
New Cryptographic Protocols With
Side-Channel Attack Security

by

Rachel A. Miller

B.A. in Computer Science and Physics, University of Virginia, 2009
M.A. in Mathematics, University of Virginia, 2009

Submitted to the Department of Electrical Engineering and Computer
Science in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science
at the

Massachusetts Institute of Technology
June 2012

c©Rachel A. Miller. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of author:

Department of Electrical Engineering and Computer Science
May 23, 2012

Certified by:

Shafrira Goldwasser, RSA Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by:

Leslie A. Kolodziejski, Professor of Electrical Engineering
Chair of the Committee on Graduate Students



Contents

1 Introduction 5

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Motivation - Tampering is Real! 9

2.1 Hardware Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Transient Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Overwrite attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Memory Remanence Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Protocol Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Self-destructing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Models of Tampering 13

3.1 The History of the RKA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Claw-free assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Protection versus Detection: The History of the Self-destruct Model . . . . . . . . . 18

3.3 The History of Tampering Intermediate Values . . . . . . . . . . . . . . . . . . . . . 19

4 Notation & Preliminaries 20

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Cryptographic Primitives & Security Games . . . . . . . . . . . . . . . . . . . . . . . 21

5 RKA-Model: Formal Treatment 23

6 Definitions of Φ-RKA Secure Primitives 28

6.1 A fundamental building block: Φ-RKA secure PRFs . . . . . . . . . . . . . . . . . . 28

6.2 Φ-RKA Secure Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Φ-RKA Secure Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.4 Φ-RKA Secure Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 Φ-RKA Secure Weak Psuedorandom Functions . . . . . . . . . . . . . . . . . . . . . 38

6.6 Φ-RKA secure Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 Φ-RKA Secure Identity Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Tools For Our Constructions: Identity-Key Fingerprints and Identity Collision
Resistance 43

7.1 Identity-Key Fingerprints for PRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Identity Collision Resistance for PRGs . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Constructions of Φ-RKA Secure Primitives 52

8.1 Using Φ-RKA PRG to Construct Φ-RKA Signatures . . . . . . . . . . . . . . . . . . 52

8.2 Strong Φ-RKA Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.3 Φ-RKA Secure Signatures from Φ-RKA Secure IBE Schemes . . . . . . . . . . . . . 66

8.4 Φ-RKA Secure PKE-CCA from Φ-RKA Secure IBE . . . . . . . . . . . . . . . . . . 68

2



9 Separations between RKA Sets 72
9.1 Separating Φ-RKA PRFs from Φ-RKA signatures . . . . . . . . . . . . . . . . . . . 72
9.2 Other Relations Using Cnst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 Separating Φ-RKA secure PRFs from Φ-RKA secure wPRFs . . . . . . . . . . . . . 75
9.4 Separating Φ-RKA CPA SE from Φ-RKA CCA SE . . . . . . . . . . . . . . . . . . . 77

3



Acknowledgments

This thesis is based on joint work with Professor Mihir Bellare and David Cash. I’d like to express

gratitude for the time that we explored ideas together; you were wonderful to work with!

A very special thank you to my Advisor, Professor Shafi Goldwasser, for such caring mentorship

– it has been such a pleasure to work and to learn under you for my time at MIT.

Finally, I’d like to thank my family and my friends for their awesome, incredible support.

4



1 Introduction

Historical notions of cryptographic security have assumed that adversaries have only black box ac-

cess to cryptographic primitives; in these security games, adversaries can observe input and output

behavior of the protocol, but gain no information from the physical implementation. However, this

model fails to account for the fact that adversaries do gain additional information from physical

implementations: such implementations leak data, such as the time or power it takes to compute

with a secret key, and are also susceptible to physical tampering attacks, such as modification of the

secret key with microprobes. Attacks that take advantage of this non-black-box nature of protocols

are collectively known as side channel attacks. Side channel attacks actually exist in practice -

many practical side channel attacks have been well documented for almost two decades.

To model the adversarial powers that allow side channel attacks, theoretical cryptographers have

developed the enhanced security models of leakage and tampering. Leakage accounts for information

passive adversaries may gain about the contents of secret memory in addition to the input/output

behavior of the system. Tampering accounts for adversarial modification of an executing protocol,

including changes to the bits in secret memory, the introduction of errors to the computation, and

even physical changes to the circuit executing the protocol.

Theoretical works have studied leakage extensively over the last several years, especially in the

context of signatures and encryption. In contrast, very few theoretical results address tampering

attacks– efficient cryptographic primitives with robust security against tampering are still lack-

ing. Though several constructions of higher level primitives exist, these constructions only protect

against highly algebraic and scheme specific tampering attacks [GOR11, AHI11, Luc04, BC10,

GL10], or else require heavy and inefficient machinery, such as NIZK proofs[KKS11].

The most commonly used theoretical framework in tampering is the Related-Key Attack (RKA)

model, which allows adversarial modification of the secret key. In a related key attack, the adver-

sary is allowed to modify the secret key and subsequently observe values from the cryptographic

primitive (such as signatures or ciphertexts) computed with the modified secret key. Formally, for

a primitive with secret key K, this occurs by allowing the adversary to select a function φ, and
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giving the adversary values computed with φ(K) instead of with K. The RKA security definition is

parameterized by a class of allowed tampering functions Φ; we restrict how the adversary is allowed

to modify the secret key by requiring that the adversary’s selected tampering function φ satisfies

φ ∈ Φ. We say a scheme is Φ-RKA secure if security is maintained even when the adversary may

perform related key attacks for φ ∈ Φ. A second commonly used framework is the Self-Destruct

model, which is a relaxation of the RKA model allowing the primitive to destroy secret memory if

tampering is detected.

Psuedorandom functions (PRFs) are the most studied primitive in the RKA model. A PRF

is a family of functions, where individual functions are defined by evaluating the function using

a fixed (secret) key. In the security game, an adversary is either given oracle access to a truly

random function, or oracle access to the function defined by the PRF evaluated with a randomly

generated secret key. A family of functions is a secure PRF if all polynomial time adversaries can

only distinguish between the two cases with a negligible advantage over guessing.

This thesis will give a formal definition of a Φ-RKA secure PRF, but it will be helpful to give

an intuitive definition here. When we consider PRFs in the RKA model, the adversary is given the

power to modify the secret key, and so should receive oracle access to the PRF evaluated with many

different key values, defining a group of functions instead of a single function. Accordingly, in the

modified security game for a Φ-RKA PRF, the adversary tries to distinguish between oracle access

to the family of functions Φ-RKA PRF and a family of truly random functions, both evaluated at a

randomly generated secret key; in both cases, if the original secret key is K, the adversary obtains

access to the oracle evaluated with φ(K) in the family of functions for φ ∈ Φ. We say a PRF

is Φ-RKA secure if all polynomial time adversaries have a negligible advantage in distinguishing

between these two cases.

It turns out that a Φ-RKA PRF is an especially powerful building block for constructing other

tamper-resilient primitives. This thesis will give a construction for any Φ-RKA secure cryptographic

primitive, using any Φ-RKA PRF and a normal secure instance of the primitive as components.

Interestingly, it appears the security requirements for Φ-RKA secure PRFs seem to be especially

difficult to satisfy – there exist classes of tampering functions Φ for which Φ-RKA secure signature
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and encryption schemes exist, but for which no PRF can be Φ-RKA secure.

The construction of tamper-resilient primitives from Φ-RKA secure PRFs, and the apparent

difficulty of constructing Φ-RKA secure PRFs, lead to further questions about the relationships

between Φ-RKA secure primitives. For example, when can one Φ-RKA secure primitive be used to

build a different Φ-RKA secure primitive in a construction preserving Φ? Are there Φ for which Φ-

RKA secure instantiations of some primitives are known, but for which Φ-RKA security is provably

impossible for another primitive?

1.1 Contributions

Whereas all prior works in the RKA model have made the so called “claw-free assumption”[AHI11,

BC10, GL10, GOR11], our work drops the claw-free assumption for constructions in the RKA

model for the first time. A class of functions Φ is claw-free if for any two distinct φ1, φ2 ∈ Φ, and

for any K in the domain of Φ, φ1(K) 6= φ2(K). In the context of the RKA model, the claw-free

assumption is that the class of allowed tampering functions Φ an adversary may use, which has

domain of the secret key space, is claw-free. Unfortunately, the claw-free assumption fails to capture

the tampering attacks that exist in practice.

This thesis gives a generic way to translate the standard, non-tampering security definition for

a cryptographic primitive into a Φ-RKA security definition in the RKA model. With this, we give

generic construction of Φ-RKA secure primitives from any normal secure instance of the primitive

and any Φ-RKA secure PRF – in other words, we construct primitives that are resistant to the

same class of tampering functions Φ as the PRF used. This construction maintains the efficiency of

the original Φ-RKA PRF. Further, this construction uses the Φ-RKA PRF in a black-box way, so

any future Φ-RKA PRFs will immediately give a suite of Φ-RKA primitives using this construction.

We note that a similar construction was given in concurrent work[GOR11], but our construction in

addition is able to drop the claw-free assumption.

Motivated by this construction of Φ-RKA secure primitives from Φ-RKA secure PRFs, we

further explore when it is possible to construct Φ-RKA secure primitives from other Φ-RKA secure

primitives. We ask, when is it possible to give a reduction from one primitive to another in a
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PRF wPRF IBE Sig SE− CCA SE− CPA PKE− CCA

PRF = ⊆ ⊆ ⊆ ⊆ ⊆ ⊆
wPRF 6⊆ = 6⊆ ⊆ 6⊆
IBE 6⊆ 6⊆ ⊆ ⊆ 6⊆ 6⊆ ⊆
Sig 6⊆ 6⊆ = 6⊆ 6⊆ 6⊆
SE− CCA 6⊆ = ⊆
SE− CPA 6⊆ 6⊆ 6⊆ = 6⊆
PKE− CCA 6⊆ 6⊆ 6⊆ 6⊆ =

Table 1: A summary of relationships we will show; gives whether the row is contained or not
contained in the column.

way that preserves the class of allowed tampering functions Φ? We give positive results across a

wide variety of primitives: PRFs, wPRFs, IBE, Signatures, SE-CCA, SE-CPA, and PKE-CCA.

For example, we show that Φ-RKA secure IBE implies Φ-RKA secure IND-CCA PKE. We also

give some negative results, showing, for example, that there exists a Φ for which Φ-RKA secure

signatures exist but no Φ-RKA secure PRFs exist. Inspired by this fact , we give additional negative

results: for example, there exists a Φ such that a Φ-RKA secure wPRF exists but for which no

Φ-RKA secure PRF exists.

We view the relationships between different Φ-RKA secure primitives as analogous to complexity

theory – the relations between these primitives should help us better understand the complexity

of each particular problem. We will express these relationships in a set based notation. We define

RKA[P] to be the set of all Φ for which Φ-RKA secure versions of primitive P exist. In this

framework, a construction of a Φ-RKA secure primitive P2 from any Φ-RKA secure primitive

P1 will be expressed as RKA[P1] ⊆ RKA[P2]; these relationships will be shown in Section 8.

Showing that there ∃Φ such that Φ ∈ P1 but Φ 6∈ P2 will be expressed RKA[P1] 6⊆ RKA[P2];

these relationships will be shown in Section 9. In a few cases we will need to make additional

assumptions, which we will note in the theorem.

Additionally, this thesis contains the results of an extensive literature search of physical tam-

pering attacks, in addition to referencing prior theoretical works. This study can guide which

tampering attacks should be modeled by and addressed in theory.
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2 Motivation - Tampering is Real!

Tampering is a major security concern when adversaries have physical access to the device running

the cryptographic primitive, which is often the case for devices like smart-cards, pay-TV decoders,

and GSM mobile phones. Successful attacks have taken a variety of forms, including chip re-writing,

differential analysis, and observing memory remanence after the device is turned off[AK96][AK97].

Each of these attacks will be further described below.

2.1 Hardware Errors

Even in standard conditions, circuits are not perfect, and computations may contain errors. Though

errors are typically rare, faulty hardware can make them much more likely. For example, a bug in

the family of Pentium FDIV processors produced errors in floating point division[SB94]. Though

errors for these faulty chips were rare for randomly generated floating point operations, affecting

about 1 in 9 billion operations, they could be quite common for adversarially selected input.

2.2 Transient Faults

Transient faults are errors in computation caused by very temporary changes to conditions in the

circuit executing the protocol or to the environment of the circuit. The most common attacks

apply quick changes to circuitry’s clock signal, power supply, or external electrical field[KK99].

Applying voltages or temperatures outside the normal range of the circuit can affect some write

operations. One family of chips was susceptible to an attack that modifies the applied voltage during

repeated write access to a security bit- this will often clear the bit without erasing the rest of secret

memory[AK96]. Additionally, varying voltage can hamper some processes from running properly:

another family of chips contained random number generator used for cryptographic processes, but

the generator output a string of all 1’s when a low voltage was applied, yielding very guessable

secret keys[AK96].

For some processors, transient changes to the applied voltage or to the clock signal can vary the

decoding and execution of individual instructions. Since different signal paths of information on a
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chip pass through different numbers of gates, they each take (slightly) different amounts of time.

For the whole computation to be correctly executed, every path must finish before the next clock

signal. If an adversary can cause a small number of paths to fail to execute correctly, the protocol

will yield values strongly related to the correct values but with some errors. By applying a precisely

timed glitch to the clock signal, a limited number of signal paths can be affected. Similarly, changes

to the applied voltage changes the amount of time each signal path takes to complete. Increasing

time signals take can prevent some signal paths from completing. This has the potential to cause

the CPU to execute a number of wrong instructions, or allow differential analysis[AK96].

Conditional jumps are commonly among the longest signal paths; if transient errors allow

attackers to eliminate conditional jumps or test instructions[KK99], such errors can often allow

them to bypass security conditions. Instruction glitches can also extend the runtime of loops; for

example, an attacker might be able to extend a loop designed to print out an output buffer to print

out additional values in secret memory[AK96]. Breaking out of a loop early can also be harmful,

transforming a many round cipher into an easily breakable single round variant[AK97].

Varying the external electrical field can be accomplished by applying spikes of up to several

hundred volts very locally on a chip by using two metal needles. Such a technique to be used to

temporarily shift the voltages of nearby transistors, creating variations in signal paths based on

locality instead of timing[KK99].

2.3 Overwrite attacks

Laser cutter microscopes can be used to overwrite single bits of ROM[AK97]. In the case of that

the circuitry for a protocol is well known, such as for DES, attackers could find and overwrite

specific bits to make key extraction easy, such as the bits the control the number of rounds for the

cipher[AK97]. As another example, the lock bit of several devices with on-chip EPROM can be

erased by focusing UV light on the security lock cell, which is located sufficiently far from the rest

of memory. [AK96]

Microprobing needles can be used to set or reset a target bit stored in EEPROM. This can

be useful for a number of attacks. Consider the following attack on DES: DES keys are required
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to have odd parity, and DES returns an error message if this fails to hold. To attack DES, an

adversary can find the key by setting one bit at a time to 0, and seeing if the error message is

triggered[AK97].

Circuits are often constructed with built in “test” functionalities, such as printing out the

contents of memory, that are destroyed after testing is completed. Bovenlander[Bov] describes an

attack on smartcards using two microprobe needles to bridge the blown fuse for test functionalities,

re-enabling a test routine that prints out secret memory.

Finally, lasers can also be used to destroy specific gates in a circuit, fixing their output to

0. This can be used to simplify the relationship between the secret key and the output, perhaps

making the secret key easier to find[AK97].

2.4 Memory Remanence Attacks

Gutman[Gut96] describes the issue of “burn-in” in both static RAM (SRAM) and dynamic RAM

(DRAM). When values are stored in the same RAM location for a significant period of time,

physical changes to magnetic memory occur and leave a lasting change. To avoid these effects,

sensitive information should not be stored in a single RAM location for more than several minutes.

In addition to the physical changes to memory that occur over the period of minutes, even

the temporarily stored capacitance of information stored only momentarily in DRAM leaves a

remanence. This remanence lasts for at least several seconds after power is removed, even at room

temperature and even if removed from the motherboard. This gives adversaries with physical

access to the device a (brief) chance to gain information about any key stored in DRAM[CPGR05,

HSH+08]. SRAM also leaves significant traces for several seconds at room temperature[Sko02].

Theoretical works show that even a small amount of memory remanence is a problem; for example,

an RSA key can be recovered from only 0.27 of its bits selected randomly[HS09].

2.5 Protocol Failures

Poorly designed protocols and hardware make attacks even simpler for an adversary to execute.

For example, as documented in [AN95], one poorly designed satellite TV decoder had a processor
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to store the secret key and to decrypt encoded video signals, and additionally a microcontroller

to handle commands addressed to a customer smartcard ID. Unfortunately, these pieces were very

modular and replacable. In the “Kentucky Fried Chip” attack, the microcontroller is replaced with

one created to block deactivation messages with the customer’s ID the satellite company sends out

when a user stops paying for service.

2.6 Self-destructing Memory

There are several examples of circuits that self-destruct and destroy their memory when physical

tampering of hardware is detected[Sko02, Gut96, SPW99]. However, this feature is rarely used in

practice, and fails to detect some types of tampering.

Self-destructing memory is accomplished by using volatile memory inside a tamper-detecting

enclosure. When tampering is detected, the volatile memory is powered down or even shorted to

ground. It is important to note that this method only prevents attacks that the tamper-detecting

enclosure can detect. Even more crucially, since memory takes some amount of time to decay after

power is removed, this method requires that an adversary cannot read memory for some noticeable

amount of time after tampering is first detected.

