International Workshop on Theory and Practice in
Public Key Cryptography (PKC 2003), pp. 145-160, Springer-Verlag,
2003.

[20] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of
Applied Cryptography, CRC Press, 1997.

[21] I.N. Herstein. Topics in Algebra. Weily, 1975.

[22] N. Koblitz, A Course in Number Theory and Cryptography, 2nd edi-
tion, Springer, 1994.

[23] C.A. Neff, A Verifiable Secret Shuffle and its Application to E-Voting.
Proceedings ACM-CCS 2001, 116-125, 2001.

Copyright c© 2003 VoteHere, Inc.

REFERENCES 26

[24] A. M. Odlyzko, Discrete logarithms in finite fields and their crypto-
graphic significance, Advances in Cryptology - EUROCRYPT ’84, Lec-
ture Notes in Computer Science, Springer-Verlag, 1984.

[25] T. Pedersen. A threshold cryptosystem without a trusted party, Ad-
vances in Cryptology - EUROCRYPT ’91, Lecture Notes in Computer
Science, pp. 522-526, Springer-Verlag, 1991.

[26] C. Park, K. Itoh, K. Kurosawa. Efficient anonymous channel and
all/nothing election scheme. Advances in Cryptology - EUROCRYPT
’93, Lecture Notes in Computer Science, pp. 248-259, Springer-Verlag,
1993.

[27] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161-174, 1991.

[28] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

[29] K. Sako, J. Kilian. Secure voting using partially compatible homomor-
phisms, Advances in Cryptology - CRYPTO ’94, Lecture Notes in Com-
puter Science, Springer-Verlag, 1994.

[30] K. Sako, J. Kilian. Receipt-free mix-type voting scheme – A practical
solution to the implementation of a voting booth, Advances in Cryptol-
ogy - EUROCRYPT ’95, Lecture Notes in Computer Science, Springer-
Verlag, 1995.

[31] J. Kilian, K. Sako, Secure electronic voting using partially compatible
homomorphisms. U.S. Patent number 5,495,532, filed 8/19/1994, issued
2/27/1996.

[32] J. Kilian, K. Sako, Secure anonymous message transfer and vot-
ing scheme. U.S. Patent number 5,682,430, filed 1/23/1995, issued
10/28/1997.

[33] S. Vajda. Patterns and Configurations in Finite Spaces. Griffin, Lon-
don, 1967.

[34] D. Wikström. Five Practical Attacks for “Optimistic Mixing for Exit-
Polls”. SAC 2003.

[35] D. Wikström. Personal communications.

Copyright c© 2003 VoteHere, Inc.

	Introduction
	Notation
	The Simple k-Shuffle
	Simple k-Shuffle Proof Protocol

	Shuffles of ElGamal Pairs
	Sketch of the Protocol
	ElGamal k-Shuffle Proof Protocol

	ElGamal Sequences
	ElGamal Sequence Shuffle Proof Protocol

	References

