An Agent Architecture for Information Fusion and its Application
to Robust Face Identification

Paul Robertson (paulr@ai.mit.edu)
Robert Laddaga (rladdaga@ai.mit.edu)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

Abstract

Information fusion is a difficult problem in general, and
an especially difficult problem for vision systems. Evi-
dence from multiple sources often cannot be combined
in any straightforward manner, and significant reasoning
and transformation operations may need to be performed
on one piece of evidence before it can be usefully com-
bined with another piece of evidence. Conventional ap-
proaches to information fusion are generally limited to
cases where it is possible to combine signals at the sig-
nal processing level, before higher level interpretation
takes place, or simply to process different signals inde-
pendently, and then choose the “best” interpretation. Our
approach combines evidence at multiple levels in the in-
terpretation problem. We discuss the GRAVA architec-
ture, and how it enables a flexible type of information
fusion. The GRAVA architecture has been applied to
several computer vision applications, and we use its ap-
plication to face recognition to highlight the support for
information fusion.

Keywords: Information Fusion, Computer Vision,
Intelligent Agents, Model Based Reasoning.

1. Introduction

Information fusion has always been a difficult problem.
Evidence from multiple sources cannot in general simply
be combined. Standard approaches to information fusion
either combine similar signals prior to interpretation, or
process signals independently and then choose the best of
the competing interpetations. An example of the former
is a microphone array, which assumes that noise signals
will be roughly the same at each individual microphone,
and can be disgarded, while the voice signal will depend
on the angle between the voice source and the individual
microphone. This approach can work well with similar
signals, but often is limited in the degree of improvement
of signal interpretation. An example of the latter is a vot-
ing scheme for determining validity of results from par-
allel independent computations. This approach can also
be very valuable, but is limited by inablility to apply dis-
parate evidence sources to improve the performance of
individual sensors or information sources. In both cases,
there is often a combinatorial explosion due to the num-
ber of signals, or dependence between evidence sources.

One of the causes that prevents simple combination

of evidence is when the evidence is from radically dif-
ferent types of information sources. For example, we
may have aerial reconnaisance evidence of mobile mis-
sile launchers at a specific location in Irag, but intelli-
gence from human sources within the country that indi-
cate the launchers are elsewhere. This type of problem
is difficult because the “signals” can’t be readily com-
bined before interpretation, and after being interpreted, it
is difficult to decide what relative weights to assign, and
the degree of dependence in the evidence.

Vision systems have a built in difficulty with respect
to information fusion: the visual signal is subject to in-
terpretation at many different levels. Consider, for exam-
ple, face recognition. If one camera delivers an image
that can be interpreted as Jim’s face at location x, and an-
other camera delivers an image that indicates there is no
face at the same location, it is not easy to see how best
to combine such evidence. It is not easy to decide if it
would be better to combine the raw camera images us-
ing some collection of operators, and then interpret the
resulting combined image, or instead to weight the two
pieces of evidence and choose the most likely, or to mod-
ify the interpretation of one image based on information
from the other image. Image interpretation thus requires
a more flexible approach to information fusion.

We can think of information fusion for vision as
follows. In general, we want to form a hypothesis, find
a way to apply evidence toward refuting or confirming
the hypothesis, and form new hypotheses as needed. In-
formation that refutes or confirms one hypothesis may
also be used in the process of formulating a replacement
hypothesis. However, rather than explicitly represent-
ing and reasoning about hypootheses, we use MDL to
implicitly accomplish the same result. MDL allows us
to combine evidence from disparate sources into multi-
ple interpretations. Individual sources will contribute to
lenthening or shortening the description that constitutes
each individual interpretation. The selection of the in-
terpretation with minimum description length has then
implicitly fused the evidence from the multiple disparate
sources.

In this paper, we first describe the general prob-
lem of face identification, then discuss the GRAVA ar-
chitecture, and explain how it uses Minimum description
length (MDL) to implement a more flexible information
fusion approach.