Tamper detection sensors often are sensitive to changes in voltage or other environmental

conditions[AK96], since these can cause transient faults. However, self-destruct mechanisms can

decrease the reliability of hardware. One family of smartcards was designed to self-destruct when

they detected low clock frequencies, but had relatively common false positives due to the large fluc-

tuations in clock frequency on card startup[AK96]. Additionally, since many transient conditions

exist naturally in circuits, for robustness sensors must be designed in such a way that they are not

sensitive to transient changes in voltage[AK96], limiting the applicability of this model.

Several examples of self-destructing software exist. The most popular is the current iPhone op-

erating system, which can be set to clear memory after 10 failed passcode attempts. Unfortunately,

a software based self-destruct model does not provide security guarantees in the case of physical

tampering, which is the motivation for tampering security.
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3 Models of Tampering

The most general tampering models must account for all possible adversarial modifications to a

protocol being executed. This includes modification of the secret key, modification of intermediate

computed values (possibly as fine grained as changes to specific wires), and even modification of

the program code being executed. Indeed, all such tampering attacks have occurred in practice!

The vast majority of works on tampering only deal with the tampering of secret keys. These

works divide nicely into two different theoretical frameworks. The first framework , the Related-

Key Attack (RKA) model, was inspired by [Bih93], and gives the adversary the ability to modify

the secret-key using some family of allowable tampering functions. The second framework, the

Self-Destruct model, is a relaxation of the RKA model that allows secret memory to be destroyed

tampering is detected to prevent further leakage of information.

This thesis will work in the RKA model, which only allows tampering on the secret key value. In

this model, adversaries may replace the original secret key with a modified one between consecutive

evaluations of the protocol. This is formalized by letting the adversary select a function, and

replacing the secret key with this function evaluated on the secret key. Although some works in the

Self-Destruct model allow the adversary to apply arbitrary polynomial time tampering functions,

such strong results are actually impossible in the RKA model[KKS11]. Accordingly, works in

the RKA model must further restrict which tampering functions are allowed to an adversary.

Fortunately, such restrictions seem justified by the limited state of existing physical attacks, which

modify a small number of bits in memory, or introduce randomized errors. On the other hand, it’s

important not to restrict the allowed attacks too far.

The Self-Destruct model is similar to the RKA model in that it allows adversaries to select

and apply tampering functions to the secret key, but it relaxes the correctness requirements of

the protocol. Here, the protocol to “self-destruct” and completely overwrite secret memory if

tampering is detected. A second differentiation between the models is the subtle issue of how many

devices with identical memory are available to the adversary. Though not necessarily inherent in

the Self-Destruct model, all works to date in this model allow adversaries a logarithmic number
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of bits of information about the secret key per device, and so require that the adversary only

has access to a constant number of copies of devices with the same secret key. To contrast, the

RKA model implicitly allows the adversary access to an unbounded number of copies, since the

tampering function φ is applied to the secret key in every iteration. Since the Self-Destruct model

gives relaxed conditions for correctness of protocols, and all works to date limit the number of

copies of the device given to adversaries, the Self-Destruct model allows security against a strictly

larger class of tampering functions than the RKA model[KKS11].

We note that modeling tampering of intermediate values is very difficult, since this depends on a

specific instantiation of a protocol– only one theoretical work [IPSW06] allows arbitrary adversarial

tampering of intermediate values in the circuit used to execute the computation. More common are

works addressing random faults in computation, a body of work initiated by [BDL01] and referred

to as differential fault analysis. No theoretical works to date consider modification of the program

being executed.

3.1 The History of the RKA Model

Differential cryptanalysis was a technique developed by Biham and Shamir[BS90] that attacks block

ciphers by observing encryptions of pairs of messages with known differences in their plaintexts;

the differences between the resulting ciphertexts can give significant information about the secret

key for many block ciphers. Differential cryptanalysis soon gave rise to the Related Key Attack

(RKA) model, also defined in the context of block ciphers[Bih93]: instead of known relationships

between plaintexts as in differential cryptanalysis, the RKA model uses known relationships between

successive secret keys used. The key-scheduling algorithms used in block ciphers are generally public

and well known, giving adversaries information about the relationship between successive keys. In

some cases the adversary can even cause the system to move forward or backwards in the key-

schedule, giving control over the key being used. Security against RKAs is now accepted as a

requirement for blockciphers to be used in practice. In fact, AES was designed with the explicit

goal of resisting RKAs [DR02].

After block ciphers, RKAs were next considered in the context of PRFs and psuedorandom
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permutations, PRPs. Bellare and Kohno[BK03] provided formal theoretical definitions for both Φ-

RKA secure PRFs and Φ-RKA secure PRPs. They gave important impossibility results: there exist

polynomial time tampering functions for which no block-cipher can be secure. They also showed

that secure block ciphers are secure against some very limited tampering attacks. Lucks[Luc04]

constructed a block cipher secure against some more interesting RKAs, but used a non-standard

number theoretic assumption, and also restricted the adversary to tampering a fixed half of the

secret key. The later is an especially strong assumption since one can trivially construct a block

cipher resilient against such tampering from any normal secure block cipher. To do this, have the

new block cipher generate a secret key that is twice the length of the original block cipher, and

only use the half that the adversary can’t tamper.

Bellare and Cash[BC10] gave the first construction of a Φ-RKA secure PRF under standard

assumptions, using the Decisional Diffie-Hellman (DDH) assumption. In their construction, the

adversary may modify the secret key by either adding a fixed element in the group of secret keys,

or else multiplying by a fixed element in the group of secret keys.

Goldenberg and Liskov[GL10] defined and considered Φ-RKA secure hardcore bits and one-way

functions; for these primitives, the tampering function is applied to the secret input of the function

instead of a secret key, and the security challenge still depends on the original un-altered input to

the function. They also consider Φ-RKA psuedorandom generators, and show that Φ-RKA secure

psuedorandom bits can be used to build Φ-RKA secure block ciphers. They additionally show

that hard-core bits with typical proofs are not Φ-RKA secure pseudorandom bits, emphasizing the

difficulty of constructing tamper-resilient psuedorandom primitives.

Applebaum, Harnik and Ishai[AHI11] gave a formal study of Φ-RKA secure symmetric encryp-

tion, and gave two constructions of a Φ-RKA secure encryption scheme where Φ is comprised of

functions adding constants over the group of secret keys. They use standard assumptions, giving

one construction based DDH, and the other based on lattice assumptions such as learning parity

with noise (LPN) or learning with errors (LWE). They also give a construction for a Φ-RKA secure

PRG under DDH, with the same Φ as their encryption scheme construction. They show that a Φ-

RKA secure PRG can be used to generate a Φ-RKA secure encryption scheme when Φ is claw-free.
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Finally, they show that Φ-RKA secure PRGs can be used for several other applications, such as

correlation-robust hash functions as defined in [IKNP03].

A work by Goyal, O’Neill and Rao [GOR11], developed concurrently to work in this thesis,

defines correlated-input (CI) hash functions, which are a generalization of the correlation-robust

hash functions of [IKNP03]. As with RKA-security, the security of CI hash functions is parameter-

ized by a class of allowed tampering functions Φ. They show that CI hash functions, with security

parameterized by Φ, can be used Φ-RKA secure signature schemes. (They also indicate their ap-

proach can also be used to build other Φ-RKA secure primitives from CI hash functions as well.)

Their construction is similar to one included in this thesis, but their very definition of CI hash

functions immediately requires that Φ is claw-free, while this thesis is able to drop the claw-free

assumption. For a CI hash function H and unique tampering functions φ1, . . . , φn+1 ∈ Φ, they

require that no adversary can predict H(φi+1(r)) from H(φ1(r)), . . . ,H(φn(r)). If φn+1(r) = φi(r)

for some previous i, this is trivial! Further, the adversary of the CI hash function must select

all tampering functions φi before even seeing the public hash-key, giving a non-adaptive form of

security. [GOR11] gives a construction of a CI hash function where Φ is the class of polynomials

over the input space, based on a variant of the q-Diffie Hellman Inversion assumption. Although

the class of all polynomials is a very broad class, requiring the adversary to select the tampering

functions non-adaptively gives that φi(r) = φj(r) only with negligible probability, which is used

crucially in their security proofs.

3.1.1 Claw-free assumption

As mentioned in the introduction, the claw-free assumption for works in the RKA model requires

that any two distinct tampering functions φ1, φ2 ∈ Φ must disagree for every secret key in the

key space - for all K ∈ K, φ1(K) 6= φ2(K). Unfortunately, this assumption fails to hold for any

tampering attacks used in practice and discussed in Section 2, including random bit errors, setting

a subset of bits of the secret key to a fixed value, and memory remanence attacks. Additionally,

the claw-free assumption is quite restrictive: it even disallows classes of tampering functions that

intuitively give very little power to an adversary. For example, it even disallows tampering functions
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that only modify a negligible number of secret key values.

Prior Works. Prior to this work, all constructions of Φ-RKA secure primitives relied on the

claw-free assumption. This includes the PRF construction of [BK03] which holds for classes of

claw-free permutations, the block cipher construction of [Luc04] which holds for classes of claw-free

functions over the half of the secret key the adversary can tamper, the PRF construction of [BC10]

which holds for the claw-free classes of addition or multiplication within the group of secret keys,

the symmetric encryption schemes of [AHI11] which holds for the claw-free family of addition over

the key space, and finally for the CI hash constructions of [GOR11] in which the very definition of

security requirements implies that the family of allowed tampering functions must be claw-free.

Why is the Claw-Free Assumption so Useful? To reflect how tampering works in practice,

in the security game for a Φ-RKA secure primitive the adversary should be able to choose not

to modify the secret key. To model this, we let φID be the identity function that maps any key

back to itself, and we let ID = {φID}. In effect, ID-RKA security does not allow the adversary

to modify the secret key, and so ID-RKA security should reduce to the standard (no tampering)

security definition for any primitive. In general, we will assume that ID ⊆ Φ, and so a Φ-RKA

secure primitive should always have standard security for the primitive. The claw-free assumption,

combined with the assumption that ID ⊆ Φ, implies that no other tampering function φ ∈ Φ can

ever map a secret key onto itself – otherwise φ(K) = φID(K) = K.

The absence of the claw-free assumption creates serious technical difficulties in the security

proof for a Φ-RKA secure primitive. Generally, the proof proceeds via a reduction of the Φ-RKA

primitive to normal (not RKA) security of the primitive; this occurs by giving the adversary values

from the normal primitive when the secret key is unmodified. However, the reduction only sees

the output of the primitive, and not the hidden secret key, so it is difficult for the reduction to tell

when the secret key is unmodified. The claw-free assumption avoids this difficulty since the secret

key is only unmodified when the tampering function chosen is φID.

17



3.2 Protection versus Detection: The History of the Self-destruct Model

It is impossible for many primitives to be secure in the RKA model against arbitrary polynomial

time tampering functions. Consider the following example from [KKS11]. Let Φ contain functions

that set a specific bit of the secret key to 0; then Φ-RKA secure signature schemes cannot exist.

The adversary can simply proceed bit by bit, setting the bit to 0 and seeing if the scheme will still

produce a valid signature under the original verification key; if it does, that bit of the signing key is

a 0, and otherwise, it is a 1. Since there is no way to protect against this Φ in this model, and this

Φ is a very small subset of all polynomial time functions, it is clear that Φ-RKA secure signatures

do not exist when the adversary is allowed to apply arbitrary polynomial time tampering functions

to the secret key.

Since many general security guarantees are not possible in the RKA model, many works add

additional assumptions. A common additional assumption is self-destruction functionality, were

the primitive can completely destroy secret memory if tampering is detected.

The first theoretical work to assume a self-destruct mechanism was the work of Ishai, Prab-

hakaran, Sahai, and Wagner[IPSW06]. This work gives a compiler from a general circuit to a

circuit that allows setting any wire in the circuit to either 0 or to 1 as the computation progress.

However, this result requires a blow-up of a factor of t in the size of the compiled circuit to allow the

adversary to tamper t wires in between successive runs of the protocol. Another work that gives a

general compiler for tampering resilient circuits is recent work by Kalai, Lewko and Waters : they

give a general compiler for circuits to allow up 1
10th of the gates on any path to have short-circuit

errors, a limited form of tampering that adversarially replaces the output of a gate by either one

of its inputs.

Work by Genero et. al[GLM+04] gives a compiler to allow tampering by arbitrary efficient

tampering functions by storing a signature of the secret state along with the secret state. In

addition to assuming self-destruct functionality, this requires the very strong assumption of having

a secret signing key to be hard-wired into the circuit, and so avoids tampering on this. This work

is extended in [LL10] to model both tampering and leakage of specific memory locations and wire

values; they give both impossibility results and a modification of [IPSW06] to give a positive result.
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However, the [LL10] model assumes a secret key space that is polynomial, not exponential, in the

security parameter, giving adversaries a non-negligible advantage even without tampering; they also

assume arbitrary polynomial time tampering functions, giving the tampering function the ability

to depend on all potential secret keys, and so the ability to depend on the correct secret key.

Work by Dziembowski, Krzysztof and Wichs[DPW10] define the security notion of non-malleable

codes (NMC). When an adversary is allowed to modify secret memory that has been encoded with

a NMC, the NMC security guarantees that the resulting output of the protocol is unmodified,

or else is completely unrelated to the original value of secret memory. By adding components to

encode and decode into the NMC, [DPW10] gives a way to compile a circuit into one that gives

non-malleable security. In particular, they give a construction of a NMC that protects against

tampering that modifies each bit of secret memory independently, and they show that NMCs exist

for a much broader classes of tampering functions.

The final and most recent work using the self-destruct assumption is that of Tauman-Kalai,

Kanukurthi, and Sahai[KKS11], which gives the first signature and encryption schemes that are

secure against both leakage and tampering. Though the tampering functions can be chosen ar-

bitrarily, the adversary is only allowed a bounded number of tampering queries per time period.

Their work additionally relies on the assumption of a non-tamperable common reference string

(CRS) that is available to all parties, and uses non-interactive zero knowledge (NIZK) proofs.

3.3 The History of Tampering Intermediate Values

Boneh, DeMillo and Lipton[BDL01] first explored the dangers of errors in computation– even a

very small number of bit flips in intermediate values in a protocol can give a full break of an

otherwise secure scheme. Specifically, they showed that both a common implementation of the

Fiat-Shamir identification protocol and a Chinese-Remainder-Theorem based implementation of

RSA signatures are insecure when an adversary can induce a small number of random bit-flips in

intermediate values. This paper inspired a body of work called differential fault analysis (DFA),

which focuses on exploits of blockciphers caused by small bitwise errors; see [BS97] for a long list

of ciphers broken by DFA.
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Protecting protocols against arbitrary intermediate values is very difficult, as this depends on

the specific instantiation of a protocol, and requires analysis of tampering of each intermediate

value in the computation. The only works to date that allows non-random errors in intermediate

values are the works by Ishai, Prabhakaran, Sahai, and Wagner [IPSW06] and by Kalai, Lewko and

Waters mentioned above in the History of the Self-Destruct model 3.2.

4 Notation & Preliminaries

4.1 Notation

For a set S, let |S| denote the size of S, and let s
$← S denote the operation of picking a random

element of S and calling it s.

For sets X and Y , let Fun(X,Y ) be the set of all functions mapping X into Y . When Z is also

a set, let FF(X,Y, Z) = Fun(X×Y,Z). A class of functions Φ will be associated with some domain

X and range Y , and will be a subset of all functions mapping X to Y - Φ ⊆ Fun(X,Y ). A class

of functions Φ associated with domain K will be said to be claw-free if ∀φ1, φ2 ∈ Φ with φ1 6= φ2,

∀K ∈ K, φ1(K) 6= φ2(K). In the context of work on tampering, the claw-free assumption requires

that the family of allowed tampering functions Φ is claw-free.

A function family is a tuple of algorithms: a parameter generator, a key generator, and a

deterministic evaluator, FF = (P,K,F). For each k ∈ N, the function family also defines sets

Dom(·) and Rng(·) such that FF (K, ·) maps elements of Dom(k) to Rng(k). We will assume that

each function family has associated polynomials d for the input length with Dom(k) ⊆ {0, 1}d(k),

and output length l with Rng(k) ⊆ {0, 1}l(k).

For a bit b, we use b̄ to denote the opposite of b, i.e. 0̄ = 1 and 1̄ = 0.

A (binary) string x is identified with a vector over {0, 1} so that |x| is its length and x[i] is its

i-th bit. For i ≤ j, x[i, j] denotes the inclusive range from i-th bit through the j-th bit of x.

When v is a vector, |v| gives the number of coordinates of v, and v[i] is used to denote its i-th

coordinate- v = (v[1], . . . ,v[|v|]).

Algorithms. Unless otherwise noted, algorithms are randomized and are polynomial time in the
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size of their inputs.

For algorithms A and B, we let A ‖B denotes the algorithm that on any input x returns

A(x) ‖B(x).

We use notation for a fixed sequence of probabilistic functions, where each function is evaluated

with fresh randomness, and the final object is returned: {x $← A, y
$← B(x);C(x, y)} represents

events A, B and C being executed in order, with the returned value equal to the returned value of

C.

4.2 Cryptographic Primitives & Security Games

A cryptographic primitive P is a tuple of algorithms, which include a key generation algorithm K

that on input a security parameter k outputs a secret key sk and optionally also a public key pk,

and a number of algorithms that may take the secret key as one of their inputs. We represent

a cryptographic primitive as P = (K, g1(·), . . . , gm(·), f1(sk, ·), . . . , fn(sk, ·)), where each algorithm

fi depends on the secret key sk, and each algorithm gi does not. Without loss of generality, all

algorithms run in time polynomial in k.

