
Goldreich’s One-Way Function Candidate and
Drunken Backtracking Algorithms

Rachel Miller, University of Virginia CLAS ’09
Distinguished Majors Thesis for Computer Science

University of Virginia 2009

Thesis Adviser Professor abhi shelat, CS Department
Thesis Reader Professor Christian Gromoll, Math

Department

This thesis extends collaborative work done in the SUPERB 2008 Program at
UC Berkeley with Professor Luca Trevisan and graduate students James Cook

and Omid Etesami.

Abstract

One-way functions are easy to compute but hard to invert; their exis-
tence is the foundational assumption for modern cryptography. Oded Gol-
dreich’s 2000 paper “Candidate One-Way Functions Based on Expander
Graphs” [6] proposes a candidate one-way function construction based on
any small fixed predicate over d variables and a bipartite expander graph
of right-degree d. The function is calculated by taking an n-bit input as
the values of the vertices on the left, and then calculating each of the n
output bits on the right by applying the predicate to its neighbors.

Inverting Goldreich’s one-way function can be expressed as constraints
on input bits by the value of each output bit, and so can easily be reduced
to a SAT instance. Most modern SAT solvers are based on backtrack-
ing algorithms. Results by Alekhnovich, Hirsch and Itsykson imply that
Goldreich’s function is secure against “myopic” backtracking algorithms
(an interesting subclass) if the 3-ary parity predicate P (x1, x2, x3) =
x1 ⊕ x2 ⊕ x3 is used. Cook, Etesami, Miller and Trevisan extended their
work to show the function is also secure against myopic backtracking algo-
rithms of higher degree linear functions and against predicates of the form
Pd(x1, . . . , xd) := x1 ⊕ x2 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) on random graphs.

Alekhnovich et al. also show how to construct satisfiable SAT instances
secure against “drunken” backtracking algorithms from unsatisfiable SAT
instances. The contribution of this work is to show Goldreich’s function
is secure against “drunken” backtracking algorithms for linear predicates
and predicates of the form Pd(x1, . . . , xd) := x1⊕x2⊕· · ·⊕xd−2⊕(xd−1∧
xd) on random graphs.

1

Acknowledgments

This work is closely related to Cook, Etesami, Miller, and Trevisan’s “Goldreichs
One-Way Function Candidate and Myopic Backtracking Algorithms” [5], to
which I made significant contributions. I have included many of the proofs from
that paper to help give context for this work.

All sections relating to drunken algorithms are original to this work.

1 Introduction

Goldreich [6] proposed a candidate one-way function construction based on ex-
pander graphs. The construction requires a bipartite graph with n nodes per
side, and any fixed predicate of degree d, with d constant or d growing slowly as
O(log n). The function is computed by taking n input bits as the left vertices of
the graph, and calculating each output bit on the right as the predicate applied
to its neighbors on the left. The value of each output bit relies on a fixed num-
ber of input bits determined by the graph, and so this function is very fast to
compute in parallel. Goldreich suggests that a random predicate and a graph
with expansion properties should be used.

Throughout the paper, we will consider random predicates, and graphs with
expansion properties, or random graphs which have expansion properties with
high probability. We will explore the interesting cases of linear predicates,
and predicates of the form P (x1, · · · , xd) := x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd).
This last predicate is inspired by the work of Mossel, Shpilka and Trevisan
[7] who construct a small-bias generator using a fixed predicate of the form
P (x1, · · · , x5) := x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5).

1.1 Backtracking Algorithms

The task of inverting Goldreich’s function naturally translates into a SAT-
instance, where SAT is the boolean satisfiability problem in conjugate normal
form. Each output bit can be viewed as a constraint on its corresponding input
bits. This constraint can be translated to SAT clauses with size equal to the
right-degree of the expander graph. This SAT instance will always be satisfiable
since inversion always has a solution.

Because of this natural connection to SAT, an attack of this function as a
SAT instance seems plausible. In this paper, we explore “DPLL-style” algo-
rithms, which are the basis for most general SAT solvers and use backtracking.
We restrict our study to algorithms that instantiate variables one at a time, in
an order chosen adaptively by a “scheduler” procedure, and then recurse on the
instance obtained by fixing the variable’s value by an “assigner” procedure. The
recursion ends when a satisfying assignment is found, or if a partial assignment
contradicts a constraint given by an output bit.

2

When any backtracking algorithm of this form runs on an unsatisfiable in-
stance, the transcript of values tried by the algorithm gives a “tree-like reso-
lution proof” of unsatisfiability. For satisfiable instances, subexponential lower
bounds require some sort of restriction of the assigner or the scheduler. Oth-
erwise, an attacker unrestricted in complexity could simply select a satisfying
assignment in a linear number of steps. Even for attackers with limitations, few
lower bounds for solving satisfiable SAT instances exist.