2. The Face Recognition Problem

There are by now many face recognition systems that
work well in constrained situations, but in natural envi-
ronments, where lighting and pose can vary widely, they
perform poorly. It is evident that multiple sources of in-
formation can yield a more robust face recognizer, if we
can solve the problem of flexibly and efficiently combin-
ing the evidence from these sources.

For an image understanding system to interpret an
image it is necessary for it to deal with the complexity
in the image. Where we have been most successful in
building vision systems has been in applications where
the complexity and variation of the image content can be
carefully managed. Examples of such situations include
factory inspection applications and face recognition ap-
plications in which the face is deliberately positioned into
a canonical location. Natural environments contain rich
variety. It is very hard to build a single algorithm that
can deal with the natural range of possibilities, but three
aspects of the world provide a means of meeting the chal-
lenge: 1) any particular situation only has to deal with a
subset of that variety at any time; 2) the subsets are not
random but tend to occur in clusters or contexts; 3) we
often have multiple sensors or other sources of informa-
tion about the subject.

Most face identification and recognition systems
work by measuring a small number of facial features
given a canonical pose and matching them against a
database of known faces. Frequently however in practi-
cal applications few frames show a full frontal face. Fur-
thermore lighting may vary significantly. These factors
frustrate attempts to identify a face. Many applications
have much more relaxed recognition goals. If the task
is to track people as they move throughout a monitored
space the task may be to identify the individual from a
relatively small set of people. For face profiles differ-
ent models involving ear, eye, and nose may prove suc-
cessful. By building a face recognizer that can fuse in-
formation from a collection of recognizer agents we can
construct a recognizer that is robust to normal variations
in the natural environment. This permits a much wider
application of face recognition technology.

Our application involves recognizing people as they
move about an intelligent space [4] in an unconstrained
way. To better understand contexts consider the face
“pose” contexts:

Figure 1. Four Pose Contexts

Figure 1 shows four pose contexts: “profile”,
“oblique”, “off-center”, and “frontal”. The profile view
is supported by agents that measure points along the pro-
file of the face, the corner of the eye, and the lips. The
oblique view with ear supports measurements of the ear

and measurements of the position of the ear, eye, and
nose. The triangle formed by the eye, ear, and nose help
to determine the angle of the face to the camera which al-
lows measurements to be normalized before recognition.
The off-center view permits measurements of points on
the eyes, nose, and mouth. The shape of the nose can be
measured but the width of the base of the nose cannot be
measured due to self-occlusion. The frontal view allows
nose width to be measured but the nose shape cannot be
measured. There are other contexts that include/exclude
ears. The different contexts control, among other things,
what models can be used for matching, what features can
be detected and what transformations must be made to
normalize the measurements prior to matching. This ex-
ample shows contexts for pose but there are also contexts
for lighting, race, gender, and age.

l Evidence to support selection of a set of contexts.

AzisayIuksay

<

Face

) description.
context,
and match

Find face
candidates
in image.

Find face
features in
candidate
and match

Figure 2. Recognizer Schematic

The recognizer supports a collection of face candi-
date finders, face models, feature finders, and normaliza-
tion algorithms implemented as agents. The face recog-
nition process is shown schematically in Figure 2. Face
candidate finder agents look for face like shapes in the
image and generate evidence that supports the selection
of a set of contexts based on the shape and shading of
the face candidate. Agents appropriate to the context are
selected to make a special purpose face recognizer. If
the recognizer doesn’t succeed in finding appropriate fea-
tures where they are expected to be the system self-adapts
by using available evidence to select a more appropriate
context, constructing a new recognizer, and trying again.
The system iterates in this manner until appropriate light-
ing, race, age, gender, and pose contexts have been cho-
sen and the best match has been achieved. Convergence
on the right set of contexts is rapid because evidence in
support of a context is collected each time an agent runs.
The self-adaptive architecture responsible for the detec-
tion of contects and the selection of agents for a recog-
nizer are discussed elsewhere [12].