Security Games.

Every cryptographic primitive P also has an associated security definition, which in our work

will be given as a security game with a security parameter k. A security game defines an interaction

between two algorithms: a stateful challenger algorithm, and a stateful adversary algorithm, both

of which are required to run in time polynomial in k. The security game can be played with a class

of potential adversary algorithms that conform to required interactions of the game.

A security game is comprised of phases, which are distinct periods of interaction between the

adversary and the challenger. Each phase might optionally include the challenger correctly exe-

cuting required computation, messages between the challenger and the adversary, and adversary

access the output of some of the algorithms fi in P that depend on the secret key.

When the adversary is allowed to view output of algorithms fi that depend on the secret key,

this is modeled as the adversary gaining access to an oracle that computes fi , denoted as Ofi . An

oracle call to Ofi(·) returns fi(sk, ·). We number the phases, and for each phase j we define the set
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of allowed oracle access Sj as containing i if the adversary has oracle access to Ofi during phase j.

As part of the security definition, some input combinations may be disallowed by the oracle,

where the set of disallowed input may be based on values chosen during the interactive security

game. (For example, the security game for an IND-CCA2 encryption scheme disallows the adver-

sary from requesting a decryption of its challenge ciphertext.) Additionally, the disallowed inputs

might differ even for oracle access to the same fi during different phases. The notion of disal-

lowed requests is formalized by a function disallowi,j(·) to disallow queries to Ofi during phase j;

disallowi,j(x1, . . . , xk, ·) returns true if i 6∈ Sj or x1, . . . , xk should be disallowed based on the security

game in phase j, and false otherwise. In phase j, the oracle for fi sends the adversary either ⊥ if

disallowi,j(x1, . . . , xk, ·) is true, or sends fi(sk, x1, . . . , xk) otherwise.

Finally, the security game defines a break for the primitive; this is determined by a boolean

function associated with the security game that has value 1 when the primitive is considered broken

and 0 otherwise. The primitive also has a required bound on the probability of that break function

returns 1 for the primitive to be considered secure. Here, the probability of a break is measured

over the choice of randomness for both the challenger and for the adversary. The function break

might depend on the message transcript between the challenger and the adversary or on the state

of the challenger and the adversary. As examples, the scheme might be considered broken when the

adversary can distinguish between two possible behaviors of the challenger by guessing a secret bit

selected by the game, or when the adversary generates a value that satisfies a certain relationship

with the secret or public keys of the scheme. In the latter case, even if the submitted values satisfy

the stated relationship, some values might not be considered a valid break based on prior values

that have occurred in the security game. (For example, in the game defining security for a signature

scheme, even a valid message signature pair is not a break if the adversary made a prior oracle

query on that message.)

We use GA to denote that a security game G should be executed with adversary A that is within

the class of allowed adversaries for G. Some of our games will return a value; we will use (GA ⇒ 1)

to denote the event that G played with A returns a value of 1.
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5 RKA-Model: Formal Treatment

So far our description of adversarially selected tampering functions has been loose, but we will

now formalize structural requirements on them. For example, such functions must map secret keys

back into the secret key space. We will call functions that meet these structural requirements a

Related-Key Deriving function.

Definition 5.1 (Related-Key Deriving Functions – from [BK03]) Consider a cryptographic

primitive P with security parameter k. Let K be the space of secret keys for P, which is the range

of secret keys created by key generation run on input 1k.

We say a function φ is a Related-Key Deriving (RKD) function is compatible with P if it

satisfies φ : K → K.

We define RKD = Fun(K,K), the set of all RKD functions for a key-space. A class of RKD

functions, typically denoted by Φ, is a set Φ ⊆ RKD. A class Φ is said to be compatible with a

primitive P if all φ ∈ Φ are compatible with P.

Example Classes of RKD Functions. The RKA model is parameterized by classes of allowed

RKD functions. One class that will be used repeatedly in our proofs is the class ID, which contains

only the identity function. Another class that we will reference several times is the class of all

constant functions, which will be denoted by Cnst.

Definition 5.2 (ID, the class of the identity function) Let φID(x) = x; ID = {φID} is the

class containing the singleton φID.

Definition 5.3 (Cnst, the class of all constant functions) For any c ∈ K, φc: K → K is

given by φc(x) = c for all x ∈ K, returning c for all input. Then Cnst is defined as the set

containing φc for all c ∈ K.

Oracle Access with Tampering. As we move to the Φ-RKA model, we will also want to give

adversaries oracle access to values computed with tampered keys. We will use Ofi,Φ to denote

oracle access to fi with allowed tampering in Φ. An adversary with such access can call Ofi,Φ(φ, ·);
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if the query is disallowed or if φ 6∈ Φ the oracle will return ⊥, and otherwise the oracle will return

fi(φ(sk), ·).

RKA Model.

We will now formally define the Related Key Attack (RKA) model for an adversary of a crypto-

graphic primitive, where the allowed tampering is parameterized by a class of Related Key Deriving

(RKD) functions Φ. Recall that a cryptographic primitive P is a tuple of algorithms, some of which

take a secret key sk as input, and that in each phase of the standard security game for the primitive,

an adversary may receive oracle access to some of the algorithms that are evaluated using sk. As

examples, we consider:

1. The game defining signature schemes, where the adversary receives oracle access to the signing

algorithm S, receiving S(sk,m) on query OS(m).

2. The game defining IND-CCA2 security for a symmetric key encryption scheme, where the

adversary may query both an encryption oracle OE(m) and to a decryption oracle OD(c),

and receives E(sk,m) and D(sk, c) in response except for the disallowed decryption query of

the challenge ciphertext.

We define a Φ-RKA adversary against P to have all the abilities of a standard adversary against

P, and in addition receives oracle access to the same algorithms as the standard adversary evaluated

using φ(sk) for φ ∈ Φ instead of sk. Returning to our examples:

1. In the modified game for signature schemes, the adversary will now receive oracle access to

OS,Φ, and on query OS,Φ(φ,m) an adversary receives a signature generated with tampered

sk, S(φ(sk),m) in response.

2. For the game defining IND-CCA2 security for a symmetric encryption scheme, the adversary

now receives access to encryption oracle OE,Φ(φ,m) and decryption oracle OD,Φ(φ, c), receiv-

ing encryptions under the tampered key E(φ(sk),m) and decryptions under the tampered key

D(φ(sk), c) in response.
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Moving to the RKA model causes some delicate issues to arise in how to best define when a

primitive is considered broken by a Φ-RKA adversary. As an example, lets consider a Φ-RKA secure

signature scheme, comprised of algorithms (K,S,V) for key generation, signing, and verification

respectively. In the standard security definition for a signature scheme, a signing key and verification

key are produced as (sk, vk)
$← K. An adversary adaptively asks the signing oracle for signatures

for messages mi as OS(mi) and receives S(sk,mi) in return; the scheme is considered broken if

the adversary can produce a message m∗ and signature σ∗ such that V(vk,m∗, σ∗) returns true and

such that the adversary never queried for a signature of m∗.

What should be considered a break for a Φ-RKA adversary against a signature scheme? Such

an adversary will adaptively make queries for signatures of mi with tampering function φi ∈ Φ to

a signing oracle that will create signatures with tampered keys, denoted by OS,Φ(φi,mi), receiving

S(φi(sk),mi) in return; in some cases φi(sk) = sk, and in other cases φi(sk) will be a different

related key. When the adversary produces m∗ and σ∗, it is clear this should not be accepted as a

forgery if the adversary received a signature of m∗ under the original secret key– in other words, m∗

and σ∗ should not count as a forgery if there is an i such that mi = m∗ and φi(sk) = sk. However,

a more difficult, and subtle question arises: should a forgery m∗ and σ∗ be considered a break if the

adversary received a signature of m∗ under some different, related secret key? Considering this a

valid break for the Φ-RKA adversary makes minimal assumptions about what should be disallowed,

and it turns out that such a notion is also achievable.

Definition 5.4 (Φ-RKA Security) Recall that a cryptographic primitive P is a tuple of algo-

rithms, P = (g1(·), gm(·), f1(sk, ·), . . . , fn(sk, ·)), where each fi depends on the secret key sk, and

each gi does not. Say a standard (non-tampering) security game for P defines set Sj to be the set of i

such that the adversary receives oracle access to Ofi during phase j, possibly with inputs disallowed

with disallowi,j(·). To use oracle access to fi in phase j, the adversary queries Ofi(x1, . . . , xk),

to which the oracle replies with either ⊥ if disallowi,j(x1, . . . , xk, ·) is true, or fi(sk, x1, . . . , xk)

otherwise.

To move to the Φ-RKA model, the Φ-RKA adversary participates in the same security game

as in the standard model the with some modifications. In phase j, if i ∈ Sj so that the adversary
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received oracle access to fi, the Φ-RKA adversary should now receive oracle access to Ofi,Φ instead

of Ofi. When the Φ-RKA adversary makes call Ofi,Φ(φ, x1, . . . , xk) to the oracle, the oracle first

computes the tampered key sk′ = φ(sk). If sk′ = sk and disallowi,j(x1, . . . , xk, ·) is true, the oracle

returns ⊥; otherwise the oracles returns fi(sk
′, x1, . . . , xk).

The definition of a break of the security of the scheme is unmodified, and should explicitly state

all uses of the secret key of the scheme. Additionally, the definition of what it means for P to be

secure remains unchanged. The standard security definition defines P to be secure if certain bounds

apply to the probability of a break for all polynomial time adversaries; we say that P is Φ-RKA

secure if the same bounds apply to all polynomial time Φ-RKA adversaries.

As part of this thesis, we will give concrete definitions for Φ-RKA security as it applies to a

number of different primitives, including PRFs, wPRFs, IBE, Signatures, SE-CCA, SE-CPA, and

PKE-CCA.

Remarks about Φ-RKA Security.

• We note that this model gives the Φ-RKA adversary access to many copies of primitive

with the original secret key; for each iteration, the adversary is given access to the primitive

evaluated on the original secret key, even though the tampering function φ applied in previous

iterations might not have been invertible.

• Note that while some queries of a Φ-RKA adversary to an oracle Ofi,Φ might be disallowed

via disallow(), no such restriction is applied unless φ(sk) = sk;this appears to be a minimal

assumption.

• If the standard security definition for a primitive creates a challenge for the adversary, this

challenge should be created with the original secret key sk Φ-RKA adversary, and not some

tampered sk. Otherwise this definition would immediately disallow Φ that contain φ with

low entropy output.

• We would like for security of a primitive P in the RKA model to always imply security of P

in a standard security model. To do this, we will assume that ID, the class that only contains
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the identity function, is always in the class of allowed tampering functions. ID models the

adversary’s ability to choose not to tamper the secret key of a system, and so ID-RKA security

always reduces to the normal security for the primitive.

The definition of a break of security for a Φ-RKA secure P is the same as a break of security in

the standard security definition of P. This is particularly challenging when the definition of a valid

break depends on prior queries of the adversary to its oracles. In the case of a Φ-RKA signature

scheme, a break is defined when the adversary produces a valid message, signature pair such that

the adversary never received a signature of the message generated with the original signing key;

a forgery on a message is still considered valid even if the adversary received signatures on that

message generated with modified signing keys! This is identical to the definition of a forgery in

the normal secure case, where a forgery is valid if the adversary never received a signature on the

message generated with the original signing key.

Signature schemes are of particular interest in considering the definition of a break of security

in the RKA-model since the breaking condition depends on prior queries of the adversary. Prior

work defining Φ-RKA security for signature schemes [GOR11] has instead defined a break as a

valid message signature pair such that the adversary never queried for a signature on that message

using the identity function, φID, as the tampering function. This disallows a subset of the forgeries

we disallow, since a query with RKD φID will always generate the signature under the original

unmodified secret key; however, this definition immediately requires that the adversary cannot find

a φ 6= φID such that φ(sk) = sk, or the adversary will have an easy forgery. Thus the definition

of [GOR11] disallows Φ-RKA secure signature schemes when Φ fails to be claw-free, while such

constructions are possible and meaningful in our definition.

RKA sets. This thesis will address the relative strength of Φ-RKA security for many different

cryptographic primitives. In order to achieve this, we will need a notion of what Φ-RKA security

is attainable for each primitive.

Definition 5.5 (RKA [P] - the set of Φ for which Φ-RKA secure P exist) A class of RKD

functions Φ is said to be achievable for the primitive P if there exists a Φ-RKA secure instantiation
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of P. We further define RKA[P] to be the set of all Φ that are achievable for primitive P.

Using this set based notation will allow us to easily make comparative statements about Φ-RKA

secure primitives. We will give a number of containment results of the form RKA[P1] ⊆ RKA[P2]

by providing a construction of a Φ-RKA secure P2 from any Φ-RKA secure P1. We will also

provide negative results of the form RKA[P1] 6⊆ RKA[P2] by showing there exists a Φ for which

Φ ∈ RKA[P1] but Φ 6∈ RKA[P1]. Both containment and non-containment relationships give

implications about the achievability of Φ-RKA security for a given primitive.

We note that since RKA[P] is comprised of Φ such that a Φ-RKA secure P exists, RKA[P]

might change depending on what assumptions we are willing to make, such as whether one-way

functions exist. In general when considering RKA[P], we will in general make the assumption

that a normal (non-tampering) secure instance of P exists, but will need to make no additional

assumptions for the relationships between primitives that we provide.

6 Definitions of Φ-RKA Secure Primitives

Though Definition 5.4 gives a general recipe of how to modify a standard security definition of a

primitive to a Φ-RKA security definition, there are a number of primitive subtleties to applying the

transformation. We will explicitly give definitions for a number Φ-RKA secure primitives: psue-

dorandom functions, psueudorandom generators, signature schemes, CCA public key encryption,

weak PRF, and symmetric key encryption. The original security definitions for these primitives

can be obtained by setting Φ = ID.

6.1 A fundamental building block: Φ-RKA secure PRFs

The first theoretical works addressing RKA security dealt PRFs[BK03, Luc04], and as we will later

discover, Φ-RKA PRFs will a strong starting point for building other primitives. We give a full

definition of Φ-RKA secure PRFs here since it is used widely in our constructions, and to illustrate

some of the points in definition 5.4 of Φ-RKA security.
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Pseudorandom Functions . Since the definition for a Φ-RKA PRF builds on the standard

definition for a PRF[GGM86], we will first give the standard definition here.

Definition 6.1 (Pseudorandom Function – PRF) The following security game is defined for

a function family FF = (K,F) with algorithms for key generation and evaluation, respectively. For

a security parameter k, we assume that an instance of FF with key K
$← K(1k) has an efficiently

computable domain and range given by Dom(·) and Rng(·).

1. Setup Phase. The challenger generates a key for the PRF as K
$← K(1k), and selects a

random bit b
$← {0, 1}.

2. Query Phase. The adversary is given access to one of two oracles. If b = 0 it is given access

to an oracle that evaluates a truly random function; otherwise if b = 1 it is given access to

an oracle that evaluates the PRF. In each case, the adversary is allowed to adaptively query

the oracle for points x ∈ Dom(k), receiving either OG(K,x) for a truly random function G

or to OF (K,x). (We note that we model the random function G as belonging to a family of

random functions to simplify the transition to the RKA definition.)

For the challenger to simulate the behavior of the oracle call OG(K,x) when b = 0, if the

adversary has never queried x, the challenger randomly selects a point y
$← Rng(k) to return

to the adversary, and saves it as T [x] = y; if x has been queried previously, i.e. T [x] is

defined, the challenger returns the previous value of T [x].

Otherwise, if b = 1 then the challenger can respond to a query x with F(K,x).

3. Guess. The adversary must return a guess b′ of the hidden bit b.

For any function family FF , let Advprf
FF ,A(k) = Pr[b = b′] − 1

2 . We say that FF is a Pseu-

dorandom Function (PRF) if Advprf
FF ,A(k) is negligible in k for all polynomial time adversaries

A.

Φ-RKA PRFs.
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The definition of a PRF requires that the function indexed by a randomly selected key is

indistinguishable from a random function for any polynomial time adversary. In the RKA model

the adversary is given access to an oracle that evaluates the PRF using tampered keys, and so will

now have access to the functions indexed by multiple keys. As will be formalized shortly, PRF

security in the RKA model requires that for any polynomial time adversary, the family of functions

is indistinguishable from a family of truly random functions, when accessed at indices generated

by a random key and tampered values of that key.

The only changes to the security game of the Φ-RKA PRF from that of a normal PRF are in

the query phase, where the adversary receives oracle access to the PRF evaluated using the secret

key– this is modified to give the adversary access to the PRF evaluated using tampered secret keys.

Definition 6.2 (Φ-RKA PRF) The following security game is defined for a function family

FF = (K,F) with algorithms for key generation and evaluation, respectively. For a security pa-

rameter k, we assume that an instance of FF with key K
$← K(1k) has an efficiently computable

domain and range given by Dom(·) and Rng(·), and a compatible class of RKD functions Φ.

1. Setup Phase. The challenger generates a key for the PRF as K
$← K(1k), and selects a

random bit b
$← {0, 1}.

2. Query Phase. The adversary is allowed to adaptively query for points x ∈ Dom(k) with a

tampering function φ ∈ Φ. In the case that b = 0, the adversary should receive access to

OG,Φ(φ, x), where G is a family of truly random functions; when b = 1 it should receive

access to an oracle that evaluates the real PRF.