1.2 Previous Work

Analysis of Goldreich’s function is motivated by the apparent hardness of in-
version. Cook, Etesami, Miller and Trevisan [5] performed an experiment by
running MiniSat on SAT instances generated by Goldreich’s function based on
predicate P (x1, · · · , x5) := x1 ⊕ x2 ⊕ x3 ⊕ (x4 ∧ x5) and a random graph of
right-degree 5. MiniSat is one of the best publicly available SAT solvers, but
had exponential increases in running time as a function of input length n. The
attack with MiniSat appeared to infeasible for moderate input lengths of a few
hundred bits.

Alekhnovich, Hirsch and Itsykson [2] consider inversion of Goldreich’s func-
tion with “myopic” backtracking algorithms. “Myopic” stipulates that the at-
tacker starts without the output it is inverting, but has a constant number of
output bits revealed to it for each input it guesses. For myopic algorithms,
the scheduler and assigner are restricted to working with the information avail-
able to the attacker. Their work proves Goldreich’s function on degree-3 linear
predicates is secure against myopic backtracking algorithms. They show that
with high probability, after assigning a certain number of variables the attacker
will have created an unsatisfiable instance with no sub-exponential size tree-like
resolution proof of unsatisfiability. It then takes the algorithm an exponen-
tial amount of time to recover from the bad partial assignment. However, linear
predicates are solvable in subexponential time by Gaussian elimination, so alter-
native predicates are needed for secure versions of Goldreich’s function against
broader classes of attackers.

Cook, Etesami, Miller and Trevisan [5] show that Goldreich’s function is
secure against myopic backtracking algorithms for linear predicates of higher
degree, and also for predicates of the form P (x1, · · · , xd) := x1 ⊕ · · · ⊕ xd−2 ⊕
(xd−1 ∧ xd). Under a plausible assumption about the many-to-oneness of Gol-
dreich’s function, they also show random predicates are secure against myopic
backtracking algorithms with high probability.

Alekhnovich et al. [2] also consider the restriction of “drunken” backtracking
algorithms. Drunken algorithms have unbounded schedulers, but the assigners’
choice of whether to assign first zero or one to the next chosen variable is
made randomly with equal probability. Alekhnovich et al. show results for
drunken algorithms on carefully designed instances based on hard unsatisfiable
SAT instances.

3

1.3 New Contributions

This work is concerned with proving lower bounds for solving Goldreich’s func-
tion with drunken backtracking algorithms. We show that linear functions and
predicates of the form P (x1, · · · , xd) := x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) are se-
cure against drunken algorithms. For the same assumption that Cook, Etesami,
Miller and Trevisan [5] use about the many-to-oneness of Goldreich’s function,
we prove random predicates are secure against drunken backtracking algorithms
with high probability.

2 Preliminaries

2.1 Goldreich’s Function

Goldreich [6] constructs a function f : {0, 1}n → {0, 1}n parameterized by a d-
ary predicate P and a bipartite graph G = (V,E) connecting n input nodes ui
on the left to n output nodes vi on the right. The output nodes all have degree
d. To compute the function on input x ∈ {0, 1}n, we label the input nodes with
the bits of x, and label each output node by the value of P applied to the labels
of its neighbors. The output of the function is the sequence of n labels of the
output nodes. For example, if the neighborhood of vi is {uj1 , uj2 , . . . , ujd}, then

(f(x))i = P (xj1 , xj2 , . . . , xjd).

We denote by A the n×n adjacency matrix of G, whose columns correspond
to input nodes and whose rows correspond to output nodes:

Aij =

{
1 (uj , vi) ∈ E
0 (uj , vi) 6∈ E

.

Goldreich suggests using a random predicate P , and a graph G with expan-
sion properties.

2.2 Drunken Backtracking Algorithms

First, we need a notion of a partial truth assignment.

Definition 2.1 (partial assignment) Taken from [3]. Let [n] denote {1, . . . , n}.
A partial assignment is a function ρ : [n] → {0, 1, ∗} that maps the input
bits of Goldreich’s function to values for those bits. Its set of fixed variables
is Vars(ρ) = ρ−1({0, 1}). Its size is defined to be |ρ| = |Vars(ρ)|. Given
f : {0, 1}n → {0, 1}n, the restriction of f by ρ, denoted f |ρ, is the function
obtained by fixing the variables in Vars(ρ) and allowing the rest to vary.