In the following section we describe how evidence
from the selected agents is fused to produce an interpre-
tation.

3. Minimum Description Length

The Grounded Reflective Adaptive Vision Architecture
(GRAVA) is a self adaptive architecture for image inter-
pretation problems. GRAVA has already been success-
fully applied to satellite image interpretation [10, 11] and
is now being used to identify faces in video images with
unconstrained pose and lighting.

This section focuses on how MDL can be used in
a novel way as a mechanism by which agents can coop-
erate and compete; how such an approach can provide a
basis for communication between different semantic lev-
els; how the resulting communication can facilitate infor-
mation fusion; and to how this facilitates finding the best
interpretation of the data. MDL then provides the means
of finding the globally most likely interpretation.

Emphasis is given to models that can be learned
from a corpus. One of the easiest ways of estimating
probabilities—and hence description lengths—is to col-
lect frequencies from representative data. The system
described in the paper uses an image corpus for this pur-
pose. Other mechanisms suggest themselves for estimat-
ing description lengths including using Qualitative Rea-
soning (QR) models and models of uncertainty.

3.1 MDL and Communication Theory

The notion of theoretical minimum code length described
above provides a convenient way of restating the goal of
“most probable interpretation” in communication theo-
retic terms.

An interpretation is a description that consists of
many parts. Each part has an associated probability.

Consider the case of an image containing two blobs.
If the probability of the first blob being a boy given by
P(bloby = boy) = P,y and the probability of the sec-
ond blob being a dog is given by P(blobs = dog) = Pjoq
the probability that the image is one in which the first
blob is a boy and the second blob is a dog is given by
Pyoy * Pyog (from equation 3.2). An image containing n
blobs such that for any ¢ < n the interpretation of blob;
is given by I;(blob;) and the probability of such an inter-
pretation being correct is given by P(I;(blob;)) the goal
is to maximize the probability (assuming conditional in-
dependence):

arg max P(I;(blob;)) 1)

b=
In order to communicate the description using a
theoretically optimal code would require a description
length of: (—loga(Proy))+(—l0g2(Puog)). Foranimage
containing n blobs as defined above the goal is to choose
interpretations I;...1,, so as to minimize the description

length:

n

arg rlrfinz —loga(P(I;(blob;))))
=1

Finding the most probable interpretation is identical
to finding the minimum description length (MDL).
The approach raises two significant issues.

1. How to estimate P.
2. How to find the global MDL.

Neither of these issues is straightforward. In this
paper we depend upon estimating P from frequencies
obtained from a corpus. For a general mechanism
for finding MDL we employ a Monte Carlo sampling
scheme.

3.2 Monte-Carlo methods

The MDL Agent architecture described in this paper ad-
dresses the need to integrate knowledge at different se-
mantic levels. To understand an image that consists of
high level components such as objects and of low level
features such as lines and textures we need to integrate
different levels of processing.

Single thread of control solutions, such as the
blackboard and forward chaining approaches, depend
upon taking a path towards a solution and backtracking
past failures until a solution is found. The same is true of
subsumption. These are essentially depth first search for
a solution—not search for the best solution. In a robot
navigation problem, we may be happy if the robot nego-
tiates the obstacles in the environment and finally ends up
at the destination. In interpretation problems, just finding
a solution is not good enough. An English sentence can
have many plausible parses. Most of them do not make
sense. ie: syntactically okay, but semantically garbage.