To simulate the proper response, upon receiving an oracle query (x, φ), the challenger first

computes the tampered key K ′ ← φ(K). If b = 0 and the adversary has never queried for x

with K ′, the challenger randomly selects a point y
$← Rng(k) to return to the adversary, and

saves it as T [K ′, x] = y; if x with key K ′ has been queried previously, i.e. T [K ′, x] is defined,

the challenger returns the previous value in T [K ′, x]. Otherwise, if b = 1 then the challenger

responds to a query x with F(K ′, x).

3. Guess. The adversary must return a guess b′ of the hidden bit.
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For any function family FF , let Advprf
FF ,A(k) = Pr[b = b′] − 1

2 . We say that FF is a Pseu-

dorandom Function (PRF) if Advprf
FF ,A(k) is negligible in k for all polynomial time adversaries

A.

We note that in general, PRFs are not Φ-RKA PRFs. Although individual randomly selected

functions from the PRF are indistinguishable from random, the structure of functions with related

indices might be far from random. For example, a PRF might simply ignore several bits of its key,

and so functions with indices differing only in the ignored bits will actually be identical.

An alternative and equivalent definition follows which is based on two separate games, one in

which an adversary always receives access to the real function family, and a second one in which it

always receives access to a truly random function family. This definition will be used to simplify

several proofs.

Definition 6.3 (Alternative Definition for a Φ-RKA PRF) The following two security games,

PRFReal and PRFRand, are both defined for a function family FF = (K,F) with algorithms for

key generation and evaluation, respectively. For a security parameter k, we assume that an instance

of FF with key K
$← K(1k) has an efficiently computable domain and range given by Dom(·) and

Rng(·), and a compatible class of RKD functions Φ. They share a setup phase and a guess phase,

but differ in the query phase.

1. Setup Phase. The challenger generates a key for the PRF as K
$← K(1k).

2a. Query Phase for PRFReal. The adversary is allowed to adaptively make queries of the form

(x, φ) with x ∈ Dom(k) and φ ∈ Φ. The challenger first computes K ′ ← φ(K) and returns

F(K ′, x) to the adversary.

2b. Query Phase for PRFRand. The adversary is allowed to adaptively make queries of the form

(x, φ) with x ∈ Dom(k) and φ ∈ Φ. The challenger first computes K ′ ← φ(K). If T [K ′, x]

is undefined, the challenger sets T [K ′, x]
$← Rng(k). The challenger sends T [K ′, x] to the

adversary.
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3. Guess. The adversary must return a guess b′ of whether it is playing game PRFRand or game

PRFReal.

Standard arguments imply that Advprf
FF ,A,Φ(k) = Pr[PRFRandA ⇒ 1]− Pr[PRFRealA ⇒ 1].

6.2 Φ-RKA Secure Pseudorandom Generators

To drop the claw-free assumption on Φ in our constructions, we introduce and use a new security

notion called Identity Collision Resistance (ICR); this notion is parameterized by Φ, and a primitive

possessing this property is said to be Φ-ICR secure.

In particular, we will build psuedorandom generators (PRGs) that are both Φ-RKA and Φ-ICR

secure, using any Φ-RKA and Φ-IDFP secure PRF. A pseudorandom generator (PRG)[BM84] is a

tuple of algorithms PRG = (K,G) for key generation and evaluation of the PRG respectively; PRG

also has an associated function r(·) that gives the output length of the PRG, which must be longer

than the length of the secret key. The secret key of a PRG is called a seed; when the evaluation

algorithm is run on a randomly generated seed, it outputs a value that is indistinguishable from

random, even though r(·) ensures that the output is longer than the secret key and so is lacking

full entropy.

Definition 6.4 (Psuedorandom Generator – PRG) A psuedorandom generator (PRG) is a

tuple of algorithms PRG = (K,G). For a security parameter k, the key generation algorithm K(1k)

generates a secret key sk called a seed, and G(sk) returns a string of length r(k), where r(k) > |sk|,

ensuring that PRG is length expanding. Further, the output of G(sk) should be indistinguishable

from a random string for any polynomial time adversary, as is formalized in the following security

game for an adversary A:

1. Setup Phase. The challenger generates a seed as K
$← K(1k) and generates a random bit

b
$← {0, 1}.

2. Query Phase. The adversary A is given access to one of two oracle, each of which take 1k as

an input parameter.
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If b = 0, and A has already queried its oracle, the previously returned value is returned again;

if this is A’s first query, the oracle returns a value from the uniform distribution of length

r(k), i.e. a uniformly selected element of {0, 1}r(k). Otherwise when b = 1, the oracle returns

G(K ) to A.

3. Guess. A must return a guess b′ of the hidden bit b.

We define Advprg
PRG ,A(k) = Pr[b = b′] − 1

2 , and say that PRG is a pseudorandom generator

(PRG) if Advprg
PRG ,A(k) is negligible in k for all polynomial time adversaries A.

Φ-RKA Secure PRGs. Extending the definition of a PRG to the RKA model, the adversary can

query the PRG evaluation function along with a related-key deriving function φ. In the modified

security game, the adversary can obtain output of the PRG (or random function) with not only

the original seed, but also seeds modified with φ. To the adversary, each distinct seed of the PRG

should yield what appears to be an independent random value.

We note that unlike the standard definition for a PRG, we will not require a Φ-RKA PRG to

be length expanding: the benefit of the Φ-RKA PRG is that its output appears random even for

related keys, and not length extension. However, one can easily create a length-extending Φ-RKA

PRG by applying a standard PRG to the output of a Φ-RKA PRG[Luc04].

Definition 6.5 (Φ-RKA PRG) The following security game for an adversary A is defined for a

PRG and a RKD specification Φ that is compatible with PRG = (K,G), and a security parameter

k.

1. Setup Phase. The challenger generates a seed for the PRG as K
$← K(1k), and selects a

random bit b
$← {0, 1}.

2. Query Phase. A is given oracle access to one of two oracles, and for each A is allowed to

adaptively query tampering functions φ in the family of allowed tampering functions Φ. (We

note that there is no need to pass in 1k since without loss of generality the encoding of φ can

be assumed to be at least of size k.) Upon receiving a query φ, the challenger first computes
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the tampered seed K ′ ← φ(K ). If b = 0 and the adversary has never received a value for K ′

, the challenger randomly selects a point in the range of G to return to the adversary; if seed

K ′ has been queried previously, the challenger returns the previous value. Otherwise, if b = 1

then the challenger responds to a query x with G(K ′).

3. Guess. The adversary must return a guess b′ of the hidden bit.

For a primitive PRG as defined above, we define Advprg
PRG ,A,Φ(k) = Pr[b = b′] − 1

2 , and say

that PRG is a Φ-RKA secure PRG if Advprg
PRG ,A,Φ(k) is negligible in k for all polynomial time

adversaries A.

As with Φ-RKA secure PRFs, it will help our proofs to have an alternative definition of Φ-RKA

secure PRGs that separately considers the cases where the adversary has oracle access to the PRG

and when they have oracle access to a random function instead.

Definition 6.6 (Alternative Definition for a Φ-RKA PRG) The following two security games,

PRGReal and PRGRand, are both defined for PRG = (K,G) and a RKD specification Φ that is

compatible with PRG , a security parameter k, and an adversary A. We assume that an instance

of PRG with key K
$← K(1k) has an efficiently computable domain and range given by Dom(·) and

Rng(·).

These two games share a setup phase and a guess phase, but differ in the query phase.

1. Setup Phase. The challenger generates a seed for the PRG as K
$← K(1k).

2a. Query Phase for PRGReal. A is allowed to adaptively query tampering functions OPRG ,Φ(φ),

to which the challenger replies with F(K ′) to the adversary.

2b. Query Phase for PRGRand. A is allowed to adaptively query tampering functions OPRG ,Φ(φ).

The challenger first computes K ′ ← φ(K ). If T [K ′] is undefined, the adversary sets T [K ′]
$←

Rng(k). The challenger sends T [K ′] to the adversary.

3. Guess. The adversary must return a guess b′ of whether it is playing game PRGRand or

game PRGReal.
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Standard arguments imply that Advprg
FF ,A,Φ(k) = Pr[PRFRandA ⇒ 1]− Pr[PRFRealA ⇒ 1].

6.3 Φ-RKA Secure Signature Schemes

Most of the primitives we will consider have security definitions that are based on indistinguisha-

bility; signature schemes are the one primitive that we consider that defines a break based on a

produced value of the adversary that depends on the secret and public keys of the scheme.

Since there are subtleties in the definition of a Φ-RKA secure signature scheme, we will first

give the standard definition of a signature scheme.

Definition 6.7 (Signature Scheme – [DH76]) A signature scheme DS = (K,S,V) is a tuple of

algorithms, for key generation, signing, and verification algorithms respectively, with an associated

security parameter k, and efficiently computable message space M(k).

The key-generation algorithm generates a verification key vk and a signing key sk as (vk , sk)
$←

K(1k). The signing algorithm S is used to sign messages m ∈ M(k) as S(sk ,m). The verification

algorithm V takes parameters of a verification key, a message, and a signature as V(vk ,m, σ), and

returns either true or false depending on whether the signature is valid or invalid respectively.

For the correctness of a scheme, if keys are generated properly as (vk , sk)
$← K(1k), the signature

σ
$← S(sk ,m), should always verify, giving V(vk ,m, σ) = true.

We define the security of the scheme via the following game for an adversary A.

1. Setup Phase. The challenger generates verification and signing keys as (vk , sk)
$← K(1k).

The challenger also initializes the set of disallowed messages for forgery as M ← ∅. Finally,

the challenger gives the verification key vk to A.

2. Query Phase. A adaptively asks for signatures of messages m ∈ M to a signing oracle as

OS(m). When the challenger receives m, it adds m to the set of disallowed messages for

forgery as M ←M ∪ {m}, and finally returns σ
$← S(sk ,m) to A.

3. Forge. The adversary halts and outputs a message and signature pair (m∗, σ∗), with m∗ ∈M.

We define Advsig-rka
DS ,A (k) = Pr[m∗ /∈ M ∧ V(vk ,m, σ) = 1]; we say DS is a secure signature

scheme if Advsig-rka
DS ,A (k) is negligible in k for all adversaries A that run in time polynomial in k.
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To adapt this definition to the RKA model, the security game is modified so that the adversary

receives access to a signing oracle that works on tampered keys. Now, A should be able to make

adaptive queries OS,Φ(φ,m) and receive S(φ(sk),m) in return.

Moving the definition of a forgery from the standard model to the RKA model causes more

delicate issues to arise. In the standard definition, the adversary’s forgery must be on a previously

unsigned message. Definition 5.4 helps us convert this to the RKA model, where the winning

condition should not depend on modified secret keys. Here, a Φ-RKA adversary that outputs

(m∗, σ∗) should be said to have a valid forgery if it never received a signature on the message

m∗ generated with the original secret key. This appears to be a minimal requirement for the

disallowed set of messages. Prior work [GOR11] defining Φ-RKA secure signature schemes instead

called a forgery valid if the adversary never made a signature query with the identity function as

OS,Φ(φID,m
∗); our definition disallows only a subset of the messages that [GOR11] disallows, and

makes sense even when Φ fails to be claw-free.

Definition 6.8 (Φ-RKA Signature Scheme) A Φ-RKA secure signature scheme DS = (K,S,V)

is a tuple of algorithms, for key generation, signing, and verification algorithms respectively, with

an associated security parameter k, and efficiently computable message space M(k).

The algorithms of a Φ-RKA secure signature scheme satisfy the same structure and correctness

properties as a standard signature scheme, given in Definition 6.7.

The security game is parameterized by Φ that is compatible with DS is defined for an adversary

A.

1. Setup Phase. The challenger generates and verification and signing keys as (vk , sk)
$← K(1k).

The challenger also initializes the set of disallowed messages for forgery as M ← ∅. Finally,

the challenger gives the parameters and verification key (vk) to adversary A.

2. Query Phase. A is allowed to adaptively make oracle queries for signatures as OS,Φ(m,φ)

with m ∈ M, φ ∈ Φ. To answer, the challenger first generates the modified signing key as

sk ′ ← φ(sk). If sk ′ = sk, the challenger adds the message to the set of disallowed messages

for the forgery as M ← M ∪ {m}. Finally, the challenger answers the query by returning
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σ
$← S(sk ′,m) to A.

3. Forge. The adversary halts and outputs a message and signature pair (m∗, σ∗).

We define Advsig-rka
DS ,A,Φ(k) = Pr[m∗ /∈ M ∧ V(π, vk ,m, σ) = 1], and say DS is a Φ-RKA secure

signature scheme if Advsig-rka
DS ,A,Φ(k) is negligible in k for all adversaries A that run in time polynomial

in k.

6.4 Φ-RKA Secure Public Key Encryption

Public key encryption (PKE), as defined in [Sha85], with semantic security, as defined in [GM82],

gives a public key that is sufficient to run encryption scheme without compromising a private secret

key used only for decryption. Since in this case the secret key is used only for decryption, RKAs

make sense to consider when the adversary is given access to a decryption oracle, as is the case for

a chosen-ciphertext security definition. In the normal PKE security game, the decryption oracle

disallows queries for the challenge ciphertext; to adapt to the RKA model, the decryption oracle

will refuse to decrypt when the ciphertext it is given matches the challenge one and the tampered

key equals the real one.

Again, we give only a definition for a Φ-RKA PKE scheme and not for one with standard

security, but one can obtain the standard definition by setting Φ = ID.

Definition 6.9 (Φ-RKA Public Key Encryption Scheme) A public key encryption (PKE)

scheme is comprised of a tuple of algorithms for key generation, encryption and decryption al-

gorithms, as PKE = (K, E ,D). The scheme is associated with a security parameter k, and is

assumed to have an efficiently computable message space M(k).

The scheme has an associated security parameter k, and is assumed to have an efficiently

computable message space M(k). The key generation algorithm K takes 1k as input and returns

the public key ek and secret key dk, as (dk , ek)← K(1k). The encryption function takes a public key

and a message to create a ciphertext as (ek ,m) for m ∈ M(k). Finally, the decryption algorithm

takes a secret key and a ciphertext c to produce a message as D(dk , c).
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For correctness, the scheme requires that for a properly generated key pair, a ciphertext that is

generated as the encryption of a message can be decrypted using the associated secret key back to

the original message.

The following security game is defined for a compatible class of RKD functions Φ and an ad-

versary A.

1. Setup Phase. The challenger generates public and secret keys as (ek , dk)
$← K(1k). The

challenger also generates a random bit b
$← {0, 1}, and initializes the challenge ciphertext as

C∗ ← ⊥. The challenger returns (π, ek) to the adversary.

2. Query Phase I. A is given oracle access to OD,Φ. When the challenger receives query OD,Φ(φ,C),

it first generates the tampered secret key as dk ′ ← φ(dk). The challenger returns the decryp-

tion M ← D(dk ′, C) to A.

3. Challenge. The adversary outputs a pair of messages (m0,m1) with |m0| = |m1|; the chal-

lenger then returns the challenge ciphertext C∗
$← E(π, ek ,mb) in response.

4. Query Phase II. A is again given oracle access as OD,Φ. When the challenger receives query

OD,Φ(φ,C), it first generates the tampered secret key as dk ′ ← φ(dk). If ((dk ′ = dk) ∧ (C =

C∗)), the challenger returns ⊥; otherwise the challenger returns M ← D(dk ′, C).

5. Guess. Finally, the adversary halts and outputs b′, its guess of b.

The advantage of the adversary is defined as Advpke-cc-rka
PKE ,A,Φ (k) = Pr[b = b′] − 1

2 . We say PKE

is Φ-RKA secure if this advantage function Advpke-cc-rka
PKE ,A,Φ (k) is negligible in k for all adversaries A

that run in time polynomial in k.

6.5 Φ-RKA Secure Weak Psuedorandom Functions

Weak psuedorandom functions (wPRFs) are a relaxation of PRFs such that they only need to be

indistinguishable from a truly random function when queried at random points in the domain, in-

stead of at adversarially chosen points. We include wPRFs since they have an interesting separation

with PRFs.
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Definition 6.10 (Φ-RKA Weak Psuedorandom Function (wPRF).) Let wPRF = (K,F)

be a family of functions with an associated security parameter k, with efficiently computable domain

DomwPRF (k) and range RngwPRF (k).

The following security game is parameterized by a class of allowed RKD functions Φ that is

compatible with wPRF , and is defined for an adversary A.

1. Setup Phase. The challenger generates a key for the wPRF as K
$← K(1k), and selects a

random bit b
$← {0, 1}.

2. Query Phase. A is given oracle access as OwPRF ,Φ(φ). Upon receiving an oracle query (φ),

the challenger first computes the tampered key K ′ ← φ(K), and selects a value x uniformly

from the domain of wPRF as x
$← DomwPRF (k).

If b = 0 and the adversary has never received a value for x and K ′, the challenger randomly

selects a point y
$← Rng(k) and defines T [K ′, x] = y. The challenger answers the oracle query

by returning (x, T [K ′, x]). Otherwise, if b = 1 then the challenger responds to a query x with

(x,F(K ′, x)).

3. Guess. The adversary must return a guess b′ of the hidden bit.

We define Advwprf-rka
wPRF ,A,Φ(k) = Pr[b = b′]− 1

2 ; we say wPRF is Φ-RKA secure if this advantage

function is negligible in k for all A that run in time polynomial in k.

6.6 Φ-RKA secure Symmetric Encryption

Symmetric encryption enables a sender and a receiver that share a secret key to send encrypted mes-

sages to each other. This case is interesting because we can now consider RKAs on the encryption

algorithm as well as on the decryption algorithm.