Definition 2.2 A backtracking algorithm for solving an equation f(x) = b for
x is defined by two procedures, a scheduler N and an assigner T. N takes a
partial assignment ρ and returns the index of a new variable N(ρ) ∈ [n] to
assign, and T chooses a truth value T(ρ) ∈ {0, 1} for xN(ρ). More precisely,
the algorithm has the form:

4

• Initialize ρ to the empty truth assignment (∗, ∗, . . . , ∗).

• While not all variables in ρ are fixed,

– j ← N(ρ).

– Update ρ by assigning xj the truth value T(ρ).

– If there is row i such that f(ρ)i is determined by ρ but f(ρ)i 6= bi then
backtrack by substituting the opposite truth value to the most recently
selected variable that has not had both truth values tried.

Since there are only a finite number of partial assignments and each partial
assignment will only be attained at most once, this procedure terminates.

Drunken backtracking algorithms, after [1], are a special class of backtrack-
ing algorithms that have scheduler N unrestricted, but then assigner T must
flip a coin to select 0 or 1 with equal probability. That is, the algorithm has
unlimited computation to select which input bit to work on, but then must
guess that input bit randomly. We refer to inputs selected randomly by the
assigner as “drunkenly selected”. Without the drunken constraint, there is no
way to prevent T from immediately selecting the correct value for that bit. Un-
like myopic algorithms, drunken algorithms have the scheduler N completely
unrestricted in both time and in access to the output b.

The work in [2] gives a lower bound for drunken backtracking algorithms
on SAT instances constructed from hard unsatisfiable SAT instances. We show
lower bounds on drunken algorithms solving Goldreich’s function, which can
also be generalized to a SAT instance.

2.3 Random Predicates

We follow Goldreich’s suggestion in choosing P : {0, 1}d → {0, 1} uniformly
at random. Here we define two useful properties that most random predicates
have.

Definition 2.3 (robust predicate) P : {0, 1}d → {0, 1} is h-robust iff every
restriction ρ such that f |ρ is constant satisfies d− |ρ| ≤ h [3, Definition 2.2].

In other words, the value of the function with any h + 1 free input variables
is not fixed. For example, the predicate that sums all its inputs modulo 2 is
0-robust. The predicate that multiplies all its inputs is d − 1-robust, because
any bit that is a 0 fixes its output.

Definition 2.4 (balanced predicate) P : {0, 1}d → {0, 1} is (h, ε)-balanced
if, after fixing all variables but h+ 1 of them,

|Pr[P (x) = 0]− 1
2
| ≤ ε

where probability is over the values of the remaining variables.

5

For example, predicates of the form Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) are
(2, 0)-balanced and (1, 1

4)-balanced. The predicate that sums all its inputs is
(0, 0)-balanced.

Lemma 2.5 Cook et al. [5, Lemma 2.6]. A random predicate on d variables is
(Θ(log d

ε), ε)-balanced with probability 1− exp[−poly(d/ε)].

Corollary 2.6 Cook et al. [5, Corollary 2.7]. A random predicate on d variables
is Θ(log d)-robust with probability 1− exp[−poly(d)].

2.4 Expansion Properties

Let A be an m× n matrix with d ones and n− d zeros in each row.

Definition 2.7 (Boundary Element) Taken from [2, Definition 2.1].
For a set of rows I of our m × n matrix A, we define its boundary ∂I as the
set of all j ∈ [n] (called boundary elements) such that there exists exactly one
row i ∈ I that has a value of 1 in column j.

In other words, a variable j is a boundary element if it is referenced by exactly
one output in a group of outputs.

Definition 2.8 (Expansion) Taken from [2, Definition 2.1].
A is an (r, d, c)-boundary expander if

1. |Ai| ≤ d for all i ∈ [m], and

2. ∀I ⊆ [m], (|I| ≤ r ⇒ |∂I| ≥ c|I|).

Matrix A is an (r, d, c)-expander if condition 2 is replaced by

2′ ∀I ⊆ [m], (|I| ≤ r ⇒ |
⋃
i∈I Ai| ≥ c|I|).

Lemma 2.9 Analogous to [2, Lemma 2.1].
Any (r, d, c)-expander is an (r, d, 2c− d)-boundary expander.

Assume that A is an (r, d, c)-expander. Consider a set of its rows I with |I| ≤ r.
Since A is an expander |

⋃
i∈I Ai| ≥ c|I|. On the other hand we may estimate

separately the number of boundary and non-boundary variables which will give
|
⋃
i∈I Ai| ≤ E + (d|I| − E)/2, where E is the number of boundary variables.