Markov Chain/Monte Carlo methods (MCMC)
have become popular recently in computer vision[5, 7]
but have been limited to modeling low level phenomenon
such as textures [6]. In natural language understanding,
use of hidden Markov models has been successful as
an optimization technique with certain restricted kinds
of grammar. Problems that can be described as Hid-
den Markov Models (HMM) [1] can yield efficient algo-
rithms. For example, in natural language understanding,
some grammars permit efficient algorithms for finding
the most probable parse. Stochastic Context Free Gram-
mars (SCFGs) can be parsed so as to find the most prob-
able parse in cubic time using the Viterbi algorithm [14].
Only the simplest grammars and problems can be solved
efficiently in this way, however, and for the more interest-
ing grammars and for more complex problems in general,
other techniques must be used. Certainly something as
loosely defined as an agent system incorporating seman-
tics from multiple levels would rarely fit into the HMM
straitjacket.

Even for natural language processing, finding the
best solution can be prohibitively expensive when the
Viterbi algorithm can’t be employed. In visual pro-
cessing, with images whose complexity greatly exceeds
that of sentences, and which are three dimensional [as
opposed to the linear arrangement of words in a sen-
tence], finding the best solution is infeasible. Approxi-
mate methods are therefore attractive. Monte-Carlo tech-
niques are very attractive in these situations.

In an ambiguous situation, such as parsing a sen-
tence, in which many [perhaps thousands] of legal parses
exist, the problem is to find the parse that is the most
probable. If the problem can be defined in such a way
that parses are produced at random and the probability
of producing a given parse is proportional to the prob-
ability that the parse would result from a correct inter-
pretation, the problem of finding the most probable parse
can be solved by sampling. If P is a random variable
for a parse, the probability distribution function (PDF)
for P can be estimated by sampling many parses drawn
at random. If sufficiently many samples are taken the

most probable parse emerges as the parse that occurs the
most frequently. Monte Carlo techniques use sampling
to estimate PDF’s. In this paper we generalize the idea
of parsing in order to build an agent system.

Monte Carlo methods are attractive for a number of
reasons:

1. They provide an approximate solution to search of
search spaces whose combinatorics are prohibitive.

2. By adjusting the number of samples, the solution
can be computed to an arbitrary accuracy.

3. Whereas the best solution can not be guaranteed by
sampling methods, measuring standard error during
the sampling phase allows the number of samples to
be adjusted to yield a desired level of accuracy.

In this paper, we are primarily interested in com-
posing systems of agents in such a way that the most
probable global descriptions are produced. This brings
us directly to the issue of how to select among agents
that may be applicable at a given place in a computation.
We have considered three approaches in the foregoing:

1. The selection is carefully programmed. Hearsay Il
did this with its focus of control database.

2. Local competition among agents.

3. Monte Carlo sampling to estimate global minima.

3.3 Agent Selection Paradigms

Autonomous agents are expected to operate without the
intervention of a central control mechanism [such as a
focus of control database]. One approach to the agent se-
lection problem that has been the focus of considerable
attention, is the notion of a market based approach. The
idea is that an agent wishes to farm out a subtask to an-
other agent capable of performing the subtask. Agents
that are candidates to perform the subtask compete by
bidding a price. This often works well, producing ef-
ficient solutions. However, two problems arise in such
systems:

1. Selecting an appropriate basis for cost computations
so that the bidding is fair.

2. Because the bidding is piecewise local, such sys-
tems are prone to find local minima and miss the
global minima.

Our approach addresses these two problems as fol-
lows.

The basis for cost computation is description
length. Description length is the correct measurement in
an interpretation problem because it captures the notion
of likelihood directly: DL = —logs(P).

Monte Carlo sampling allows us to avoid the prob-
lem of finding unwanted local minima.

In the following section, we describe the architec-
tural objects that implement these ideas in the GRAVA
architecture. In the third section we highlight the idea

that Monte Carlo sampling can solve problems similar to
those for which systems of inhibition have been used by
demonstrating the agent architecture on a reading prob-
lem that was previously solved using a multi-layer inhi-
bition based neural network with downward control by
McClelland [9]. Our approach, however, achieves highly
robust results without the use of any downward flow of
control.

