
GRAVA: An Architecture Supporting Automatic Context

Transitions and its Application to Robust Computer Vision

Paul Robertson
Dynamic Object Language Labs

9 Bartlet Street, Suite 334
Andover, MA 01810

email:probertson@doll.com
and

Robert Laddaga
Computer Science and Artificial Intelligence Laboratory

Massacusetts Institute of Technology
Cambridge, Massachusetts, USA

email: rladdaga@ai.mit.edu

ABSTRACT

We describe a software development approach for
vision that enhances robustness by making novel use
of context. Conventional approaches to most image
understanding problems suffer from fragility when ap-
plied to natural environments. Complexity in Intelli-
gent Systems can be managed by breaking the world
into manageable contexts. GRAVA supports robust
performance by treating changes in the program’s en-
vironment as context changes. Automatically tracking
changes in the environment and making corresponding
changes in the running program allows the program to
operate robustly.

We describe the software architecture and explain
how it achieves robustness. GRAVA is a reflective ar-
chitecture that supports self-adaptation and has been
successfully applied to a number of visual interpreta-
tion domains. This paper describes the protocols and
the interpreter for GRAVA.

1 Introduction

As our software based systems become more complex,
and deal increasing with real world systems, the prob-
lem of robustness for such systems has intensified. New
approaches to software development are clearly needed
to deal with this growing problem. In this article we
describe a prototype implementation of the Self Adap-
tive Software approach to software development. This
prototype Self Adaptive system is designed to imple-
ment robust vision systems, but its applicability is con-
siderably more broad.

Image understanding programs have tended to be
very brittle and perform poorly in situations where the
environment cannot be carefully constrained. Natural
vision systems in humans and other animals are re-

markably robust. The applications for robust vision
are myriad. Robust vision is essential for many appli-
cations such as mobile robots, where the environment
changes continually as the robots moves, and robust-
ness is essential for safe and reliable operation of the
robot.

The lack of robustness noted above is by no means
limited to computer vision—it is a problem observed
by all programs that deal directly with the real world
and includes such things as speech recognition and mo-
bile robots. We are surrounded by examples from na-
ture of natural systems that interact robustly with the
real world but until recently we have not had the tools
to engineer such systems.

It is a little appreciated fact that the overwhelm-
ing majority of microprocessors (more than ninety
eight percent) are use in embedded applications and
the trend is for the percentage of such processors de-
ployed in embedded applications to continue to grow.
At the same time the power of such processors is grow-
ing rapidly and forcing us to consider the problems
that come with our growing aspirations for embedded
systems.

In the spring of 1998, the US agency DARPA in-
troduced the term ”Self adaptive software” to describe
a software methodology that aspires to solve exactly
the kind of problem described above.

Self adaptation is a model-based approach to
building robust systems. The environment, the pro-
gram’s goal, and the program’s computational struc-
ture must be modeled. In principle, the idea is simple.
The environment model and the program goal model
both support continuous evaluation of the performance
of the program. When program performance deterio-
rates, the program goal model and the computation
model together support modification of the program
structure. In this way, the program structure evolves



as the environment changes, even radically, so that the
components of the program are always well suited to
the environment in which they are running. The con-
jecture is that robust performances results from having
all components operating within their effective range.

Although the complexity of the real world is over-
whelming the complexity does not assert itself at the
same time. At any instant a programming is operating
within a context in which the complexity of bounded.
In AI we have been fairly successful at building sys-
tems that perform robustly within environments of re-
stricted complexity. If we can divide the complexity
of the world up into a collection of contexts, each of a
bounded and manageable size, we can in principle con-
sider the hard problem of making a robust embedded
system as an easier problem formulated as the compo-
sition of a collection of manageable parts.

Even if we could know all the different states that
the environment could be in, we wouldn’t know a pri-
ori what state the environment would be in at any
particular time. Consequently, in order to achieve ro-
bust image understanding, programs should determine
the state of the environment at runtime and adapt to
the environment that is found. In practice it is likely
that the set of possible contexts cannot be explicitly
enumerated a priori.