This implies E + (d|I| − E)/2 ≥ c|I| and E ≥ (2c− d)|I|.
Throughout the rest of our paper, we make an assumption about the relationship
between the expansion of the matrix A and the balance of the predicate P used
in Goldreich’s function.

Assumption 2.10 A is a (r, d, c)-boundary expander and P is an (h, ε)-balanced
predicate, with c− h ≥ 1 and c > 2h.

Recall that by Lemma 2.5, a random predicate on d variables is (Θ(log d
ε), ε)-

balanced with high probability. Also, expander graphs exist with c = Ω(d).
Thus, as d increases, c can be made much larger than 2h. This justifies As-
sumption 2.10.

6

3 Previous Results

Now that we have developed the proper language to describe previous results,
we will include them here for comparison purposes.

Goldreich’s Analysis

Goldreich [6] considered the following algorithm for computing x given y = f(x).
The algorithm proceeds in n steps, revealing the output bits one at a time. Let
Ri be the set of inputs connected to the first i outputs. Then in the ith step,
the algorithm computes the list Li of all strings in {0, 1}Ri which are consistent
with the first i bits of y. Goldreich proves that if the graph satisfies an expansion
condition, then for a random input x, the expected size of one of the sets Li is
exponentially large.

Since Goldreich’s algorithm is forced to consider all consistent assignments
to the bits in each set Ri, it takes no less time than a myopic backtracking
algorithm that chooses the input bits in the same order, and possibly much
more time. For this reason, the lower bounds of Cook, Etesami, Miller and
Trevisan [5] are more general.

Myopic Backtracking Algorithms

Definition 3.1 A myopic backtracking algorithm for f(x) = b is a backtracking
algorithm where the “scheduler” and the “assigner” procedures are restricted in
that they are not allowed to see all the output bits in vector b. More precisely,
myopic backtracking algorithm of parameter K have the following properties:

• In the beginning of the algorithm, the algorithm does not have the value of
any of b.

• At each step of fixing a new variable, the algorithm is allowed to ask the
value of K output bits corresponding to K equations chosen by the algo-
rithm.

• When we backtrack from a step we have already taken, we lose the value
of the output bits that were revealed to us at that step.

Thus, in the middle of the algorithm, when the partial assignment is ρ, the algo-
rithm sees the values of K|Vars(ρ)| output bits, and the outputs of the scheduler
and assigner procedures are allowed to depend only on these K|Vars(ρ)| output
bits. But notice that both procedures can use the structure of the function f
and of the bipartite graph; they have restricted access to only b.

Theorem 3.2 Cook et al. [5, Theorem 3.1]. Assume A is an n × n (r, d, c)-
boundary expander with left and right degree d and that P is an (h, ε)-balanced
predicate. Let f be Goldreich’s function for A and P , and assume f is M -to-
one-on-average, in the sense that the number of pairs (x, y) such that f(x) =
f(y) is at most M2n. Let A be any myopic backtracking algorithm. Choose

7

x ∈ {0, 1}n uniformly at random and let b = f(x). Let F = d2c − d − he − 1,
and s = F/(F + d(d− 1)). Then the probability that A solves f(x) = b in time
2O(r(c−h)) is at most

M2−sb
cr

4dK c
(

1 + 2ε
1− 2ε

)r/2
.

4 Drunken Algorithms use Exponential Time in
the Average Case

Theorem 4.1 Assume A is an n × n (r, d, c)-boundary expander with right
degree d and that P is an h-robust predicate. Let f be Goldreich’s function for
A and P , and assume f is M -to-one-on-average, in the sense that the number
of pairs (x, y) such that f(x) = f(y) is at most M2n. Let A be any drunken
backtracking algorithm. Choose x ∈ {0, 1}n uniformly at random and let b =
f(x).

Then the probability that A solves f(x) = b in time 2O(r(c−h)) is at most

M2−
cr
4 .

Applications of Theorem 4.1:

1. Let P = x1 ⊕ · · · ⊕ xd be a linear predicate. Then A solves f(x) = b in
time 2Ω(rc) except with probability less than 2nullity(A)− rc

4 .

2. Use the predicate Pd(x) = x1 ⊕ · · · ⊕ xd−2 ⊕ (xd−1 ∧ xd) and a random
graph of right-degree d. Then h = Θ(1), c = d/2 + Θ(d) and r = Θ(n/d).
With high probability, c > 2h. Also, Cook et al. [5] show that with high
probability M = 2n2−Ω(d)

.

Assuming c > 2h and M = 2n2−Ω(d)
, with these parameters, for large

enough d Theorem 4.1 shows a drunken algorithm takes time 2Θ(n) with
probability 1− 2−Cn, where C depends on d.