4. MDL Agent Architecture

The architecture is built from a small number of objects:
Models; Agents; Interpreters; Reflective Levels; and De-
scriptions.

All of these terms are commonly used in the litera-
ture to mean a wide range of things. In the GRAVA ar-
chitecture they have very specific meanings. Below, we
describe what these objects are and how they cooperate
to solve an interpretation problem.

Description Description
Element Element

Description

Element -_

Agent Description || Description

Element Element
Description
Element Agent
.
Model
Agent

Description Description
Element Element

Figure 3. Objects in the GRAVA Architecture

Figure 3 shows the objects that make up the archi-
tecture. A reflective layer takes an input description A,
and produces an output description A,,; as its result.
A description consists of a collection of description el-
ements < €1, €2, ..., €, >. The output description is an
interpretation (I € Q(A;y,)) of the input where Q(z) is
the set of all possible interpretations of .

Aout == I(Azn) (3)

The goal of a layer is to find the best interpretation
Iyest Which is defined as the interpretation that minimizes
the global description length.

arg ?bnrtl DL(Ibest (Azn)) (4)

The interpretation function of the layer consists of

an interpretation driver and a collection of connected
agents. The interpretation driver deals with the format-
ting peculiarities of the input description (the input de-
scription may be an array of pixels or a symbolic descrip-
tion). The program is made from a collection of agents

wired together. The program defines how the input will
be interpreted. The job of the interpreter/program is to
find the most probable interpretation of the input descrip-
tion and to produce an output description that represents
that interpretation.

The GRAVA architecture allows for multiple layers
to exist in a program and there are [reflective] links be-
tween the layers.

Below, we describe in greater detail the purpose,
protocol, and implementation of the objects depicted in
Figure 3. We maintain a dual thread in the following.
On the one hand, we describe the GRAVA architecture
abstractly, on the other, we also describe the actual im-
plementation that we have developed.

4.0.1 Description

A description A consists of a set of description elements
€.

A=< €1,€2, ..., €p > (5)

Agents produce descriptions that consist of a num-
ber of descriptive elements. The descriptive elements
provide access to the model, parameters, and the descrip-
tion length of the descriptive element. For example, a de-
scription element for a face might include a deformable
face model and a list of parameters that deform the model
face so that it fits the face in the image. A description el-
ement is a model/parameters pair.

The description length must be computed before the
element is attached to the description because the agent
must compete on the basis of description length to have
the descriptive element included. It makes sense there-
fore to cache the description length in the descriptive el-
ement.

The description class implements the iterator:

(for Description|des fcn)
This applies the function “fcn” to every element of

the structural description, and this enables the architec-
ture to compute the global description length:

DL(Aout) = Y DL(e;) (6)
=1

4.0.2 DescriptionElements

Description elements are produced by agents that fit
models to the input.

Description elements may be implemented in any
way that is convenient or natural for the problem do-
main. However the following protocol must be imple-
mented for the elements of the description:

(agent <El erment >)
Returns the agent that fitted the model to the input.

(nmodel <El erment >)

Returns the model object that the element repre-
sents.

(paraneters <El enent >)

Returns the parameter block that parameterizes the
model.

(descriptionLengt h <El ement >)

Returns the description length in bits of the descrip-
tion element.

Implementations of description elements must in-
herit the class DescriptionElement and implement the
methods “agent”,
tionLength”.

For readability we print description elements as a

model”, “parameters”, and “descrip-

list:

(<nodel nane> . <paraneter |ist>)

4.0.3 Modds

Fitting a model to the input can involve a direct match
but usually involves a set of parameters.
Consider as input, the string:

‘““t hr ee bl ind mi c e’

We can interpret the string as words. In order to do
S0, the interpreter must apply word models to the input in
order to produce the description. If we have word models
for “three”, “blind”, and “mice” the interpreter can use
those models to produce the output description:

((three) (blind) (mice))

The models are parameterless in this example. Al-
ternatively we could have had a model called “word” that
is parameterized by the word in question:

((word three) (word blind) (word mce))

In the first case there is one model for each word.
In the case of “three” there is an agent that contains code
that looks for “t”, “h”, “r”, “e”, and “e” and returns the
description element “(three)”. In the second case there is
one model for words that is parameterized by the actual
word. The agent may have a database of words and try
to match the input to words in its database.