A premise of the self-adaptive approach is that
it should be possible, at runtime, to synthesize con-
text specific systems, to determine the need to change
context and to self-adapt the program so that the pro-
gram’s context matches the state of the environment
and operates robustly because each of its components
is operating well within their optimal range.

The progress of a self-adaptive program as its en-
vironment gradually changes can be viewed as a tra-
jectory though the space of contexts. Figure 1 shows
the trajectory of such a program through the space of
complexity that the environment can exhibit. The el-
lipses represent the range of operation of various mod-
ules. Each module handles only a small fraction of the
total complexity that the program operates in but by
switching algorithm from time to time as the program
trajectory through complexity space moves out of the
domain of capability of one algorithm and into another
the program can be kept operating robustly.

It may be argued that implementing all of the
necessary algorithms is a formidable task but in prac-
tice many of these can be learned such as from a cor-
pus.

In summary, the idea of self-adaptation is to
adapt the program to a particular “context”. In order
to achieve this adaptation we build structural descrip-
tions that facilitate dividing the model space into con-
texts and provide a mechanism for determining when
a context is a good fit to the environment.

In speech understanding systems it is common to
have separate grammars for specific contexts. For ex-

Terrain Type

A
lti

tu
de

Program
path

Program 
instance

Legend

Figure 1. Path of a Self Adaptive Program

ample, when a speech understanding system is waiting
for a phone number, the probability of a word being
one of the digits is much greater than it is in other con-
texts. One reason for this practice in natural language
is that when the vocabulary and the set of parse rules
become too large, the HMM methods, that are fre-
quently used in speech processing, become unwieldy.
It is also useful, and perhaps necessary, to have such
contexts in order to provide enough constraint to make
sense of what is often a very noisy signal.

We also note from studies of human perception
that we always interpret images within a context that
defines our prior expectations about what we expect to
see. Psychologists call this “priming”. This reaches an
extreme form in the case of model-based image analy-
sis, in which programs “hallucinate” [2] one of a small
set of models onto images. Typically, the human pro-
grammer defines the “context” by providing a-priori
the (small) set of models that can be hallucinated.

The need for contexts to manage the diversity of
the world is no less important for image understanding.
AI has long understood the importance of contexts.
In 1975 Minsky introduced the notion of frames [9]
which was essentially an approach to contexts. Frames
have been used extensively in AI research, especially
for natural language. Riseman’s Schemas [3] was a
similar idea specifically for Computer Vision.

Man of the ideas prevalent in natural language
and speech understanding have direct counterparts in
computer vision. The first application of the GRAVA
architecture [11] was to the interpretation of satellite
aerial images. In that program satellite images were
segmented into regions of homogeneous content and
the regions were parsed, much as words are in a sen-
tence to form a structural understanding of the image.
Different image types are comprised of different kinds
of regions, different colors and textures, and different
parse rules. Rather than making one huge grammar



that includes all textures and region types, it is better
to have grammars, and optical models tailored to the
context because tailored contexts provide greater ac-
curacy and constraint. In that program the contexts
as well as the grammars and region content models
were learned from a corpus of images annotated by a
human photo interpreter.

Contexts occur for a variety of reasons, at dif-
ferent levels of processing, and in different parts of
the corpus. Given a set of images it is generally not
possible to divide the images into separate piles with
each pile representing a different context. Contexts
for different aspects of the problem can be composed
in a variety of ways. The explosion of possible combi-
nations of contexts is one reason why the self-adaptive
approach is attractive. That is, rather than generating
all possible combinations of contexts in advance—and
then having a “big switch” to choose which to use—
it is better to generate the particular combination of
contexts on demand.

To better understand the idea of contexts, con-
sider the case of optical model contexts and language
model contexts.