We consider two different notions of security for symmetric encryption:chosen-plaintext attack

(CPA) and chosen-ciphertext attack (CCA). In CPA security, the adversary is allowed to repeatedly

query the encryption oracle with pairs of messages, and receives the encryption of one in return

in a semantic security challenge. In CCA security, the adversary is additionally given access to a

decryption oracle, but the decryption oracle will disallow decryption of any challenge ciphertext.
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Definition 6.11 (Φ-RKA CPA and CCA secure SE Schemes) A symmetric encryption scheme

SE = (K, E ,D) is specified by key generation, encryption and decryption algorithms. The scheme

is associated with a security parameter k, and is assumed to have an efficiently computable message

space M(k).

The key generation algorithm K takes 1k as input and returns a secret key K, as (K)← K(1k).

The encryption function takes a secret key and a message to create a ciphertext as (K,m) for

m ∈ M(k). Finally, the decryption algorithm takes a secret key and a ciphertext c to produce a

message as D(K, c).

For correctness, the scheme requires that for a properly generated secret key, a ciphertext that

is generated as the encryption of a message can be decrypted using the same secret key back to the

original message.

The following security game is defined for a compatible class of RKD functions Φ and an ad-

versary A.

1. Setup phase. The challenger generates a secret key with the key generation algorithm, as

K ← K(1k). The challenger also generates a random bit b
$← {0, 1}, and initializes the set of

messages disallowed for decryption as S ← ∅.

2. Query Phase – CPA. The adversary A is given adaptive access to OE,Φ(φ,m0,m1), where

|m0| = |m1|. To answer, the challenger first computes the tampered key as K ′ ← φ(K), and

then computes ciphertext C
$← E(K ′,mb). C is added to the list of disallowed ciphertexts as

S ← S ∪ {(K ′, C∗)}, and then the challenger returns C to A.

3. Query Phase – CCA. In the case of CCA security, in addition to the oracle access granted in

the CPA Query Phase, A is also given access to the decryption oracle as OD,Φ(φ,C. To answer

this the challenger first computes the tampered key as K ′ ← φ(K). If ((K ′, C) ∈ S) then the

challenger returns ⊥ to A; otherwise the challenger decrypts and returns M ← D(K ′, C) to

A.

4. Guess. The adversary must return a guess b′ of the hidden bit.
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We define Advse-cp-rka
SE ,A,Φ (k) = Pr[b = b′]− 1

2 when A plays the above game with the CPA Query

Phase. We say SE is Φ-RKA-CPA secure if this advantage function is negligible in k for all A that

run in time polynomial in k.

We define Advse-cc-rka
SE ,A,Φ (k) = Pr[b = b′]− 1

2 when A plays the above game with the CCA Query

Phase. We say SE is Φ-RKA-CCA secure if this advantage function is negligible in k for all A

that run in time polynomial in k.

6.7 Φ-RKA Secure Identity Based Encryption

Identity Based Encryption (IBE) was first defined in [Sha85]. In an IBE scheme, the public key

of each user is some commonly known user identification (ID), such as an email address, avoiding

the common issues associated with public key exchange. An IBE scheme is enabled by a trusted

party with master keys that generates the secret keys for any ID. We will give the definition for a

Φ-RKA secure IBE scheme without first giving the standard definition of an IBE scheme, but the

oriental definition can be obtained by letting Φ = ID.

As with the definition for signatures, some subtleties arise in actions disallowed to the Φ-RKA

adversary. In the standard security game, the adversary can adaptively request secret keys for user

IDs of its choice to a key derivation oracle, then request a semantic security challenge encrypted

with the ID of its choice, and then further request secret keys for IDs; however, its important for

the adversary to be disallowed to have the secret key for the ID used to generate the semantic

security challenge! In the Φ-RKA security definition, the key-derivation oracle refuses to act only

when the ID it is given matches the challenge one and the tampering does not modify the secret

key.

Definition 6.12 (Φ-RKA IBE Scheme) An identity-based encryption (IBE) scheme is com-

prised of a tuple of algorithms IBE = (M,K, E ,D), which are for master key generation, key

generation, encryption, and decryption respectively. The scheme has an associated security pa-

rameter k, and is assumed to have an efficiently computable message space M(k). The master

key generation algorithm M takes 1k as input and returns the master public key mpk and master

secret key msk, as (msk ,mpk) ←M(1k). Standard key generation K takes parameters, a user ID
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id, and the master secret key to produce a secret key for the ID as dk ← K(mpk ,msk , id). The

encryption function takes the master public key, a user ID, and a message to create a ciphertext

as E(mpk , id ,m) for m ∈ M(k). Finally, the decryption algorithm takes the master public key, a

secret key, and a ciphertext c to produce a message as D(mpk , dk , c).

For correctness, the scheme requires that for a properly generated master key, when a message

is encrypted to a user ID, the properly created secret key for that user ID can be used to decrypt to

the original message.

Security is defined for the following game with an adversary A, and is parameterized by a Φ

that is compatible with IBE .

1. Setup Phase. The challenger generates the master key pair as (mpk ,msk)
$← M(1k). The

challenger forwards (π,mpk) to the adversary. The challenger also randomly selects a bit b

as b
$← {0, 1}, and initializes the set of disallowed IDs as S ← ∅, and initializes the challenge

ID as id∗ ← ⊥.

2. Query Phase I. A receives oracle access to OK,Φ, submitting queries of the form OK,Φ(φ, id).

To answer, the challenger first generates the tampered key as msk ′ ← φ(msk). If msk ′ = msk,

S ← S ∪ id. The challenger returns secret key dk ← K(mpk ,msk ′, id) to A.

3. Challenge Phase. The adversary sends a user ID and two messages to the challenger, as

(id ,m0,m1), where |m0| = |m1|. If id ∈ S, the challenger returns ⊥, since the adversary has

already asked for the secret key for this user ID under the original secret key. Otherwise, the

challenger sets id∗ = id, and sends A the challenge C
$← E(mpk , id ,mb).

4. Query Phase II. A again is given access to OK,Φ(φ, id), but now queries to id∗ with the

unhampered master secret key are disallowed. To answer, the challenger first generates the

tampered key as msk ′ ← φ(msk). If ((msk ′ = msk)∧ (id = id∗)), then the challenger returns

⊥; otherwise the challenger returns dk ← K(mpk ,msk ′, id).

5. Guess. Finally, the adversary halts and outputs b′, its guess of b.
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We define Advibe-rka
IBE ,A,Φ(k) = Pr[b = b′]− 1

2 , and say that IBE is a Φ-RKA secure IBE scheme

if Advibe-rka
IBE ,A,Φ(k) is negligible in k for all Athat run in time polynomial in k.

7 Tools For Our Constructions: Identity-Key Fingerprints and

Identity Collision Resistance

In our constructions, we will want to reduce the Φ-RKA security of a primitive to the standard

(non-tampering) security of the same primitive; in other words, our constructions will yield an

adversary A that can break a normal secure primitive by using any Φ-RKA adversary B that can

break the Φ-RKA security of the primitive. To achieve this, we construct A answer oracle queries

of the Φ-RKA adversary B in the following way:

1. When B’s submitted φ ∈ Φ leaves the secret key unchanged, i.e. when φ(sk) = sk A should

answer B’s queries using its own oracle access to a non-tampering oracle. Since the definition

of a break in the Φ-RKA security of any primitive is a valid break for the original untampered

secret key, this will guarantee that a successful break for B will also be a successful break for

A.

2. B’s queries to different modified keys should give it no additional information about the

original secret key; A should be able simulate answers to oracle queries to modified keys.

To achieve the second point, we design our Φ-RKA primitives so that A can simulate answers

to B’s oracle queries by randomly generating instances of a normal (non-tampering) version of the

primitive.

The first point presents a greater technical challenge: how will A know when the secret key is

unchanged (i.e. φ(sk) = sk), and thus should answer B’s query with its own oracle access? After

all, A only has oracle access to functions evaluated using the secret key, but not the secret key itself.

As an example of this difficulty, imagine A is an adversary against a PRF. A is given oracle access

to either the PRF or a family of truly random functions evaluated with the hidden sk. Though

A query this oracle at many points in the domain of the PRF, this might be little help in telling
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whether φ(sk) = sk. (Consider a PRF that ignores the last bit of the secret key, and a Φ that

allows the adversary to set the last bit of the secret key to either 0 or 1.)

7.1 Identity-Key Fingerprints for PRFs

To avoid the above challenge and solve other technical issues associated with dropping the claw-free

assumption, we will use a new tool, called an Identity-key Fingerprint (IDFP), to determine when

the secret key of a PRF has changed. To accomplish this, an IDFP for a function family generates a

vector of points in the domain, called the fingerprint; except with negligible probability, a function

evaluated with a random secret key key and the function evaluated with a tampered key will differ

at at least one of the points in the fingerprint. Like our definition of RKA security, an IDFP will

be parameterized by Φ, the class of allowed tampering functions.

Definition 7.1 (Identity-key Fingerprint – IDFP) Let FF = (K,F) be any function family,

with key-generation and evaluation algorithms respectively, an associated security parameter k, and

with an efficiently computable domain given by Dom(·).

A fingerprint is a vector of points in the domain of FF with length v(k) that is polynomial in

k. An identity key fingerprint (IDFP) is an algorithm IKfp that produces a fingerprint for FF as

w
$← IKfp(1k). The following game gives the security requirements for for FF , and is parameterized

by a compatible class of RKD functions Φ for FF .

1. Setup Phase. The challenger generates a key for FF as K
$← K(1k). The challenger also

generates the fingerprint for FF as w
$← IKfp(1k), and sends the fingerprint to the adversary.

Finally, the variable Win is set to have value false.

2. Query Phase. The adversary is allowed to make adaptive queries to an IDFP oracle for φ ∈ Φ

as Oidfp,Φ(φ). The challenger answers this oracle query by first computing the tampered key

K ′ ← φ(K). If K 6= K ′, and F(K,w[i]) = F(K ′,w[i]) for all i ∈ [|w|], Win← true. In any

event, the challenger sends the adversary FK ′,w[i]) for all i ∈ [|w|].

For any adversary A that is polynomial time in k, we define Advidfp
FF ,A,Φ(k) = Pr[Win = true].
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We say FF is Φ-IDFP secure if this advantage function is negligible in k for all such polynomial

time adversaries A.

The notion of IDFP can be seen as a relaxation of the key fingerprint defined by Bellare and

Cash[BC10]. The key fingerprint of [BC10] for a PRF allows statistical disambiguation of any

pair of keys: except with negligible probability, any two keys will differ at some point in the key

fingerprint. They showed that the Naor-Reingold PRF (NR-PRF) had such a key fingerprint,

but in general, it does not seem common. Interestingly, their own Φ-RKA PRFs, which build on

NR-PRFs, are not known to have a key fingerprint. The IDFP has the weaker requirement of

computational disambiguation of the original key from other keys: given a randomly generated

original key, it must be computationally hard to find a second key that agrees at all points in the

IDFP.

The IDFP notion is easier to satisfy than that of the key fingerprint, and will still be sufficient

for our constructions. We are not able to give a general proof that a Φ-RKA secure PRF also has

is Φ-IDFP secure, and so will have to make this an assumption in some of our constructions. We

are, however, able to show that for claw-free Φ, any Φ-RKA secure PRF with large enough range

is Φ-IDFP secure, using any point in the domain functioning as the fingerprint. This adds to the

evidence that assuming Φ-IDFP security for Φ-RKA secure PRF is reasonable.

Proposition 7.2 (Φ-RKA secure PRFs have Φ-IDFP for claw-free Φ) Let Φ be a claw-free

class of RKD functions, and let FF be a Φ-RKA secure PRF with efficiently computable domain

domain Dom(·) and super-polynomial size range Rng(·). Then FF is Φ-IDFP secure, using IDFP

algorithm IKfp(1k) that returns the 1-vector comprised of any fixed element in Dom(·).

Proof:

We define the IDFP algorithm IKfp(1k) to return the lexicographically first element in Dom(1k).

Using any adversary A against the Φ-IDFP security of PRF FF , we construct an adversary B

against the Φ-RKA security of FF with

Advidfp
FF ,A,Φ(k) ≤ Advprf-rka

FF ,B,Φ(k) +
q(k)

|Rng(k)|
,
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where q(k) is the number of oracle queries made by A to Oidfp.

B receives oracle access to either a PRF or a truly random function. Recall that φID is the identity

function and the RKA-model assumes that φID ∈ Φ. B generates the fingerprint as w← IKfp(1k),

and then computes y[1]← O(φID,w[1]), which is the value returned by the oracle, evaluated using

the original secret and the single value in the fingerprint. Finally, B initializes a set T to empty.

For the reduction, B provides the IDFP adversary A with input of fingerprint w. When A makes

a query to the IDFP oracle as Oidfp,Φ(φ), B queries its Φ-RKA PRF oracle with z = O(φ,w[1]),

and returns the value z to A. Additionally, if z = y then B sets a variable Win ← true. When A

halts, B returns 1 if Win = true , and 0 otherwise.

For the analysis, we consider the cases that B has oracle access to the real PRF in PRFReal or a

truly random function in PRFRand separately.

First lets consider the game PRFReal, where B’s oracle queries are answered by the real PRF

OF ,Φ(φ,w[1]), z = F(φ(K),w[1]). In this case, A is getting the correct distribution for the PRF

and so is playing the exact game defining Φ-IDFP security; B will set Win = true when A has

found φ such that F(φ,w[1]) = F(φID,w[1]) and has broken the security of the IDFP. Thus B will

return 1 with probability given by Advidfp
FF ,A,Φ(k).

In game PRFRand, B’s oracle queries to are instead answered with a truly random function

OG,Φ(φ,w[1]). Let q(k) be the number of queries A makes to Oidfp,Φ. When A queries a φi 6= φID,

the tampered key must be different from the original key, since φi(K) 6= K by the claw-free as-

sumption and the fact that φID(K) = K. Thus in this case z = OG(φi,w[1]) is independent from

y = OG(φID,w[1]), and so for each query B sets Win to true with probability at most 1)
|Rng(1k)| . B

never sets Win to true when A queries with φID, since this only happens when the key is modified.

Thus in this case, by a union bound B returns 1 with probability at most q(k)
|Rng(1k)| .
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Then

Pr[PRFRealB ⇒ 1] = Advidfp
FF ,A,Φ(k)

Pr[PRFRandB ⇒ 1] ≤ q(k)

|Rng(k)|

where q(·) is the number of oracle queries made by A. Using definition 6.3 for Advprf-rka
FF ,B,Φ(k) gives

the desired result.

Using Proposition 7.2, the Φ-RKA PRF construction of [BC10] can be used to generate an

IDFP, since the Φ they use is claw-free. Interestingly, though they use key fingerprints to create

their Φ-RKA secure PRF, no key fingerprint is known for their construction.

Unfortunately, this construction of IDFP only works for claw-free Φ, while we will need IDFP for

classes Φ without the claw-free assumption. For some of our constructions of higher level Φ-RKA

secure primitives, we will assume the Φ-IDFP security of given Φ-RKA PRFs, even when Φ is not

claw-free. In practice, a vector over a distinct points in the domain should be a suitable fingerprint

and assuming the existence of IDFPs seems to be a reasonable even when Φ is not claw-free.

7.2 Identity Collision Resistance for PRGs

For our constructions, we will define and use a new weak form of collision resistance for PRGs,

which we call Identity Collision Resistance (ICR) and which is parameterized by a class of allowed

RKD functions Φ. Roughly, for a Φ-ICR secure PRG, it is difficult for an adversary to find a φ ∈ Φ

that modifies the hidden seed but that fails to change the output of the PRG. The definition is

formalized below.

Definition 7.3 (Φ-ICR secure PRG) The following security game for an adversary C is defined

for a PRG = (P,K) with a compatible RKD specification Φ, and a security parameter k.

1. Setup Phase. The challenger generates a seed for the PRG as K
$← K(1k), computes T ←

G(K ), and initializes the variable Win to false.
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2. Query Phase. The adversary C adaptively queries Oicr,Φ as Oicr,Φ(φ). The challenger answers

these queries by first computing the tampered seed K ′ ← φ(K ), and then evaluates the PRG

on the tampered seed as S ← G(K ′). If K ′ 6= K and S = T , the adversary has found a

collision, and Win ← true. To answer the query, the challenger returns S to the adversary

C.

Let Advicr
PRG ,C,Φ(k) equal Pr[Win = true] when the game has input 1k. We say PRG is Φ-ICR

secure if this advantage function is negligible.

Does Φ-RKA security imply Φ-ICR security?.

ICR security is only violated when two distinct seeds map to the same value in the range of

a PRG. We note that an adversary given oracle access to a truly random function will only very

rarely be able to find two distinct seeds that map to the same value; since a Φ-RKA secure PRG is

indistinguishable from a random function (when evaluated at points given by tampered seeds), it

would at first appear that Φ-RKA security implies Φ-ICR security for a PRG, and that adversary

that breaks the Φ-ICR security of the PRG could be used to build a distinguisher of the Φ-RKA

PRG and a truly random function. Unfortunately – and unintuitively! – this is not the case.

Let’s begin to see where this intuition breaks down. To build a distinguisher of the Φ-RKA

PRG and a truly random function, we would try to get the Φ-ICR adversary to find a collision

of distinct points; if the Φ-ICR adversary finds a collision with its oracle access, the distinguisher

guess it has access to the PRG.