Consider the two examples above. If the probability
of finding a word is 0.9 and the probability of the word
being “three” is 0.001 the code length of “(word three)”
is given by:

DL(wordthree) = DL(word) + DL(three)
= —loga(p(word)) — loga(p(three))
= —10g2(0.9) — log2(0.001)
= 0.1520 + 9.9658
= 10.1178bits
Y]

The second approach, in which a separate agent
identifies individual words would produce a description
like “(three)”. The model is “three” and there are no pa-
rameters. The likelihood of “three” occurring is 0.001 so
the description length is given by:

DL(three) = —loga(p(three))
= —10g2(0.9 % 0.001) (8)
= 10.1178bits

That is, the choice of parameterized vs. unparame-
terized doesn’t affect the description length. Description
lengths are governed by the probabilities of the problem
domain. This allows description lengths produced by dif-
ferent agents to be compared as long as they make good
estimates of description length.

For a more realistic example, consider the case of a
principle component analysis (PCA) model of a face [2].
A PCA face model is produced as follows. First a num-
ber n of key points on a face are identified as are their
occurrences on all of the images. The shape of the face
1, is defined by a vector containing the n points. A mean
shape is produced by finding the average position of each
point from a set of example face shapes.

B 1 n
b= - ;1/%)

The difference of each face from the mean face 1) is
given by:

0 =Py — (10)

The covariance matrix .S then is given by:
S =Y iy (11)
i=1

The eigenvectors p;. and the corresponding eigen-
values)\, of the covariance matrix S are calculated.
The eigenvectors are sorted in descending order of their
eigenvalues. If there are NV images, the number of eigen-
vectors to explain the totality of n/V points is N, typi-
cally large. However, much of the variation is due to
noise, so that p << N eigenvectors suffices to account
for (say) 95% of the variance. The most significant of the
eigenvector-eigenvalue pairs are selected as the principal
components.

The resulting face model consists of a mean face
shape) and a set of eigenvectors and weights such that
any face shape 1, can be approximated by:

¥p =+ Pb, (12)

where P is the vector of eigenvectors and b is the vector
of weights. The weights are a measure of how much the
model must be distorted in order to match the face 1.
The above formulation of a face shape model de-
scribes a parameterized model. The weights are the pa-
rameters and the mean shape and vector of eigenvectors
is the model. Algorithms exist for fitting such shape
models to data. These algorithms first identify a key

component and then, using the mean shape model, search
for the other features (often edges) near the place where
the mean suggests it should be. When the feature is
found, its actual location is used to define a distance from
the mean. This is repeated for feature points in the model.
A set of weights is calculated which represents the pa-
rameterization of the model.

4.04 Agents

The primary purpose of an agent is to fit a model to its
input and produce a description element that captures the
model and any parameterization of the model.

We implemented the atomic computational ele-
ments in GRAVA as agents. The system manipulates
agents and builds programs from them but does not go
beneath the level of the agent itself. The agent al-
lows conventional image processing primitives to be in-
cluded in the GRAVA application simply by providing
the GRAVA agent protocol. We might have used meth-
ods if we were building a language rather than an archi-
tecture. GRAVA agents are not autonomous agents. They
depend upon other agents to reason about them and to
connect them together to make programs.

An agent is a computational unit that has the fol-
lowing properties:

1. It contains code which is the implementation of an
algorithm that fits its model to the input in order to
produce its output description.