(1) (2)

(3) (4)

Figure 2. Image Contexts

Figure 2 shows four multi-spectral color SPOT
images from the color corpus that demonstrate differ-
ent contexts. Images (1) and (2) are similar in content
(mostly farmland and small towns) but the colors and
textures of the regions are very different. In fact, the
images are taken under different imaging conditions.
In the case of these two images, the major difference
is with the optical models, since, grammatically, the
two are rather similar. In images (3) and (4) the na-
ture of the terrain is very different. Image (3) shows
part of a major city whereas image (4) shows a rural
setting with only small villages. The grammar that
is suitable for parsing images 3 and 4 is quite differ-
ent. Attempting to interpret any of these images with

the wrong collection of optical or grammatical models
may be expected to produce a poor result especially
since knowledge weak segmentation algorithms often
give poor results. In this case, the reason for the dif-
ferences between image (1) and image (2) were changes
in the SPOT technology used to image them.

Separating contexts in this way suggests (for ex-
ample) that grammar learned using one sensor imple-
mentation may be usable even when the sensor tech-
nology is changed, so long as new optical models are
available for the new sensor. One of our original goals
was to be able to build vision systems that continue
to work well despite changes in the sensor and image
preprocessing environment. For that reason, the sep-
aration of imaging contexts from language contexts is
an appealing idea.

Even without changing the sensor technology, dif-
ferent optical contexts may be called for, for exam-
ple, variations in optical characteristics due to changes
in weather conditions or season. When the seasons
change, the optical characteristics of fields and trees
vary dramatically but the language of the terrain
changes little grammatically because it is defined by
the man-made structures and natural constraints of
the terrain. San Francisco is not a city one day and a
rural region the next.

In the case of the picture grammar, we wanted to
automatically produce batches of rules that constitute
image grammar contexts. These batches of rules are
models of the context in question. Similarly, in the
case of optical models, we want to produce batches of
optical models that can be grouped into contexts.

In this paper we describe GRAVA, an architecture
for building self-adaptive programs, and describe its
theory of operation.

2 An Overview of the GRAVA Archi-
tecture

Vision (and Robotics) systems lack robustness. They
don’t know what they are doing, especially when
things change appreciably (i.e. in situations where
technologies such as neural nets are ineffective).

Reflective architectures—an idea from AI—offer
an approach to building programs that can reason
about their own computational processes and make
changes to them.

The reflective architecture [8, 4] allows the pro-
gram to be aware of its own computational state and
to make changes to it as necessary in order to achieve
its goal.

However, much of the work on reflective archi-
tectures has been supportive of human programmer
adaptation of languages and architectures rather than
self-adaptation of the program by itself.

Our use of reflection allows the self-adaptive ar-



chitecture to reason about its own structure and to
change that structure.

2.1 Interpretation Problems

The problem of self-adaptive software is to respond
to changing situations by re-synthesizing the program
that is running. To do this we reify the software de-
velopment process.

2.1.1 Layers of Interpretation: An Ex-
ample

A key idea in the formulation of our reflective architec-
ture is that problems can often be described in terms
of interconnected layers of interpretation forming a hi-
erarchy of interpretation problems. A simple and fa-
miliar example of such a layered view is the process of
how large software projects are executed.

Requirements

Specifications

Design

Code

What xyz
should do

Spec for xyz

Design for
xyz proc

Procedure
xyz

Interpret requirements
as specification

Interpret specification
as design

Interpret design
as code

Interprets

Figure 3. Example of the relationship between levels
of interpretation

Large software projects, especially software
projects of defense contractors, start out with a re-
quirements document. This document says what the
program should do but doesn’t say how it should be
done. Someone interprets the requirements document
as a software system and produces a set of specifica-
tions for the components of the software system that
satisfies the requirements. The specifications are then
interpreted as a program design. The program design
lays out the procedures that make up the program
that implements the specification. Finally a program-
mer interprets the program design to produce a body
of code. If care is taken to retain back pointers it
is possible to trace back from a piece of code to the
part of the design that it interpreted. Parts of design
should be traceable to the parts of the specification
they interpret and parts of the specification should be

traceable to the parts of the requirements document
that they interpret.