3. Use a random predicate P and a random graph of right-degree d. Then
with high probability, P is h robust, with h = Θ(log d) and with c > 2h.
In this case, Theorem 4.1 says the drunken algorithm takes time 2Θ(n)

with probability 1−M2−
rc
4 .

The rest of this section is devoted to proving Theorem 4.1.
To aid this proof, we utilize a construction called the closure of a set of

input variables, analogous to the definition in [2]. Roughly, the closure is the
set of inputs that have short resolution proofs for the current partial assignment.
Otherwise, outputs with most neighboring inputs correctly guessed could give
very short resolution proofs for their remaining inputs. In this proof, we allow
the drunken algorithm to guess all bits in the closure without flipping a coin-
the attacker gets these bits for free. This can only help the running time of
the drunken algorithm. In exchange for this concession, we maintain certain

8

expansion properties in the graph while the drunken algorithm has drunkenly
selected less than rc

4 bits.
With high probability, the drunken algorithm will select a globally inconsis-

tent value for an input before this time. In this case, the backtracking algorithm
must perform a tree like resolution proof in order to be allowed to backtrack.
Cook et al. [5] show this proof will have size 2Ω(r(c−h)), so the algorithm must
take that many steps before correcting its mistake.

In Section 4.1, we formalize the definition of closure. In Section 4.2, we
formally define “clever” drunken algorithms, which are given the input bits in
the closure for free. In Section 4.3 we show the result of Cook, Etesami, Miller
and Trevisan [5] that backtracking algorithms take exponential time on unsat-
isfiable formulas. Finally, in Section 4.4 we show that with high probability, the
drunken algorithm will create an unsatisfiable formula, completing the proof.

4.1 Closure Operation

We use a definition of taking closure with respect to a set of columns of matrix
A.

Definition 4.2 (closure) Analogous to [2, Definition 3.2].
Assume A is an n×n (r, d, c)-boundary expander. For a set of columns J ⊆ [n]
of A, define the following relation on the [m] rows of A:

I `J I1 ⇐⇒ I ∩ I1 = ∅ ∧ |I1| ≤
r

2
∧

∣∣∣∣∣∂A(I1) \

[⋃
i∈I

Ai ∪ J

]∣∣∣∣∣ < c/2|I1|.

Define the closure of J , Cl(J), as follows. Let G0 = ∅. Having defined Gk,
choose a non-empty Ik such that Gk `J Ik, set Gk+1 = Gk ∪ Ik, and remove
equations Ik from matrix A. (Fix an ordering on 2[n] to ensure a deterministic
choice of Ik.) When k is large enough that no non-empty Ik can be found, set
Cl(J) = Gk.

Intuitively, the closure is defined iteratively by collections of less than r/2 rows
that do not satisfy c/2 boundary expansion properties. In other words, the
closure is the collection of rows that have a small number of unique neighbors.

Definition 4.3 (variables in closure) The

Lemma 4.4 For any sets of columns J1 and J2, the closure Cl(J1 ∪ J2) can be
selected such that Cl(J1 ∪ J2) ⊇ Cl(J2).

Any set of rows I1 satisfying
∣∣∂A(I1) \

[⋃
i∈I Ai ∪ J1

]∣∣ < c/2|I1|must also satisfy∣∣∂A(I1) \
[⋃

i∈I Ai ∪ (J1 ∪ J2)
]∣∣ < c/2|I1|. If the Cl(J1) is derived by adding

I1, I2, . . ., begin the process of deriving Cl(J1 ∪ J2) by first adding I1, I2, . . .
before continuing with the closure procedure.

Lemma 4.5 For any set of columns J1 and J2 ⊆ ForanysetsofcolumnsJ1 and
J2, the closure Cl(J1 ∪ J2) can be selected such that Cl(J1 ∪ J2) ⊇ Cl(J2).

9

Lemma 4.6 Analogous to [2, Lemma 3.5].
If |J | < cr

4 , then |Cl(J)| < 2c−1|J |.

Assume to the contrary that |J | < cr/4 but |Cl(J)| ≥ 2c−1|J |. Then consider
the sequence I1, I2, . . . , It appearing in the construction of Cl(J). These sets
must be disjoint, as each set is removed from A after it is created. Denote by
Gt =

⋃t
k=1 Ik the set of rows derived in t steps. Let T be the first value of t such

that |Gt| ≥ 2c−1|J |. Hence, |J | ≤ c|GT |/2. Because A is a (r, d, c)-boundary
expander, |∂GT | ≥ c|GT |, which gives

|∂GT \ J | ≥ c|GT | − |J | ≥ c|GT |/2. (1)

On the other hand, for every t, adding It+1 to Gt increases |∂Gt \ J | by at
most |∂It+1 \ ∪i∈Gt

Ai ∪ J , which is < c/2|It+1|. This implies

|∂GT \ J | < c|GT |/2 (2)

which contradicts (1).