This intuition breaks down because the distinguisher only sees the output of the oracle, and so

does not actually see the secret key– the distinguisher does not know whether a repeated output

was generated by the same secret key. Further, it assumes that φ modifies the secret key in the

same way in both the real and random games. As we will see shortly, it is possible that a repeated

output is caused by two different seeds in the real game, and by the same seed in the random game.

This will allow the adversary to break the Φ-ICR security, while still giving indistinguishable views

of the real and random games for the Φ-RKA PRG distinguisher!

We formalize these ideas to prove that Φ-RKA security does not imply Φ-ICR security.
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Proposition 7.4 [ Φ-RKA Security does not imply Φ-ICR Security]

Suppose there exists a normal-secure PRG PRG = (K,G) with security parameter k, output

length given by r(k) = ω(k), and with range super-polynomial in k. Then there exists a PRG

PRG = (K,G) with the same r(·), and a compatible class of RKD Φ, such that PRG is Φ-RKA

secure but PRG is not Φ-ICR secure.

Proof: Let `(k) be the length of the seed returned by K(1k).

We construct the new key-generation algorithm K for PRG to pick a random bit c
$← {0, 1}, and

returns c ‖K(1k); formally K(1k)
$← {c $← {0, 1},K(1k) : c ‖K(1k)}. The new evaluation algorithm

G(K ) parses K into c ‖K , where c is a bit, and |K | = `(k), and then returns G(K ); formally,

G(K ) = G(K [2, |K |]). Note that this new evaluation algorithm G ignores the first bit of the seed,

and so G will agree on any two seeds differing only in the first bit – thus any φ that modifies the

first bit will lead to a win for an adversary in the Φ-ICR security game.

We define Φ such that our constructed PRG is Φ-RKA secure but not Φ-ICR secure. Briefly, our

Φ will be created so that φ ∈ Φ will only modify input in the real game PRGReal and not in

the random game PRGRand; with this, output collisions will occur in both cases, but any output

collisions in the random case are trivial since the seed will not be modified here. Let K− denote

K with its first bit flipped. For a R ∈ {0, 1}r(k) and K ∈ {0, 1}`(k)+1, we define φR(K ) to be K if

G(K ) 6= R, and have its first bit flipped as K− otherwise:

φR(K ) =

 K if G(K ) 6= R

K− otherwise

We let Φ = ID ∪
⋃

R ∈{0,1}r(k){φR} be the collection of φR for all R ∈ {0, 1}r(k), along with φID the

identity function.

Our constructed PRG fails to be Φ-ICR secure: an adversary A that makes a query φID receives

X = G(K ) in response, and can then make query φX . By definition of our φ, since G(K ) = X,

φX(K ) will flip the first bit of the seed and give a non-trivial collision, setting Win ← true, and
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giving the adversary an advantage of 1.

Next, we must show that PRG is Φ-RKA secure under the assumption that PRG was secure without

tampering (i.e. ID-RKA secure). To do this, we will construct an adversary B against the standard

security of PRG from any adversary A against the Φ-RKA security of PRG .

The reduction proceeds as follows. The adversary B against the normal security of PRG receives

either oracle access to PRG in game PRGReal, or oracle access to a random function in game

PRGRand. We let B compute X ← O(1k) for its oracle access for PRG . We note that in A’s game

PRGReal, all of A’s queries should be answered by a single value generated by PRG evaluated on

a random seed; similarly, in A’s game PRGRand, all of A’s queries should be answered by a single

random value in the range of PRG . Thus, B can answer X to all of A’s queries φ for PRG ; this

correctly simulate A’s game PRGReal when B is in game PRGReal, and correctly simulate A’s

game PRGRand when B is in game PRGRand. When A returns its guess of hidden bit b′, B also

outputs b′.

Thus, Advprg

PRG ,B,ID
(k) = Pr[PRFRandB ⇒ 1] − Pr[PRFRealB ⇒ 1] = Pr[PRFRandA ⇒ 1] −

Pr[PRFRealA ⇒ 1] = Advprg
PRG ,A,Φ(k), as desired.

Building Φ-ICR PRGs. As shown above, not all Φ-RKA secure PRGs are Φ-ICR secure, but we

will need PRGs with both properties for our constructions. To do this, we will build a PRG that

is both Φ-ICR and Φ-RKA secure from any Φ-RKA PRF that is Φ-IDFP secure, i.e., a Φ-RKA

secure PRF with a key fingerprint for the identity function.

Proposition 7.5 Let FF = (K,F) be a Φ-RKA PRF with output length `(k) for security param-

eter k. Let IKfp be a Φ-IDFP secure identity key fingerprint function for FF with vector length

v(k).

Define PRG PRG = (K,G), with associated output length given by r(·), as follows:

• K on input 1k, compute fingerprint w
$← IKfp(1k) and and the secret key for a PRF K

$←

K(1k), and return K = (w,K)
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• G(w,K) = F(K,w[1]) ‖ · · · ‖F(K,w[|w|])

• The length of the output of the PRG is given as r(k) = l(k) · v(k)

Then PRG is both Φ-RKA secure and Φ-ICR secure.

Proof: Let A1 be any adversary against the Φ-ICR security of PRG , and let A2 be any adversary

against the Φ-RKA security of PRG . We will use to build an adversary B1 against the Φ-IDFP

security of FF , and an adversary B2 against the Φ-RKA security of FF .

First, we will construct B1, an adversary against the Φ-IDFP security of FF , which receives

fingerprint w for FF , using A1, the adversary against the Φ-ICR security of PRG . A1 makes oracle

queries consisting of some φ. To answer this, B1 first queries its own oracle Oidfp,Φ(φ,w[i]) for all

i ∈ [|w|]; B1 receives F(φ(K),w[i]) for each i, and simply concatenates all these to form and return

the proper response to A1’s queries. A1 is said to break the Φ-ICR security if it queries a φ∗ such

that φ∗(K) 6= K yet the concatenation of all F(φ∗(K),w[i]) is the same as the concatenation of all

F(K,w[i]). When A1 queries such a φ∗, B1 wins when it queries its oracle with φ∗ as well– here,

the key will be modified but no part of the fingerprint will. Thus

Advidfp
FF ,B1,Φ

(k) ≥ Advicr
PRG ,A1,Φ

(k).

Next we construct B2, the adversary against the Φ-RKA security of FF , from any A2 against the

Φ-RKA security of PRG . When A2 submits queries of φ to its oracle, B2 answers by first querying

its own oracle Oidfp,Φ(φ,w[i]) for all i ∈ [|w|], and concatenating each of these; note that when B2

is playing PRFReal, this will simulate PRGReal for A2, and when B2 is playing PRFRand this will

simulate PRGRand for A2. Thus when A2 guesses b′, B2 copies this guess, and so B2 will correctly

guess b exactly when A2 does. Thus

Advprf
PRF ,B2,Φ

(k) ≥ Advprg
PRG ,A2,Φ

(k).
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This construction also shows how to build a Φ-RKA PRG from any Φ-RKA PRF, though if

you don’t need the Φ-ICR property it is simpler just to apply the PRF to a constant input.

Corollary 7.6 Since any Φ-RKA PRF can be used to build a Φ-RKA PRG as above, RKA[PRF] ⊆

RKA[PRG].

8 Constructions of Φ-RKA Secure Primitives

We will show that a Φ-RKA and Φ-ICR PRG is a particularly strong starting point, leading

to a construction of any cryptographic primitive from such a PRG; in our language, this is the

containment of RKA[PRG] in RKA[P] for all other P that we consider. To do this, we first show

RKA[PRG] ⊆ RKA[Sig], building a tamper-resilient signature scheme from any Φ-RKA and Φ-

ICR PRG. Then we will generalize this result to use any Φ-RKA and Φ-ICR PRG to build a tamper

resilient version of any of the other primitives we consider.

We also show that our constructions of a Φ-RKA secure signature satisfies an even stronger

notion of security where the adversary cannot forge for any tampered key, and not just the original

one.

Additionally, we give two positive results based on IBE, showing that previous constructions of

a PKE with CCA security and of a signature scheme based on IBE maintain Φ-RKA security.

8.1 Using Φ-RKA PRG to Construct Φ-RKA Signatures

To build high level primitives resilient to tampering, we will start with a normal secure instance

of that primitive. The adapted security notions of the RKA model allows an adversary to obtain

information not only based on the original secret key, but also tampered versions of the secret key.

To build a Φ-RKA secure primitive, we will need to ensure that information obtained based on

tampered secret keys gives the adversary no additional ability to break the security of the original

primitive.

We will give a general method to construct any higher level primitive from a Φ-RKA and Φ-

ICR PRG. Every higher level primitive has a key generation algorithm to generate a secret key
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(and perhaps additionally a public key) from randomness. Instead of storing the secret key of the

original scheme, the new tamper resilient primitive should instead store a seed for the PRG. When

the secret key is needed, the PRG is used to generate randomness to feed into the original key

generation algorithm, generating the secret key freshly each time it is needed. If the seed has been

modified by a φ ∈ Φ, the PRG will produce an output that is indistinguishable from random, and

so the secret key generated will look as if it was generated with fresh randomness, and will give no

information about the original scheme.

To explore this idea in detail, we will formally define the construction in question and give the

necessary security reductions for Φ-RKA Signatures.

From Φ-RKA PRGs to Φ-RKA signatures. We will show containments of the form RKA[PRF] ⊆

RKA[P] for a range of primitives P by showing that any Φ-RKA and Φ-ICR secure PRG can be

used to build Φ-RKA secure P. Under the assumption that a Φ-RKA PRF has an identity finger-

print, we can use it to build such a PRG, giving the desired result.

Construction 8.1 [A Φ-RKA Signature Scheme] We start with a Φ-RKA and Φ-ICR PRG PRG =

(K,G) with associate output length given by r(·), and a normal-secure signature scheme DS =

(K,S,V), such that the output length r(·) of the PRG is also the number of coins used by K. We

construct a new signature scheme DS = (K′,S,V), with algorithms defined as follows:

1. Keys: Pick a random seed for the PRG for the new signing key, K
$← K(1k). To generate the

verification key, let (vk , sk) ← K(G(K )) be the result of the original key generation algorithm

with coins from G(K )– the verifying key remains vk . (Key sk is discarded.)

2. Signing: To sign message m with signing key K , recompute (vk , sk)← K(G(K )), and then sign

m under S using sk .

3. Verifying: Just as in the base scheme signature scheme, verify that σ is a signature of m under

vk using V.

Note that Φ is compatible with the space of keys for DS since this is also the space of seeds for

the PRG.

We note that our construction has the advantage that the form of the public key, signatures, and
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the verification algorithm all remain unchanged from that of the original base signature scheme.

Thus our construction gives minimal changes to software, making it easier to deploy than a totally

new scheme. Creating a signature in the new scheme now additionally requires evaluation of a

Φ-RKA-PRG, but in practice this can be instantiated with any efficient block cipher. However,

creating a signature also requires running the key generation algorithm of the base signature scheme

which might be expensive.

We will prove that DS inherits the Φ-RKA security of the PRG. The intuition here is very simple.

When an adversary attacking DS makes a signing query (φ,m), the signature of m will either be

under the original signing key, or will look like a signature generated with an independent and

randomly generated key. Since the signing key of our new signature scheme is the seed of the Φ-RKA

PRG, any modification of the signing key will generate φ(K ) which looks like fresh randomness;

since the output of the PRG is used to generate a signing key of the original signature scheme as

using coins G(φ(K )), this will look like a freshly randomly generate signing key, independent of the

original scheme and giving no additional information to the adversary.

There are, however, technical difficulties in the proof. In our reductions, we construct an

adversary B against the Φ-RKA security of the PRG from any adversary A against the security of

the new signature scheme. The standard way to construct this is for B to guess it has access to a

real oracle when A succeeds in a forgery, and to guess it has access to a random oracle B when A

fails. However, in order for B to tell when A succeeds, it needs to know when the tampered key of

the signature scheme is unchanged, and its unclear how to do this without access to the key! We

overcome this property using the Φ-ICR security of the PRG, which bounds the probability that

an adversary can query a φ in Φ such that φ modifies the seed but not the output of the PRG.

Theorem 8.2 Let signature scheme DS = (P ‖P,K′,S,V) be constructed as in construction 8.1,

with a Φ-RKA secure and Φ-ICR secure PRG PRG = (P,K,G, r), and with a normal-secure sig-

nature scheme DS = (P,K,S,V). Then DS is a Φ-RKA secure signature scheme.

Proof:

Given an adversary A mounting an attack on the Φ-RKA security of DS , we construct adversaries
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P , S and C such that for every k ∈ N

Advsig-rka
DS ,A,Φ(k) ≤ Advprg

PRG ,P,Φ(k) + Advsig-rka

DS ,S
(k) + Advicr

PRG ,C,Φ(k) , (1)

proving the theorem.

In order to make our analysis, we introduce three games for A. In Game 0, the A will receive

correctly formed signatures from our signature construction 8.1.

Game 0 – G0

1. Setup Phase. The challenger generates the signing key for the signature scheme, which is a

seed for PRG , as K
$← K(1k), initializes T [K ] ← G(K ), and then uses the key generation of

the original signature scheme DS as (vk , sk)← K(T [K ]) to generate the verification key vk .

The challenger also initializes the set of disallowed messages as M ← ∅, and sets a boolean

variable bad to false. Finally, the challenger returns the verification key vk to A.

2. Query Phase. The challenger is responsible for answering A’s adaptive queries OS,Φ(φ,m).

To do this, the challenger computes the tampered signing key as K ′ ← φ(K ). If T [K ′] is

undefined, T [K ′]
$← G(K ′), and the challenger computes keys for the original signing scheme

using randomness from PRG as (vk
′
, sk
′
) ← K(T [K ′]), and signs m with σ

$← S(sk
′
,m). If

the signing key was unmodified, with K ′ = K , m is added to the set of disallowed messages

with M ← M ∪ {m}. If K ′ 6= K but T [K ′] = T [K ], the challenger sets bad ← true. Finally,

the challenger returns the signature σ in response to A’s oracle query.

3. Finalize. When A halts and outputs a potential forgery (m∗, σ∗), the game returns 1

if the signature verifies and m∗ 6∈ M and 0 otherwise; more formally, the game returns

((V(vk ,m, σ) = 1) ∧ (m 6∈M)).

Game 0 is equivalent to the security game for a Φ-RKA signature scheme for our construction DS ,

and so

Advsig-rka
DS ,A,Φ(k) = Pr[GA

0 ⇒ 1]. (2)
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However, Game 0 requires the challenger to add messages to the disallowed set when K ′ = K , but

the challenger doesn’t have access to K ! Game 1 will instead add messages to the disallowed set

when T [K ′] = T [K ]; we use the Φ-RKA security of the PRG to bound the probability that A can

find φ such that for K ′ = φ(K ), T [K ′] = T [K ] yet K ′ 6= K .

In Game 1, the A will receive correctly formed signatures from our signature construction 8.1.

Game 1 – G1

G1 is the same as G0, except in the query phase, where a queried message m is added to the

set of disallowed messages with M ←M ∪{m} when T [K ′] = T [K ], instead of when K ′ = K .

An algorithm with oracle access to OPRG ,Φ can perform the role of the challenger for the Φ-RKA

adversary of the signature scheme in Game 1. Note that G0 and G1 only differ when the Φ-RKA

adversary of the signature scheme makes a query to φ such that T [K ′] = T [K ] yet K ′ 6= K . We

construct adversary C against the Φ-ICR security of PRG by having it serve as the challenger in

G0; whenever the flag bad is set to true, C breaks the Φ-ICR security of PRG . Thus,

Pr[GA
0 ⇒ 1] ≤ Advicr

PRG ,C,Φ(k) + Pr[GA
1 ⇒ 1]. (3)

Game 2 differs from Game 1 in that A will receive signatures created using true randomness instead

of the output of the PRG . Differences in Game 2 from Game 1 are boxed .

Game 2 – G2

1. Setup Phase. The challenger generates the signing key for the signature scheme, which is a

seed for PRG , as K
$← K(1k), initializes T[K]

$← {0, 1}r(k) , and then uses the key generation

of the original signature scheme DS as (vk , sk) ← K(T [K ]) to generate the verification key

vk . The challenger also initializes the set of disallowed messages as M ← ∅. Finally, the

challenger sends the verification key vk to A.

2. Query Phase. The challenger is responsible for answering A’s adaptive queries for signatures

OS,Φ(φ,m). To respond, the challenger computes the tampered signing key as K ′ ← φ(K ).
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If T [K ′] is undefined, T[K’]
$← {0, 1}r(k) , and the challenger computes keys for the original

signing scheme as (vk
′
, sk
′
) ← K(T [K ′]), and signs m with σ

$← S(sk
′
,m). If the signing

key was unmodified, with K ′ = K , m is added to the set of disallowed messages with M ←

M ∪ {m}. Finally, the challenger returns the signature σ to A.

3. Finalize. When A submits a potential forgery (m∗, σ∗), the game returns 1 if the signature

verifies and m∗ 6∈ M and 0 otherwise; more formally the game returns ((V(vk ,m, σ) =

1) ∧ (m 6∈M)).

First we use any adversary A against the signature scheme to construct P which attacks the security

of the PRG . P receives either oracle access to either a real instance of PRG , or to a random one;

P will interact with A so that in the real case, it plays Game 1 with A, and in the random case

plays Game 2 with A.