Figure 3 shows the relationship between different
levels of interpretation in the software development ex-
ample.

When requirements change, as they often do in
the lifetime of a software system, it is possible to trace
which pieces of the system are affected. In this exam-
ple, at each level, an input is interpreted to produce an
interpretation that is used as the input at a subsequent
level.

Each component of the system “knows” what it
is doing to the extent that it knows what part of the
level above it implements (interprets).

The purpose of the reflective architecture is to
allow the image interpretation program to be aware of
its own computational state and to make changes to
it as necessary in order to achieve its goal. The steps
below provide a schematic introduction to the GRAVA
architecture.

1. The desired behavior is specified in the form of
statistical models by constructing a corpus.

2. The behavior, which covers several different imag-
ing scenarios, is broken down into contexts. Con-
texts exist for different levels of the interpretation
problem. Each context defines an expectation for
the computational stage that it covers. Contexts
are like frames and schemas; but because the con-
texts are gathered from the data automatically it
is not necessary to define them by hand.

3. Given a context a program to interpret the im-
age can be generated from that context. This is
done by compiling the context into a program by
selecting the appropriate agents.

4. The program that results from compiling a con-
text can easily know the following things:

(a) What part of the specification gave rise to
its components.

(b) Which agents were involved in the creation
of its components.

(c) Which models were applied by those agents
in creating its components.

(d) How well suited the current program is to
dealing with the current input.

5. The division of knowledge into agents that per-
form basic image interpretation tasks and agents
that construct programs from specifications is rep-
resented by different reflective levels.



2.2 Reflective Interpreter for Self-
Adaptation

The techniques for implementing reflection [15, 8] have
become common in modern languages [10, 6] and archi-
tectures. Unlike traditional implementations, which
have largely been supportive of human programmer
adaptation of languages and architectures, we use re-
flection as a way of supporting self-adaptation of the
program by itself. There are two principal differences
in our use of reflection:

1. We open up the program to itself so that by know-
ing what it knows it can use what it knows to al-
ter itself in order to respond to changes in the real
world.

2. We do not wish to change the semantics of the
program/language, we wish to change the pro-
gram itself.

A reflective layer is an object that contains one
or more “interpreter”. Reflective layers are stacked
up such that each layer is the meta-level computation
of the layer beneath it. In particular each layer is
generated by the layer above it. The face identification
application described in this paper uses two layers.

Each layer can reflect up to the layer above it in
order to self-adapt. The prototype GRAVA implemen-
tation is written in Yolambda [7] a dialect of Scheme [5]

(defineClass ReflectiveLayer
((description) ;; the (input) description

;; for this layer
(interpreter) ;; the interpreter for this

;; layer’s description
(knowledge) ;; a representation of world

;; knowledge
(higherlayer) ;; the meta-level above this
(lowerlayer)));; the subordinate layer

A reflective layer is an object that contains the
following objects.

1. description: the description that is to be inter-
preted.

2. interpreter: a system consisting of one or more
cascaded interpreters that can interpret the de-
scription.

3. knowledge: a problem dependent representation
of what is known about the world as it pertains
to the interpretation of the subordinate layer. For
the face identification application knowledge con-
sists of evidence accumulated from agents sup-
porting each of the contexts (age, race, sex, light-
ing, and pose).

4. higherlayer: the superior layer. The layer that
produced the interpreter for this layer.

5. lowerlayer: the subordinate layer.

The semantics for a layer are determined by the
interpret, elaborate, adapt and execute methods which
we describe in turn below.

Figure 4. Meta-Knowledge and Compilation

Figure 4 shows the relationship between reflective
layers of the GRAVA architecture.