2. It contains one or more models [explicitly or implic-
itly] that it attempts to fit to the input.

3. It contains support for a variety of services required
of agents such as the ability to estimate description
lengths for the descriptions that it produces.

An agent is implemented in GRAVA as the class
“Agent”. New agents are defined by subclassing
“Agent”. Runtime agents are instances of the appropriate
Agent class. Generally Agents are instantiated with one
or more models. In our system all models are learned
from the corpus.

The protocol for agents includes the method “fit”
that invokes the agent’s model fitting algorithm to at-
tempt to fit one or more of its models to the current data.

(fit anAgent data)

The “fit” method returns a (possibly null) list of de-
scription elements that the agent has managed to fit to the
data. The interpreter may apply many agents to the same
data. The list of possible model fits from all applicable
agents is concatenated to produce the candidate list from
which a Monte Carlo selection is performed.

4.05 Interpreters

An interpreter is a program that applies agents in order to
produce a structural description output from a structural
description input.

A scene interpretation program may include agents
for face recognition—such as the PCA face shape agent
described above—and may include other agents that rec-
ognize other things that would be found in an image such
as trees, buildings, and roads. The interpreter could be
hand-assembled or it could be generated.

4.0.6 Monte Carlo Agent Selection

A recurring issue in multi-agent systems is the basis for
cooperation among the agents. Some systems assume
benevolent agents where an agent will always help if it
can. Some systems implement selfish agents that only
help if there is something in it for them. In some cases
the selfish cooperation is quantified with a pseudo market
system.

Our approach to agent cooperation involves having
agents compete to assert their interpretation. If one agent
produces a description that allows another agent to fur-
ther reduce the description length so that the global de-
scription length is minimized, the agents appear to have
cooperated. Locally, the agents compete to reduce the
description length of the image description. The algo-
rithm used to resolve agent conflicts guarantees conver-
gence towards a global MDL thus ensuring that agent co-
operation “emerges” from agent competition. The MDL
approach guarantees convergence towards the most prob-
able interpretation.

When all applicable agents have been applied to the
input data the resulting lists of candidate description ele-
ments is concatenated to produce the candidate list.

The monteCarloSelect method chooses one de-
scription element at random from the candidate list. The
random selection is weighted to the probability of the de-
scription element.

Polom = 2—DL(elem) (13)

So, for example, if among the candidates, one has
a description length of 1 bit and one has a description
length of two bits, the probabilities of those description
lengths is 0.5 and 0.25 respectively. The monteCarloSe-
lect method would select the one bit description twice as
often as the two bit description.

5. Conclusion
The architecture described is based on two ideas:

1. That for interpretation problems global MDL is the
goal;

2. That global MDL can be approximated by Monte-
Carlo sampling.

Because MDL is not specific to any particular prob-
lem it provides a common currency or “gold standard”
for use in market model agent systems. Because the ar-
chitecture is specialized to solving interpretation prob-
lems there are problems for which it is not appropriate.
Nevertheless a great many interesting problems can be
cast in the form of interpretation problems.

Because the foundations upon which the architec-
ture is built are well understood the behavior and per-
formance of the architecture can yield to some level of
analysis—such as convergence analysis. The architec-
ture has some interesting characteristics:

1. Cooperation between agents at different semantic
levels is an emergent property of the architecture as
was demonstrated by the “reading” example given
in this paper.

2. Robustness within the limits of the programs do-
main is realized by virtue of measuring how local
choices affect global description length.

3. There is an implicit information fusion model.

Most attempts at reasoning about uncertainty [13,
8, 3, 15] attempt to bring together contributions so as
to make a local decision. When local evidence is suf-
ficient these methods work well but when the sources
of evidence become less straightforward the approaches
get bogged down. Numerous problems occur—maost no-
tably that required probabilities are often not available
and that in order for the approaches to be tractable it is
necessary to assume conditional independence. In any
complex system the practical issues are immense.