P generates randomness R by querying the PRG oracle with ID the identity function as R
$←

Gen(id), and uses this to create a verification key for DS as (vk , sk) ← K(R), sending vk as the

verification key to A. P initializes the set of disallowed messages M ← ∅. P must then answer

adaptive signing queries from A of the form (φ,m). P first obtains R′ ← Gen(φ), then uses this as

randomness to run (vk
′
, sk
′
)← K(R′). P uses the resulting signing key sk

′
for the original signature

scheme DS to sign m as σ
$← S(sk

′
,m), returning signature σ to A. If φ = ID, then m is added

to the set of disallowed messages as M ← M ∪ {m}. When A returns a message and signature

(m∗, σ∗), adversary P returns 1 if (V(vk ,m∗, σ∗) = 1) ∧ (m 6∈M) and 0 otherwise.

In the case that P is in the real game, the verification key and all signatures given to A are computed

using values from the real PRG as in Game 1; in the case that P has access to the random game,

the verification key and all signatures given to A are computed using a random value for each value

of PRG seed, as in Game 2. The remaining challenge for P is to be able determine whether the

the forged message m∗ is in M , the set of disallowed messages. Messages are added to M if signed

with the original signing key, but P does not have access to the PRG seed that is the signing key

for the signature scheme for A. To solve this problem, we use the assumption that Φ is claw-free –

this guarantees that K ′ = K only when φ = ID, so m is added to M only for queries where φ = ID.
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(No other φ can have φ(K ) = K since ID(K ) = K , and that would violate the assumption.)

This analysis yields

Advprg
PRG ,P,Φ(k) = Pr[GA

1 ⇒ 1]− Pr[GA
2 ⇒ 1], (4)

computed as the difference in probability of returning 1 in the real and random games for P .

To continue in our analysis we use the adversary A attacking the RKA-security of signature scheme

DS to build an adversary S against the normal security of the original signature scheme DS . S

receives verification key vk for the original signature scheme. S then generates seed for the PRG

as K
$← K(1k), which will serve as the signing key for DS . S sends A the verification key vk . S

responds to adaptive signature queries (φ,m)from A by first computing K ′ = φ(K ). If K ′ = K ,

S uses oracle access to get signature σ
$← Sign(m). For K ′ 6= K , if T [K ′] is undefined, S sets

T [K ′]
$← {0, 1}r(k); for K ′ 6= K , S uses T [K ′] as randomness for K to compute (vk

′
, sk
′
)← K(T [K ′])

and signs m with the resulting signing key as σ
$← S(sk

′
,m). S returns the generated signature σ

to A. When A submits forgery (m∗, σ∗), S submits this also.

Note that S is able to correctly simulate Game 2 for A. The parameters presented to A have the

proper distribution, since they are composed of independently generated parameters for the PRG

and base signature scheme DS . Each tampered seed K ′ = φ(K ) accesses a truly random value

T [K ′] to generate a signing key of the original scheme DS to answer signature queries; this is even

true when φ = ID, in which case signatures are generated from S’s access to a signature oracle,

which uses a signing key of the base signature DS created with true randomness. Finally we note

that since Φ is claw-free, only φ = ID leaves the seed of the PRG unmodified, so no other φ will

yield φ(K ) = K .

A succeeds when (V(vk ,m∗, σ∗) = 1) and (m∗ 6∈ M). Since S and A have the same value for vk ,

(V(vk ,m∗, σ∗) = 1) will be true for S exactly when it is true for A. Moreover, m is added to M

for A when it queries (ID,m); since S makes queries to its signature oracle only when φ = ID, m is

added to M for S exactly when it is added to M for A. Thus S will succeed in creating a forgery
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for DS exactly when A succeeds in creating a forgery for DS in Game 2, yielding

Advsig-rka

DS ,S
(k) = Pr[GA

2 ⇒ 1]. (5)

To conclude our proof, we combine equations 2, 3, 4, and 5 progressively to give

Advsig-rka
DS ,A,Φ(k) = Pr[GA

0 ⇒ 1]

= Advicr
PRG ,C,Φ(k) + Pr[GA

1 ⇒ 1]

= Advicr
PRG ,C,Φ(k) + Advprg

PRG ,P,Φ(k) + Pr[GA
2 ⇒ 1]

= Advicr
PRG ,C,Φ(k) + Advprg

PRG ,P,Φ(k) + Advsig-rka

DS ,S
(k),

proving equation 1 as desired.

Corollary 8.3 Under the assumption that Φ-RKA secure PRF is also a Φ-IDFP secure PRF,

RKA∗[PRF] ⊆ RKA∗[Sig].

Proof: Using the construction in Proposition 7.5, we can build a Φ-RKA and Φ-ICR secure PRG

from any Φ-RKA and Φ-IDFP secure PRF. Using Theorem 8.1, we can in turn use this PRG and

a normal secure instance of a signature scheme to build a Φ-RKA secure signature scheme.

Now that we have shown how to build a Φ-RKA secure signature scheme, we generalize the

above construction.

Construction 8.4 [ Φ-RKA Primitives from Φ-RKA and Φ-ICR PRG] Let P = (KP(·), g1(·), . . . , gm(·), f1(sk, ·), . . . , fn(sk, ·))

be any secure cryptographic primitive, where each algorithm fi depends on the secret key sk, and

each algorithm gi does not. Without loss of generality, key generation outputs both a private and

a public key, and all algorithms run in time polynomial in k.
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Let Φ-RKA and Φ-ICR PRG PRG = (KPRG ,G) with associate output length given by r(k),

such that the output length r(k) of the PRG is also the number of coins used by K(1k).

We construct P′ = (K′(·), g′1(·), . . . , g′m(·), f ′1(sk, ·), . . . , f ′n(sk, ·)) as follows:

• K′(1k) generates secret key sk ← KPRG (1k), and then takes the public key obtained by running

the original key generation algorithm on the psuedorandomness produced by G evaluated with

sk, as (pk,−)← KP(1k;G(sk)); the returned key pair is (sk, pk).

• f1(sk, ·) first generates (pk, skP)← KP(1k;G(sk)), and then returns fi(skP, ·).

• All g′i(·) = gi(·); algorithms that do not use the secret key are unchanged.

Note that Φ is compatible with the space of keys for P′ since this is also the space of seeds for

the PRG.

Theorem 8.5 Let cryptographic primitive P′ = (K′(·), g′1(·), . . . , g′m(·), f ′1(sk, ·), . . . , f ′n(sk, ·)) be

constructed as in construction 8.4, from a Φ-RKA secure and Φ-ICR secure PRG PRG = (P,K,G, r),

and from any normal secure instance of the cryptographic primitive P = (KP(·), g1(·), . . . , gm(·), f1(sk, ·), . . . , fn(sk, ·)).

Then P′ is a Φ-RKA secure instance of P.

The proof is a generalized version of Theorem , and we omit it here.

8.2 Strong Φ-RKA Security

We suggest and use an even stronger notion of Φ-RKA security for signature schemes and other

primitives. The security game for Φ-RKA secure signatures requires that forgery is difficult with

respect to the original verification key; we note that our Construction 8.1 actually possesses an

even stronger property, namely that forgery is difficult with respect to the public verification keys

corresponding to any tampered secret key. We will use signature schemes to demonstrate this

strong security requirement, and will use it in other proofs.

In the general definition of a signature scheme the public verification and the secret signing

keys are produced together by the (randomized) key generation algorithm. However, in most

instantiations of signature schemes, the secret signing key is produced first with randomness and
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then the public verification key is generated as a deterministic function of the secret key. We call

any signature scheme with this property separable, and we call the algorithm that deterministically

produces the public key from the secret key the public-key generator. We note that one can

convert any signature scheme into a separable scheme by storing randomness for the key generation

algorithm as the new secret key.

Definition 8.6 (Separable Signature Scheme) A signature scheme DS = (K,S,V) is separa-

ble if there is a deterministic algorithm T , called the public-key generator, such that for all k ∈ N

the output of the process

(vk , sk)
$← K(1k) ; vk ← T (sk) ; Return (vk , sk)

is distributed identically to the output of K(1k).

We will now give the security definition for a strongly Φ-RKA secure signature scheme. Here,

the adversaries potential forgery includes not only a message and a signature, but also a RKD

function φ. A forgery is valid if it passes verification with the verification key vk derived from

φ(sk), and the adversary has never received a signature on this message generated with a signing

key sk ′ that gives vk . This might seem odd since the adversary might not know the public key, but

without loss of generality we can add the public verification key to the signatures. We note that

this definition of a forgery is more restrictive than that of normal Φ-RKA security; one can move

to the less restrictive form under a general (not just identity) fingerprint assumption.

Definition 8.7 (Strongly Φ-RKA Secure Signature Scheme) Let DS = (K,S,V) be a sep-

arable signature scheme with public-key generator T . The algorithms must work in the same way

and satisfy the same correctness properties as a standard signature scheme.

We define the following security game is parameterized by a security parameter k and a Φ that

is compatible with DS , and is defined for an adversary A.

1. Setup Phase. The challenger generates keys for the signature scheme as (vk , sk)
$← K(1k),

and initializes the set of messages disallowed for forgery as M ← ∅. Finally, the challenger

gives the public verification key vk to adversary A.
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2. Query Phase. A is given adaptive access to OS,Φ. The challenger answers A’s queries

OS,Φ(φ,m) by first computing sk ′ ← φ(sk). The challenger computes the associated pub-

lic key for the tampered secret key as vk ← T (sk ′). The challenger computes signature

σ
$← S(sk ′,m), and adds this to the set of disallowed forgeries as M ← M ∪ {(vk ,m)}.

Finally, the challenger returns the signature σ to answer A’s query.

3. Forge. When A halts, it outputs (φ,m, σ).

For A’s output (φ,m, σ), we define Advssig-rka
DS ,T ,A,Φ(k) = Pr[vk ← T (φ(sk)) : (V(vk ,m, σ) =

true) ∧ ((vk ,m) 6∈ M)]. We say (DS , T ) is strongly Φ-RKA secure if this advantage function is

negligible in k for all A that run in time polynomial in k.

To show that our signature scheme Construction 8.1, is strongly Φ-RKA secure, we first note

that this construction is separable. Recall that in this scheme, the secret signing key is a seed for

a Φ-RKA PRG, which is expanded and fed into a signature scheme key generation algorithm; the

verification key is obtained from the signature scheme key generation algorithm, and so can be

computed from the secret key. This is true regardless of whether the original signature scheme is

separable.

Theorem 8.8 Let separable signature scheme DS = (K′,S,V) be constructed as in Construction

8.1 from a Φ-RKA PRG PRG = (K,G) with output length given by r(k), and normal-secure sig-

nature scheme DS = (K,S,V). Let T be the associated public-key generation algorithm for DS .

Then (DS , T ) is a strongly Φ-RKA secure signature scheme.

Proof of Theorem 8.8:

Recall ID is the RKA specification consisting of just the identity function, so that a ID-RKA secure

signature scheme has normal signature security; by assumption, DS is such a scheme. Given an

adversary A making qsig signature oracle queries and mounting a Φ-RKA on the strong security of

DS with public-key generator T , we construct adversaries P, S such that for every k ∈ N

Advssig-rka
DS ,T ,A,Φ(k) ≤ Advprg

PRG ,P,Φ(k) + (qsig + 1) ·Advsig-rka

DS ,S,ID
(k),
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which will prove the theorem.

We define two security games for an adversary A against the strong Φ-RKA security of our con-

structed signature scheme.

Game 0 and Game 1 – G0 and G1

Differences in Game 1 from Game 0 are boxed .

1. Setup Phase for G0,G1. The challenger generates a seed for the PRG as K
$← K(1k), and

stores its initial value as T [K ] ← G(K ). The challenger also initializes the messages disal-

lowed for forgery as M ← ∅. Finally, the challenger generates the public verification key as

(vk , sk)← K(T [K ]), and returns (vk) to A.

2a. Query Phase for G0. To answer A’s adaptive queries OS,Φ(φ,m), the challenger first com-

putes the tampered secret key as K ′ ← φ(K ). If T [K ′] = ⊥ then the challenger computes

T [K ′]← G(K ′). The challenger generates the signature by first computing keys for the orig-

inal signature scheme as (vk i, sk i) ← K(T [K ′]), and then computing σ
$← S(sk i,m). The

challenger adds this to the list of disallowed forgeries as M ← M ∪ {(vk i,m)}, and finally

returns signature σ to A.

2b. Query Phase for G1. To answer A’s adaptive queries OS,Φ(φ,m), the challenger first com-

putes the tampered secret key as K ′ ← φ(K ). If T [K ′] = ⊥ then the challenger computes

T[K’]
$← {0, 1}r(k) . The challenger generates the signature by first computing keys for the

original signature scheme as (vk i, sk i)← K(T [K ′]), and then computing σ
$← S(sk i,m). The

challenger adds this to the list of disallowed forgeries as M ← M ∪ {(vk i,m)}, and finally

returns signature σ to A.

3. Finalize for G0,G1. Eventually A halts and outputs (φ,m, σ). The challenger computes

sk ′ ← φ(sk) and vk ← T (sk ′); the game returns ((V(vk ,m, σ) = 1) ∧ ((sk ′,m) 6∈M)).

The difference in the two games here is small. Where game G0 correctly uses the Φ-RKA PRG

to generate randomness for key generation, game G1 instead uses true randomness. We construct
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adversaries P, S such that for every k ∈ N

Pr[GA
0 ⇒ true]− Pr[GA

1 ⇒ true] ≤ Advprg
PRG ,P,Φ(k) (6)

1

qsig
Pr[GA

1 ⇒ true] ≤ Advsig-rka

DS ,S,ID
(k) . (7)

Together with

Advssig-rka
DS ,T ,A,Φ(k) = Pr[GA

0 ⇒ true],

this gives the desired result.

Adversary P against the PRG runs initializations

M ← ∅ ; K
$← K(1k) ; T [K ]← G(K ) ; (vk , sk)← K(T [K ]).

P then runs A on inputs (vk), and answers A’s signing oracle queries OS,Φ(φ,m). P does this

by first computing the tampered seed as K ′ ← φ(K ). If P has T [K ′] = ⊥ then it generates

T [K ′] ← G(K ′). P generates keys for the original signature scheme as (vk i, sk i) ← K(T [K ′]),

generates the signature as σ
$← S(sk i,m), and adds to the set of disallowed messages for forgery

as M ← M ∪ {(vk i,m)}. Finally, P returns signature σ in answer to A’s query. When A halts

and outputs (φ∗,m∗, σ∗), P tests whether this is valid by generating tampered key K ∗ ← φ(K ),

defining T [K ∗] ← G(K ∗) if necessary, and finally computing (vk
∗
, sk
∗
) ← K(T [K ∗]); adversary P

returns 1 if (V(vk∗,m∗, σ∗) = 1)∧((vk∗,m∗) 6∈M) and 0 otherwise. We note that P correctly plays

G0 with A.

Adversary S against the base signature scheme DS receives vk , a public key generated for the

original signature scheme, and access to a corresponding signature oracle. S simulates game G1

by generating a random signature scheme for all but one distinct tampered seed generated by the

φ in A’s queries. Let qsig(k) be an upper bound on the number of signing queries made by A.

With probability 1/(qsig + 2), S can predict which φ and corresponding key A will select for its

64



forgery, and S will imbed its signature scheme of interest here. S begins by initializing the set of

disallowed messages for forgery as M ← ∅, generating a seed for the PRG as K
$← K(1k), setting

T [K ] ← G(K ), and setting the counter of unique seeds encountered as c ← 1.S then generates

x
$← [0, qsig]. If x = 0, S will embed its signature scheme in the untampered scheme A can access,

setting vk ← vk and K0 ← K. Otherwise, for larger x, S selects randomness s
$← {0, 1}r(k) and

uses it to generate (vk , sk)← K(π; s).

S then givesA verification key vk , and answersA’s adaptive queries to the signing oracleOS,Φ(φ,m).

To do this, S first computes the tampered seed K ′ ← φ(K ). If T [K ′] = ⊥ this is the first time S

has encountered this seed, so S increments the counter as c← c+ 1, and sets T [K ′]← G(K ′), and

if c = x embeds the challenge here by setting K0 ← K ′.

If the tampered key K ′ = K0, S answers with signatures from its own signing oracle, with σ ←

OS(m), and adds M ←M ∪{(vk ,m)} to the set of disallowed forgeries. Otherwise, S uses a stored,

randomly generated signing key, setting (vk i, sk i) ← K(T [K ′]), and computing σ
$← S(sk i,m),

adding to the set of disallowed forgeries as M ←M ∪ {(vk i,m)} . In either case, S returns σ to A

to answer the query.

When A halts and outputs (φ∗,m∗, σ∗), S halts and returns (m∗, σ∗). To find whether A has created

a successful forgery, we compute K ∗ ← φ(K ), define T [K ∗] ← G(K ∗) if necessary, and finally

compute (vk
∗
, sk
∗
)← K(T [K ∗]); A’s forgery is successful if (V(vk∗,m∗, σ∗) = 1)∧ ((vk∗,m∗) 6∈M).

If φ∗ yields a previously used K ∗, there is a 1/(qsig + 1) chance that vk∗ matches S’s vk , and in

this case S will be successful when A is. Otherwise if S never used K ∗, vk∗ is distributed as a

verification key for a fresh instance of the signature scheme, and A succeeds with probability of at

most breaking the original signature scheme.

Strong Security For Other Primitives.

The analogous strong security definition also exists for Φ-RKA CCA public key encryption. In

this definition, the adversary selects not only two messages m0 and m1, but also a φ ∈ Φ, and

then receives the encryption of one of the two messages under the related key derived using φ;
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the adversary is said to succeed if it can guess with non-negligible advantage which message was

encrypted.