Reflective Layer “n” contains a description that
is to be interpreted as the description for layer “n+1”.
A program has been synthesized either by the layer “n-
1” or by hand if it is the top layer. The program is the
interpreter for the description. The result of running
the interpreter is the most probable interpretation of
the description—which forms the new description of
the layer “n+1”. All the layers (including “n”) also
contain a compiler. Unless the layer definition is over-
ridden by specialization, the compiler in each layer is
identical and provides the implementation with a theo-
rem prover that compiles an interpreter from a descrip-
tion. The compiler runs at the meta level in layer “n”
and uses the knowledge of the world at layer “n+1”
which resides in level “n”. It compiles the description
from level “n+1” taking in to account what is known
at the time about level “n+1” in the knowledge part
of layer “n”. The compilation of the description is a
new interpreter at layer “n+1”.

Below we describe the meta-interpreter for layers
in GRAVA.

The interpret method is the primary driver of
computation in the reflective architecture. The reflec-
tive levels are determined by the program designer. In
order for the self-adaptive program to “understand”
its own computational structure, each layer describes
the layer beneath it. In self-adapting, the architec-
ture essentially searches a tree of meta-levels. This is



best understood by working through the details of the
architecture.

In the simplest of situations the top level applica-
tion of “interpret” to the top layer results in the recur-
sive descent of “interpret” through the reflective layers
finally yielding a result in the form of an interpreta-
tion. Along the way however unexpected situations
may arise that cause the program to need to adapt.
Adaptation is handled by taking the following steps:

1. Reflect up to the next higher layer (parent level)
with an object that describes the reason for re-
flecting up. It is necessary to reflect up because
the higher level is the level that “understands”
what the program was doing. Each level “under-
stands” what the level directly beneath it is doing.

2. The world model (knowledge) that is maintained
by the parent level is updated to account for what
has been learned about the state of the world from
running the lower level to this point.

3. Given updated knowledge about the state of the
world the lower level is re-synthesized. The lower
level is then re-invoked.

Armed with that conceptual overview of the in-
terpret procedure we now explain the default interpret
method.

1:(define (interpret
ReflectiveLayer|layer)

2: (withSlots (interpreter
description
lowerlayer) layer

3: (if (null? interpreter)
4: description
5: (begin

(elaborate layer))
6: (reflectProtect

(interpret
lowerlayer)

7: (lambda (layer gripe)
(adapt layer gripe))))))

8:(define (reflectionHandler
ReflectiveLayer|layer
gripe)

9: (adapt layer gripe))

Line 3 checks to see if the layer contains an inter-
preter. If it does not the result of evaluation is simply
the description which is returned in line 4. This occurs
when the lowest level has been reached.

If there is an interpreter, the elaborate method is
invoked (line 5). “elaborate” (described below) con-
structs the next lower reflective layer.

“reflectProtect” in line 6 is a macro that hides
some of the mechanism involved with handling reflec-
tion operations.

(reflectProtect form handler) evaluates form and
returns the result of that evaluation. If during the
evaluation of form a reflection operation occurs the
handler is applied to the layer and the gripe object
provided by the call to reflectUp. If the handler is
not specified in the reflectProtect macro the generic
procedure reflectionHandler is used. The invocation
of the reflection handler is not within the scope of the
reflectProtect so if it calls (reflectUp ...) the reflection
operation will be caught at the next higher level. If
reflectUp is called and there is no extant reflectProtect
the debugger is entered. Therefore if the top layer
invokes reflectUp the program lands in the debugger.

When the reflection handler has been evaluated
the reflectProtect re-evaluates the form thereby mak-
ing a loop. Line 7 is included here to aid in description.
It is omitted in the real code allowing the reflection-
Handler method to be invoked. The handler takes care
of updating the world model based on the information
in gripe and then adapts the lower layer. The han-
dler therefore attempts to self adapt to accommodate
the new knowledge about the state of the world until
success is achieved. If the attempt to adapt is finally
unable to produce a viable lower level interpreter it
invokes reflectUp and causes the meta level interpre-
tation level to attend to the situation.