Lemma 4.7 Analogous to [2, Lemma 3.4].
Assume that A is an arbitrary matrix and J is a set of its columns. Denote by
Â the matrix that results from A by removing the rows in Cl(J) and the columns
in
⋃
i∈Cl(J)Ai. If Â is non-empty then it is an (r/2, d, c/2)-boundary expander.

Assume to the contrary that Â has as set of rows I1 with boundary expansion
less than c/2|I1| in Â. This implies that

|∂A(I1) \

[⋃
i∈I

Ai ∪ J

]
| < c/2|I1|.

But then I1 can be added to Cl(J), so it was not a set of rows of Â.

Definition 4.8 From [2, Definition 3.4].
A substitution ρ is said to be locally consistent w.r.t. the function f(x) = b if
and only if ρ can be extended to an assignment on X which satisfies the equations
corresponding to Cl(Vars(ρ)):

(f(x))Cl(Vars(ρ)) = bCl(Vars(ρ))

A substitution ρ is said to be globally consistent w.r.t. the function f(x) = b if
and only if ρ can be extended to an assignment that satisfies f(x) = b.

Lemma 4.9 Analogous to [2, Lemma 3.6].
Assume that f employs a (r, d, c)-boundary expander and a h-robust predicate
with c > 2h. Let b ∈ {0, 1}m and ρ be a locally consistent partial assignment.
Then for any set I ⊆ [m] with |I| ≤ r/2, ρ can be extended to an assignment x
which satisfies the subsystem (f(x))I = bI .

10

Assume to the contrary that there exists a set I with |I| ≤ r/2 for which ρ cannot
be extended to satisfy (f(x))I = bI . Choose a minimal such I. Since P is c/2-
robust, each row in I has at most c/2 variables in ∂A(I) \Vars(ρ) — otherwise,
that row could be removed from I and the remaining rows would be no easier to
satisfy. Thus Cl(Vars(ρ)) ⊇ I — otherwise, define I1 = I \Cl(Vars(ρ)). Since ρ
is assumed to be locally consistent, it can be extended to satisfy the constraints
in rows I ⊆ Cl(Vars(ρ)), which is a contradiction.

4.2 Clever Drunken Backtracking Algorithms

Without loss of generality, we allow our algorithm to be a “clever” drunken
algorithm in the sense that for input bit added to the partial assignment ρ, the
algorithm selects bits in the closure of ρ for free.

More precisely, let A be a clever drunken algorithm which has guessed input
bits in ρ0. Then A has already received the bits in Cl(ρ0) for free in a way that
is globally consistent, if possible. If the scheduler selects bit r1 /∈ Cl(ρ0), the
value of bit r1 is drunkenly selected from {0, 1} at random, and clever A selects
globally consistent values for any in Cl(ρ0 ∪ r1) ⊇ Cl(ρ0) for free.

If all of the algorithm’s drunkenly selected inputs are globally consistent
(extendable to a correct input), we can assume without loss of generality that
all of its “free” input bits are globally consistent. If the drunkenly selected
input bits are consistent, the algorithm cannot backtrack to change these bits.
If it does not select globally consistent choices for its input bits, we can simply
ignore the time it takes for the algorithm to correct these values. Additionally,
the computation of the drunken algorithm is unbounded, so the algorithm should
be able to select globally consistent values for these bits immediately.

The clever property can only reduce the number of backtracking steps taken,
and the total amount of time taken by the drunken algorithm.

Lemma 4.10 After rc
4 steps, a clever backtracking algorithm A has assigned

values to at most r
2 variables.

After rc
4 steps, A has drunkenly assigned at most rc

4 variables, and may have
additional assigned variables in the closure of the drunkenly assigned variables.
For each partial assignment ρ0, when A drunkenly selects bit r1 /∈ Cl(ρ0), A also
selects values for any in Cl(ρ0 ∪ r1) ⊇ Cl(ρ0). Proceeding inductively, we note
that after rc

4 steps A has assigned values only to variables within the closure
generated by the rc

4 drunkenly selected variables. By Lemma 4.6, this closure
contains at most r

2 variables.

Lemma 4.11 For a clever backtracking algorithm A inverting Goldreich’s func-
tion on a (r, d, c)-boundary expander, each drunkenly selected bit will be selected
from a (r/2, d, c/2)-boundary expander.