(a) (b) (c)

Figure 4. Ambiguous Visual Interpretations

Figure 4 is an example of three standard illusions
where there are two almost equally plausible interpreta-
tions. The resolution of such ambiguities (where pos-
sible) is at the heart of the information fusion problem.
For example, the image Figure 4(a) may initially appear
to be a view from the left rear of the head of a young
woman but the features have been cunningly arranged
by the artist so that we can easily pick an alternative
interpretation—that of an old woman. In Figure 4(a) the
ear of the young woman is interpreted as an eye when the
image as a whole is seen as an old woman.

Imagine a program that attempts to combine evi-
dence to interpret the feature that is the young girl’s ear in
Figure 4(a). The information fusion problem must con-
sider what interpretation model is being used and what
relationship that has with feature models being consid-
ered for the “ear”. Locally the interpretation of the “ear”
feature as an “eye” or as an “ear” may be quite simi-
lar. The choice however effects the interpretation of sur-
rounding features (nose and chin for example). By trying
to treat this as a local information fusion problem con-
ventional methods of information fusion potentially de-
mand that the entire structural complexity of the problem
be considered at each local decision point.

The implicit information fusion model in the

GRAVA architecture depends upon the effect that lo-
cal decisions have upon the global interpretation. In
the reading example described in this paper information
from four different kinds of sensor were utilized in pro-
viding evidence in support of interpretations as charac-

ters.

A less probable interpretation of a feature will be

selected if it gives rise to a shorter global description.

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

L.E. Baum. An inequality and associated maximization
technique in statistical estimation for probabilistic func-
tions of a markov process. Inequalities, 3:1-8, 1972.

T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appear-
ance models. In H. Burkhardt and B. Neumann, editors,
Proceedings, European Conference on Computer Vision
1998, volume 2. Springer, 1998. pages 484-498.

A.P. Dempster. A generalization of bayesian inference.
Journal of the Royal Statistical Society, Series B, 30:205—
247, 1968.

R. A. Brooks et al. The intelligent room project. In Pro-
ceedings of the Second International Cognitive Technol-
ogy Conference (CT’97), Aizu, Japan, 1997.

S. Geman and D. Geman. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE
Trans. Pattern Analysis and Machine Intelligence, 6:721—
741, 1984.

N. Karssemeijer. Stochastic model for automated detec-
tion of calcifications in digital mammograms. Image and
Vision Computing, 10/6:369-375, 1992.

T.W.E. Lau and Y.C. Ho. Universal alignment probabili-
ties and subset selection for ordinal optimization. Journal
of Optimization Theory and Applications, 93:455-489,
1997.

W.B. Mann and T.O. Binford. Probabilities for bayesian
networks. In Proceedings Image Understanding Work-
shop. Morgan Kaufman, San Francisco., 1994.

J.L. McClelland and D.E. Rumelhart. The programmable
blackboard model of reading. In Parallel distributed pro-
cessing., pages 122-169. MA: MIT Press, 1986.

P. Robertson. A corpus based approach to the interpre-
tation of aerial images. In Proceedings IEE 1PA99. IEE,
1999. Manchester.

P. Robertson. A Self-Adaptive Architecture for Image Un-
derstanding. PhD thesis, University of Oxford, 2001.

P. Robertson and R. Laddaga. A self-adaptive architecture
and its application to robust face identification. In Pacific
Rim Conference on Artificial Intelligence 2002. Springer-
Verlag, 2002.

G. Shafer. A Mathematiccal Theory of Evidence. Prinston
University Press, 1976.

A.J. Viterbi. Error bounds for convolution codes and an
asymptotically optimal decoding algorithm. IEEE Trans-
actions on Information Theory, 13:260-269, 1967.

L.A. Zadeh. Fuzzy sets as a basis for a theory of possibil-
ity. Fuzzy Sets and Systems, 100:9-34, 1999.