1:(define (elaborate
ReflectiveLayer|layer)

2: (withSlots (lowerlayer) layer
3: (let ((interpretation

(execute layer))
4: (llint (compile

layer
interpretation)))

5: (set! lowerlayer
((newLayerConstructor
layer)

6: higherlayer: layer
7: description: interpretation
8: interpreter: llint)))))

The purpose of the elaborate layer is to build the
initial version of the subordinate layer. It does this in
three steps:

1. Evaluate the interpreter of the layer in order to
“interpret” the layer’s description. The interpre-
tation of layern is the description of layern+1.

Line 3 invokes the interpreter for layer with (ex-
ecute layer). This simply runs the MDL agent
interpreter function defined for this layer. The
result of executing the interpreter is an interpre-
tation in the form of a description.

2. Compile the layer. This involves the collection of
appropriate agents to interpret the description of
the lower layer.



Line 4 compiles the new layer’s interpreter. Layer
n contains knowledge of the agents that can be
used to interpret the description of layer n + 1.
The description generated in line 3 is compiled
into an interpreter program using knowledge of
agents that can interpret that description.

3. A new layer object is instantiated with the in-
terpretation resulting from (1) as the description
and the interpreter resulting from compile in step
(2) as the interpreter. The new layer is wired in
to the structure with the bi-directional pointers
(lowerlayer and higherlayer).

In line 5, (newLayerConstructor layer) returns the
constructor procedure for the subordinate layer.

The adapt method updates the world state knowl-
edge and then recompiles the interpreter for the lower
layer.

1:(define (adapt
ReflectiveLayer|layer
gripe)

2: (withSlots (updateKnowledge) gripe
3: (updateKnowledge layer))

;; update the belief state.
4: (withSlots (lowerlayer) layer
5: (withSlots (interpreter) lowerlayer
6: (set! interpreter

(compile layer)))))

The representation of world state is problem de-
pendent and is not governed by the reflective architec-
ture. In each layer the world state at the correspond-
ing meta level is maintained in the variable “knowl-
edge”. When an interpreter causes adaptation with
a reflectUp operation an update procedure is loaded
into the “gripe” object. Line 3 invokes the update
procedure on the layer to cause the world state repre-
sentation to be updated.

Line 6 recompiles the interpreter for the lower
layer. Because the world state has changed the affected
interpreter should be compiled differently than when
the interpreter was first elaborated.

1:(define (execute
ReflectiveLayer|layer)

2: (withSlots (description
interpreter
knowledge) layer

3: (run interpreter
description
knowledge)))

2.3 Protocol for Interpreters

An interpreter is a special kind of computational agent
that contains agents which it sequences. To support

those activities the interpreters support a protocol for
meta-information shown in Figure 5(left).

Figure 5. Protocols for Interpreter and Agent Meta-
Information

1. (pretest anInterpreter anInput) – Returns true if
the input is suitable for the interpreter and false
otherwise.

2. (posttest anInterpreter anOutput) – Returns true
if the output is acceptable and false otherwise.

3. (descriptionLength anInterpreter anInput) – Re-
turns the description length of the interpreter.
The description length is −log2(P (success))
where P (success) is the probability that the in-
terpreter will successfully interpret the scene.

2.4 Protocol for Agents

In order for agents to be selected and connected to-
gether by the theorem prover/compiler they must ad-
vertise their semantics. The purpose of the compiler is
to select appropriate agents and connect them together
to form a program. To support those activities the
agents support a protocol for meta-information shown
in Figure 5(right).

1. (consumes anAgent) – Returns a list of types that
the interpreter expects as input.

2. (produces anAgent) – Returns a list of types that
the interpreter produces as output.

3. (descriptionLength anAgent) – Returns the de-
scription length of the agent. The description
length is −log2(P (correct)) where P (correct) is
the probability that the agent will diagnose the
feature in the same way as the specification.