By the definition of clever backtracking algorithms, A selects values for all vari-
ables in the closure of selected values. Then apply Lemma 4.7 to give expansion
properties for the remaining instance.

11

4.3 Backtracking Algorithms use Exponential Running Time
on Unsatisfiable Formulas

By definition the inversion problem is satisfiable, and so unsatisfiable instances
occur only if the algorithm chooses an input bit value that can not be extended
to a correct solution. When any backtracking algorithm runs on an unsatisfi-
able instance, the transcript of values tried by the algorithm gives a “tree-like
resolution proof” of unsatisfiability. On unsatisfiable instances, Ben-Sasson and
Wigderson [4] give lower bounds for resolution proofs for linear predicates on
expander graphs. [5] adapted the Ben-Sasson and Wigderson work to show that
any resolution proof of this fact is large for arbitrary predicates on expander
graphs. From this, it follows that any drunken backtracking algorithm will take
a long time to realize its mistake. The proof of [5] utilizes the robustness h of
the predicate in addition to the parameters r and c of the expander graph.

The width of a resolution proof is the greatest width of any clause that occurs
in it, and the width of a clause is the number of variables in it. Cook et al. [5]
find a lower bound on the width of a resolution refutation of an unsatisfiable
SAT instance by relating to an h-robust function to be (c−h)r

2 , and the apply
the following lemma from [4, Corollary 3.4]:

Lemma 4.12 The size of any tree-like resolution refutation of a formula Ψ is
at least 2w−wΨ , where w is the minimal width of a resolution refutation of Ψ,
and wΨ is the maximal length of a clause in Ψ.

To do this, fix an m × n matrix A which is a (r, d, c)-expander, and h-robust
functions gi : {0, 1}n → {0, 1} such that Vars(gi) ⊆ Xi(A). Fix an output
vector b ∈ {0, 1}m. For a row i ∈ [m], let Xi(A) = {xj1 , . . . , xjs}, and let Φi be
the CNF in the variables Xi(A) consisting of all clauses C = xε1j1 ∨ · · · ∨x

εs
js

such
that gi(x) = bi |= C. Let Φ = Φ1 ∧ · · · ∧ Φm.

Given any clause C, define

µ(C) = min
I:AIx=b|=C

|I|.

Lemma 4.13 If r
2 ≤ µ(C) ≤ r, then C has width at least (c−h)r

2 .

Let I be a minimal set of rows achieving AIx = bI |= C, so r
2 ≤ |I| ≤ r.

Then |∂A(I)| ≥ c|I|.
Assume |C| < (c−h)r

2 . Then |C| < (c− h)|I| and |∂A(I) \Vars(C)| > (h)|I|.
Select some i ∈ I such that |∂A(I) ∩Xi(A) \Vars(C)| > h and set I ′ = I \ {i}.

AI′x = bI′ 6|= C, so there is some assignment x such that AI′x = bI′ but
x does not satisfy C. Since gi is `-robust, there exists an assignment x′ which
agrees with x except for variables in ∂A(I)∩Xi(A)\Vars(C), such that gi(xi) =
bi. But then AIx

′ = bI and x′ does not satisfy C, which is contradicts our
assumption that AIx = bI |= C. Thus our assumption that |C| < (c−h)r

2 must
have been false.

Lemma 4.14 0. For any D ∈ Φ, µ(D) = 1.

12

1. µ(∅) > r.

2. µ is subadditive: if C2 is the resolution of C0 and C1, then µ(C2) ≤
µ(C0) + µ(C1).

0 and 2 are easy, and 1 follows from Lemma 4.13.
This theorem is analogous to [3] Theorem 3.1 or [2] Lemma 3.7.

Theorem 4.15 Any resolution proof that Φ is unsatisfiable has width at least
(c−h)r

2 .

By Lemma 4.14, some clause C must have r
2 ≤ µ(C) ≤ r; apply Lemma

4.13.

Theorem 4.16 Analogous to [2, Lemma 3.9].
If a set of drunkenly selected bits ρ with |V ars(ρ)| ≤ cr/4 results in an unsat-
isfiable formula Φ(b)[ρ] then every drunken backtracking algorithm would work
2Ω(r(c−h)) on Φ(b)[ρ].