3 Conclusion

The GRAVA software architecture is a prototype of a
new approach to software development, which we call
Self Adaptive Software. It promises to be an excellent
approach to producing more robust, self-checking sys-
tems. The general Self Adaptive approach is clearly
applicable to more than just interpretation problems.

The GRAVA architecture has been successfully
applied to a number of problems including the aerial



image interpretation problem discussed in this paper
and a person/face recognition and tracking project
(ongoing) [13, 14]. Although the architecture doesn’t
depend upon corpus based methods the problem of
generating the large number of models required for
such a system to operate robustly makes corpus based
systems particularly attractive.

We have developed methods for automatically in-
ducing contexts from annotated corpora [12].

Since contexts are not random but are struc-
turally related, transitions between contexts can be
modeled as hidden Markov models (HMM) [16, 1]. We
are currently extending the architecture described in
the paper to use HMM reasoning to optimize the con-
text switching mechanism. We will present the results
of this research at a later date.

Although GRAVA was developed as an architec-
ture for building robust vision programs and so far has
only been applied to vision problems there is no reason
why, in principle, that GRAVA could not be applied
to other interpretations including the interpretation of
speech and natural language.

References

[1] L.E. Baum. An inequality and associated max-
imization technique in statistical estimation for
probabilistic functions of a markov process. In-
equalities, 3:1–8, 1972.

[2] M. Clowes. On seeing things. Artificial Intelli-
gence, 2:79–116, 1971.

[3] B. Draper, R. Collins, J. Brolio, A. Hansen, and
E. Riseman. The schema system. Technical Re-
port COINS TR88-76, Computer and Information
Science, Univ. Massachusetts at Amherst, 1988.

[4] S. Giroux. Open reflective agents. In J. P. Muller
M. Wooldridge and M. Tambe, editors, Intelligent
Agents II Agent Theories, Architectures, and Lan-
guages, pages 315–330. Springer, 1995.

[5] IEEE. Ieee standard for the scheme programming
language. IEEE Standard 1178-1990, IEEE Piss-
caataway, 1991.

[6] G. Kiczales, J. des Rivieres, and G. Daniel. The
art of the Metaobject Protocol. MIT Press, 1993.

[7] R. Laddaga and P. Robertson. Yolambda Refer-
ence Manual. Dynamic Object Language Labs,
Inc., 1996.

[8] P. Maes and D. Nardi. Meta-Level Architectures
and Reflection. North-Holland, 1988.

[9] M. Minsky. A framework for representing knowl-
edge. In P. H. Winston, editor, The Psychology of
Computer Vision. McGraw-Hill, New York, 1975.

[10] A. Paepcke. Pclos: Stress testing clos
experiencing the metaobject protocol. In
ECOOP/OOPSLA ’90 Proceedings, 1990.

[11] P. Robertson. A Self-Adaptive Architecture for
Image Understanding. PhD thesis, University of
Oxford, 2001.

[12] P. Robertson and R. Laddaga. Principle compo-
nent decomposition for automatic context induc-
tion. In Proceedings Artificial and Computational
Intelligence, Tokyo 2002. ACI, 2002.

[13] P. Robertson and R. Laddaga. A self-adaptive ar-
chitecture and its aplication to robust face identi-
fication. In PRICAI 2002, Trends in Artificial In-
telligence, pages 542–551. Springer Verlag, LNAI
2417, 2002.

[14] P. Robertson and R. Laddaga. An agent architec-
ture for information fusion and its application to
robust face identification. In Proceedings of the
21st International Conference on Applied Infor-
matics, Innsbruck Austria, pages 132–139, 2003.

[15] B.C. Smith. Reflection and semantics in lisp.
In Proceedings 11th Annual ACM Symposium on
Principles of Programming Languages, Salt Lake
City, Utah, pages 23–35, January 1984.

[16] A.J. Viterbi. Error bounds for convolution codes
and an asymptotically optimal decoding algo-
rithm. IEEE Transactions on Information The-
ory, 13:260–269, 1967.