The computation of a backtracking algorithm as it proves a formula is unsatisfi-
able can be translated to a tree-like resolution refutation such that the size of the
refutation is the working time of the algorithm by [4, Corollary 3.4] given earlier
in the section. Thus it is sufficient to show that the minimal tree-like resolution
refutation of Φ(b)[ρ] is large. Denote by I = Cl(ρ), J = ∪i∈IAi. By Lemma 4.6
|I| ≤ r/2. By Lemma 4.9 ρ can be extended to another partial assignment ρ′ on
variables xJ , such that ρ′ satisfies every equation in GI(x) = bI . The restricted
formula (G(x) = b)|ρ′ still encodes an unsatisfiable system G′(x) = b′. G′ is
based off matrix A′, where A′ results from A by removing rows corresponding
to I and variables corresponding to J . By Lemma 4.7, A′ is an (r/2, d, c/2)-
boundary expander. Lemmas 4.13 and 4.12 now imply that the minimal tree-
like resolution refutation of the Boolean formula corresponding to the system
G′(x) = b′ has size 2Ω(r(c−h)).

4.4 The Probability of a Correct Guess is Small

Definition 4.17 Let R ⊆ [n], ρ ∈ {0, 1}R, and ι the output variables that can
be calculated from R.

We say (Rv, ρv, ι) is a consistent state if

Pr[Rv = R ∧ ρv = ρ ∧ ι = b] > 0.

Put another way, (Rv, ρv, ι) is a consistent state iff there exists some x ∈ {0, 1}n
such that after b cr4 c steps, R is exactly the set of assigned variables, ρ is the
values assigned those variables, and b = ι.

Lemma 4.18 Assume A is an n×n (r, d, c)-boundary expander with right degree
d and that P is an h-robust predicate. Let f be Goldreich’s function for A and
P , and assume f is M -to-one-on-average, in the sense that the number of pairs

13

(x, y) such that f(x) = f(y) is at most M2n. Let A be any drunken backtracking
algorithm. Choose x ∈ {0, 1}n uniformly at random and let b = f(x). Then the
probability that a clever drunken algorithm makes no mistakes in its first b cr4 c
steps is at most M(1

2)
rc
4 , where probability is over choice of x and over the coin

flips of the drunken algorithm.

With this Lemma, we can now complete our proof of Theorem 4.1. Choose b
randomly from the set of attainable outputs of f(x); more formally, let x ∼
Unif({0, 1}n) and b = f(x).

Define random variable ρv to be the first values assigned to the first b cr4 c
drunkenly selected input bits, and define Rv = Vars(ρv) . Recall that without
loss of generality, if all drunkenly selected inputs are correct at a given point,
we can assume all “free” bits from the closure are globally correct, too.

Here, we try to upper bound the probability that all drunkenly selected
inputs are globally consistent.

Let E = {ρv ∈ f−1(b)}. Then

Pr[E] =
∑
b

Pr[E|b] Pr[b] = E[Pr[E|b]].

We consider each input that maps to b separately. Since all inputs in Rv
are selected drunkenly, each input in Rv has a 1

2 chance of matching a given
bit. Thus, for a given input x ∈ {0, 1}n, the probability that xRv

= ρv is
(1

2)|RV | = (1
2)b

cr
4 c. Then

Pr[E|b] ≤
∑

y∈f−1(b)

Pr[ρv = yRv] ≤ |f−1(b)|(1
2

)b
cr
4 c

Substituting, we find

Pr[E] ≤ E[|f−1(b)|(1
2

)b
cr
4 c] = M(

1
2

)
rc
4 .

If a globally inconsistent value is chosen on a drunkenly selected input bit,
an unsatisfiable instance will occur. In Section 4.3, the running time of back-
tracking algorithms on unsatisfiable cases is shown to take time 2Ω(r(c−h)). For
drunkenly selected inputs, the graph will have (r/2, d, c/2)-boundary expansion
by Lemma 4.11. Then if E does not occur, which happens with probability
≥ 1 −M · (1

2)
rc
4 , an arbitrary drunken backtracking algorithm will take time

2Ω(r(c−h)) to invert Goldreich’s function.

References

[1] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for
random 3-SAT. In FOCS, pages 590–600, 2000.

14

[2] Alekhnovich, Hirsch, and Itsykson. Exponential lower bounds for the run-
ning time of DPLL algorithms on satisfiable formulas. In ECCCTR: Elec-
tronic Colloquium on Computational Complexity, technical reports, 2004.

[3] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi
Wigderson. Pseudorandom generators in propositional proof complexity.
SIAM Journal on Computing, 34(1):67–88, 2004.

[4] Ben-Sasson and Wigderson. Short proofs are narrow–resolution made simple.
JACM: Journal of the ACM, 48, 2001.

[5] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s
one-way function candidate and myopic backtracking algorithms. In 2009
Theory of Cryptography Conference Proceedings, pages 521–538, 2009.

[6] Oded Goldreich. Candidate one-way functions based on expander graphs.
Electronic Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[7] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased gen-
erators in nc0. Random Struct. Algorithms, 29(1):56–81, 2006.

15