The generic construction that transforms a secure CCA asymmetric encryption scheme using a

Φ-RKA-PRG to generate the secret key before each use gives this strong security definition. We

omit the proof here, but it is very similar to the proof of strong security for the signature scheme.

Intuitively, each distinct φ ∈ Φ cause the Φ-RKA-PRG to output values indistinguishable from

random. When this pseudorandomness is used to generate the secret key, it appears as if it was

a new randomly generated instance of the primitive. Since the adversary can only interact with

polynomially many of these, we can guess which one they will choose, and embed the standard

Φ-RKA security challenge here.

8.3 Φ-RKA Secure Signatures from Φ-RKA Secure IBE Schemes

As noted by Naor [BF03], any IND-ID-CCA secure IBE gives a public key signature scheme. We

show that RKA[IBE] ⊆ RKA[Sig] by proving the Naor transform reserves Φ- RKA security.

Construction 8.9 Given an IBE scheme IBE = (M,K, E ,D), we construct signature scheme

DS = (K,S,V) as follows:

• K(1k) first generates (msk ,mpk)←M(1k), and returns these as signing and verification keys

(sk , vk) = (msk ,mpk).

• S(sk ,m) treats m as a user ID and returns that user IDs secret key generated as K(vk , sk ,m).

• In the most general case verification V(vk ,m, σ) is performed by encrypting a random message

in the IBE scheme using the m as the user ID, and seeing whether the resulting ciphertext

decrypts correctly under the decryption key σ.

The following says DS inherits the Φ-RKA security of IBE .

Theorem 8.10 Let signature scheme DS = (K,S,V) be constructed as in Construction 8.9 above

from Φ-RKA IBE scheme IBE = (M,K, E ,D). Then DS is Φ-RKA secure.
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When the adversary against the signature scheme makes queries to the signing oracle, the

signatures can be simulated using the key generation oracle for the IBE scheme. The delicate point

here is that the correctness of this simulation relies on the fact that the challenge identity (in this

case, the message to be signed) has not yet been defined, which means that the two procedures

fail in exactly the same cases. Once the signing adversary outputs its forgery with message id and

signature dk , we pick two random k-bit messages m0,m1 to generate a challenge ciphertext C∗. We

then decrypt C∗ using D with decryption key dk and return 0 if we get back m0 and 1 otherwise.

Proof:

Correctness of the signature scheme follows from the correctness of the IBE scheme.

We reduce Φ-RKA security of the signature scheme to the Φ-RKA security of the IBE scheme by

constructing an adversary B against the Φ-RKA security of IBE from any adversary A against the

Φ-RKA security of DS .

B receives a master public key mpk of the IBE scheme, and forwards it toA as the verification key vk

of the signature scheme. B answers A’s adaptive queries OS,Φ(φ,m) by returning σ ← OK,Φ(φ,m).

When A halts and outputs forgery (m∗, σ∗). In response, B submits m∗ as the user ID and

random messages m0,m1 that A has never queried to be used to generate its challenge. B receives

ciphertext C = E(mpk ,m∗,mb) for a hidden random challenge bit b. B decrypts the ciphertext as

m = D(mpk , σ∗, C); if m = m0 then B guesses b′ = 0, and otherwise B guesses b′ = 1.

By definition of a forgery for A, the submitted σ∗ should correctly decrypt a ciphertext of a random

message generated with identity m∗. When A correctly decrypts C that is the encryption of either

random message m0 or m1, B correctly identifies b, except perhaps when m0 = m1.

Thus Advibe-rka
IBE ,B,Φ(k) ≥ Advsig-rka

DS ,A,Φ(k)− 1
|M| , and so the advantage of B will be non-negligible when

A’s advantage is non-negligible.
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8.4 Φ-RKA Secure PKE-CCA from Φ-RKA Secure IBE

We show the containment RKA[IBE] ⊆ RKA[PKE-CCA] by showing that the construction of

Boneh, Canneti, Halevi, and Katz [?] preserves RKA security.

Construction 8.11 [Based on Boneh, Canneti, Halevi, and Katz [?]] Let IBE = (M,K, E ,D)

be any Φ-RKA IBE scheme and let DS = (K,S,V) be any a regular-secure strongly-unforgeable

signature scheme.

We construct a public key encryption scheme PKE with associated security parameter k as

follows:

• Keys: Pick (mpk ,msk)←M(1k), and use mpk as the public key and msk as the secret key.

• Encryption: To encrypt a message m under mpk , generate a signing-verification key pair

(vk , sk)← K(1k). Then encrypt m for the identity id = vk by computing c
$← E(vk ,m) and

sign c under S using sk to get a signature σ. The ciphertext is (c, vk , σ).

• Decryption: To decrypt a ciphertext (c, vk , σ), first verify that σ is a valid signature on c

under vk , and output ⊥ if verification fails. Then compute the user secret key for the identity

id = vk , and decrypt c using that key.

Since the form of keys for PKE is the same as that for IBE , Φ is compatible with PKE .

Theorem 8.12 Let the PKE scheme PKE = (K′, E ′,D′) be constructed as above in Construc-

tion 8.11, using a Φ-RKA secure IBE scheme IBE = (M,K, E ,D) and normal-secure strongly-

unforgeable signature scheme DS = (K,S,V). Then PKE is Φ-RKA secure.

The proof is an adaptation of the original proof for the non-RKA version of this theorem. The

additional difficult is to show that RKA games for IBE and PKE-CCA will cooperate, because they

each have rules for disallowing certain queries; in IBE the adversary is disallowed to extract a key

for user ID used to issue the challenge ciphertext, and in PKE-CCA the adversary is disallowed to

decrypt the challenge ciphertext C∗, but both rules only hold under the original unmodified secret

key.
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Proof:

The proof will proceed through a sequence of games, Game 0, Game 1, and Game 2.

Games 0, 1, and 2 – G0, G1, and G2

Each game is designed for an adversary A against the Φ-RKA security of PKE . Differences in

Game 1 from Game 0, and in Game 2 from Game 1, are boxed .

1. Setup Phase for G0,G1,G2. The challenger generates a key pair for the IBE scheme as

(mpk ,msk)
$←M(1k). The challenger also selects a challenge bit b

$← {0, 1}, and initializes

C∗ ← ⊥. Finally, the challenger returns mpk to the adversary A as the public key of the

PKE scheme.

2a. Query Phase for G0. During this phase, A may choose to run the Issue Challenge phase

and then return to this phase. A is allowed to adaptively query OD,Φ(φ, (c, vk , σ)). To

answer the query, the challenger first computes the tampered key as msk ′ ← φ(msk). If

((msk ′ = msk) ∧ ((c, vk , σ) = C∗)), then this the challenge ciphertext and the key used

to generate it, and so the challenger returns ⊥ to this query. If V(vk , c, σ) = false, this is

an improperly formed ciphertext, and so again the challenger can return ⊥. If neither of

these conditions are true, the challenger computes dk ← K(msk ′, vk), and uses this to find

M ← D(dk , c); the challenger answers A’s query by returning M .

2b. Query Phase for G1. During this phase, A may choose to run the Issue Challenge phase and

then return to this phase. A is allowed to adaptively query OD,Φ(φ, (c, vk , σ)). To answer the

query, the challenger first computes the tampered key as msk ′ ← φ(msk). If ((msk ′ = msk)∧

((c, vk , σ) = C∗)), then this the challenge ciphertext and the key used to generate it, and so the

challenger returns ⊥ to this query. If V(vk , c, σ) = false, this is an improperly formed cipher-

text, and so again the challenger can return ⊥. In this game, the challenger adds an additional

check: if (vk = vk
∗
) ∧ ((c, σ) 6= (c∗, σ∗)), then the challenger sets flag bad← true, and returns ⊥ to A.

If none of these conditions are true, the challenger computes dk ← K(msk ′, vk), and uses this

to find M ← D(dk , c); the challenger answers A’s query by returning M .
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2c. Query Phase for G2. During this phase, A may choose to run the Issue Challenge phase and

then return to this phase. A is allowed to adaptively query OD,Φ(φ, (c, vk , σ)). To answer

the query, the challenger first computes the tampered key as msk ′ ← φ(msk). If ((msk ′ =

msk) ∧ ( (vk = vk
∗
) )), then the challenger returns ⊥ to this query. If V(vk , c, σ) = false, this

is an improperly formed ciphertext, and so again the challenger can return ⊥. If none of

these conditions are true, the challenger computes dk ← K(msk ′, vk), and uses this to find

M ← D(dk , c); the challenger answers A’s query by returning M .

3. Issue Challenge for G0,G1,G2. Here, the adversary outputs two message m0 and m1 with

|m0| = |m1|. To encryptmb, the challenger computes (vk
∗
, sk
∗
)

$← K(1k), c∗
$← E(,mpk , vk

∗
,mb),

and finally σ∗ ← S(sk
∗
, c∗). Finally, the challenge ciphertext is C∗ ← (c∗, vk

∗
, σ∗), which the

challenger returns to A.

4. Finalize for G0,G1,G2. When A halts it must output a guess b′ of the hidden bit b.

Game G0 implements the security game of PKE with A, so we have

Advpke-cca
PKE ,A,Φ(k) = Pr[GA

0 ]− 1

2
.

Game G1 has the challenger add an additional before decrypting for A: now if vk = vk
∗

and

(c, σ) 6= (c∗, σ∗), the game sets bad to true and responds to the query with ⊥. Since G1 and G0 are

identical until bad, we have

Pr[GA
1 ]− Pr[GA

0 ] ≤ Pr[E1],

where E1 is the event that G1 sets bad.

We now construct an adversary B that breaks the strong unforgeability of DS with probability

Pr[E1]. B takes as input (vk
∗
), and starts by selecting (mpk ,msk)

$← K(1k). B runs A with public

key (mpk), and simulates A’s call for a challenge exactly as specified in G1, using vk
∗

when called

for and its own signing oracle to generate σ∗ on c∗. B also simulates A queries for decryption

exactly as specified in G1. B notes the first query OD,Φ(φ, c, vk , σ) that triggers bad, and then B

outputs (c, σ) as its forgery. This is a valid forgery for B because this query must have passed the
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validity check V(π, vk , c, σ) (otherwise the B would have returned before going to set bad), and we

have that at (c, σ) 6= (c∗, σ∗) by the check immediately before bad is set.

Game G2 rearranges some of the validity checks the challenger performs before decryption, but

but these changes don’t affect oracle responses since the same ciphertexts end up being rejected in

either game. We have

Pr[GA
2 ] = Pr[GA

1 ]

Now we show that an adversary with winning G2 with significant advantage can be used to break

the Φ-RKA security of IBE . We construct A′ such that

Advibe-rka
IBE ,A,Φ(k) = Pr[GA

2 ]− 1

2
.

A′ takes input (mpk) for the IBE scheme, and runs A with input (mpk) for PKE . A′ simulates the

challenge that A requests with (m0,m1) as follows:

1. A′ generates (vk
∗
, sk
∗
)

$← K(1k), and requests its own challenge c∗ with (vk
∗
,m0,m1).

2. A′ signs c∗ using sk
∗
, generating σ∗ ← S(sk

∗
, c∗).

3. A′ returns challenge ciphertext C∗ = (c∗, vk
∗
, σ∗) to A.

A′ simulates answers to A’s queries to OD,Φ(φ, c, vk , σ) by computing a tampered key with its key

derivation oracle, as msk ′ ← OK,Φ(φ, vk
∗
). If (V(vk , c, σ) = false) then A′ returns ⊥, since this is

not a valid ciphertext. Otherwise A′ computes M ← D(msk ′, c), and returns this to A. A′ runs A

until it A halts, and then A′ outputs whatever A outputs.

To complete the claim we need to argue that A′ properly simulates G2 for A. The only subtlety is

in how A′ handles decryption queries are handled. But we observe that A′’s key derivation oracle

is performing exactly the same first two checks that G2 performs before the challenger returns a

decryption, and all other ciphertexts are correctly decrypted, and so A′ performs as claimed.

The proof is completed by collecting the relationships between games G0, G1 and G2.
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9 Separations between RKA Sets

After giving several constructions of Φ-RKA secure primitives from other Φ-RKA secure primitives,

we will now show that in some cases this is actually impossible. We give negative results of the form

RKA[P1] 6⊆ RKA[P2] by showing there exists a Φ for which Φ ∈ RKA[P1] but Φ 6∈ RKA[P1].

We reach these separations using two different techniques.

One is based on the class Cnst of RKD functions that set keys to a constant . We show,

for example, that any signature scheme is Cnst-RKA secure, since an adversary could simulate

signatures made with constant keys itself; however, no PRF can be Cnst-RKA secure since a PRF

evaluated with a fixed key is easily distinguished from a random function. Thus RKA[Sig] 6⊆

RKA[PRF]. Another example use of this technique is to show RKA[PKE-CCA] 6⊆ RKA[SE-CCA].

This is true because constant functions are fine for the first but, due to the RKA on the encryption

oracle, not for the second.

The second technique is to define pairs of keys, and define RKD functions that sometimes

exchange one key in the pair for another depend on a bit of the original key; these are designed in

such a way that there is a noticeable change in behavior for a Φ-RKA attack on P2, yet the two

keys are functionally equivalent under a Φ-RKA on P1. We use variants of the technique to show

RKA[wPRF] 6⊆ RKA[PRF], and also RKA[SE-CPA] 6⊆ RKA[SE-CCA].

9.1 Separating Φ-RKA PRFs from Φ-RKA signatures

Since Corollary 8.3 shows that RKA∗[PRF] ⊆ RKA∗[Sig], it is natural to consider whether the

converse is also true– can one build a Φ-RKA secure PRF from any Φ-RKA secure signature

scheme? It turns out the answer is no, which is expressed RKA∗[Sig] 6⊆ RKA∗[PRF].

This is proved by showing that there exists a Φ such that there exists a Φ-RKA secure signature

scheme, but for which no Φ-RKA secure PRF can exist. We do this using Cnst, the class of RKD

functions that set the secret key to a fixed constant.

We first show that all signature schemes are Cnst-RKA secure.

Proposition 9.1 Let DS = (K,S,V) be any signature scheme with standard (non-tampering)
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security. Then DS is a Cnst-RKA secure signature scheme.

Proof: We use any adversary A against the Cnst-RKA security of DS to build an adversary B

against the normal security of DS , with Advsig-rka
DS ,B,ID(k) ≥ Advsig-rka

DS ,A,Cnst(k).

Adversary B receives a verification key vk for DS from the challenger, and receives access to signing

oracle OS .

For the reduction, B forwards vk to A. A should receives access to the signing oracle OS,Cnst. B

must answer queries of the form OS,Cnst(φ,m).

• If φ = φID, B returns σ ← OS(m) from its own signing oracle.

• Otherwise φ = φc, i.e. the RKD which maps all keys to the constant c. In this case, B first

tests for the event that c is the hidden secret key: for an m′ that B has not queried its signing

oracle, B tests V(vk ,m′,S(c,m′)); if true, B outputs (m′,S(c,m′)) as its forgery. If c fails to

generate a valid forgery in this way, B correctly answers A’s oracle query with S(c,m).

If B has not already output a value, when A submits a potential forgery (m∗, σ∗), B repeats this

and outputs (m,σ). A’s forgery is valid if it has not queried for a signature of m∗ under φID or

under φsk . But if A queried for a signature of m∗ with φsk , B will actually have found the signing

key sk and then uses this to create a valid forgery. Otherwise, if A never queried (m∗, φID), B never

queried its signing oracle for m∗ either, and this will be a valid forgery for B as well. Thus B has

a valid forgery whenever A does.

Next, we show that no Cnst-RKA secure PRF can exist.

Proposition 9.2 Let FF = (K,F) be any PRF; then FF is not Cnst-RKA secure PRF.

Proof:

We construct adversary A against the Cnst-RKA security of FF : when A is given oracle access to

OF ,Cnst, A queries OF ,Cnst(φ0, 0) (or φc for any valid secret key c and any valid point in Dom(k)). If

OF ,Cnst(φ0, 0) = F(0, 0), A makes guess b′ = 0 of the hidden bit, and otherwise makes guess b′ = 1.
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In the case that A is playing game PRFRand, OF ,Cnst(φ0, 0) = F(0, 0) will only happen with

probability 1
Rng(k) , while in game PRFReal, it will happen with probability 1.

Thus Advprf
FF ,A,Φ(k) = 1− 1

Rng(k) , and so FF is not a Cnst-RKA secure PRF.

Corollary 9.3 RKA[Sig] 6⊆ RKA[PRF].

Proof: Proof by Propositions 9.1 and 9.2.

9.2 Other Relations Using Cnst

Similarly to Proposition 9.2, no wPRF can be Cnst-RKA secure – even when the adversary can

only access random points, the fixed function determined by evaluating the wPRF at a fixed key

looks far from random. Additionally, no symmetric encryption scheme can be either Cnst-RKA

CPA secure or Cnst-RKA CCA secure – in both cases this would allow the adversary to receive the

message mb encrypted with a fixed key, which it can easily decrypt to determine the challenge bit

b. We omit the proofs.

Proposition 9.4 Let FF = (K,F) be any wPRF; then FF is not Cnst-RKA secure wPRF.

Proposition 9.5 Let SE = (K, E ,D) be any symmetric encryption scheme; then SE is neither

Cnst-RKA CPA secure nor Cnst-RKA CCA secure.

In addition to all signature schemes being Cnst-RKA secure, all PKE schemes and all IBE

schemes are both Cnst-RKA secure as well. Here, the adversary only receives access to decryption

under the secret key, but could easily simulate decryption under constant keys without oracle access.

Again, we omit the proofs.

Proposition 9.6 Let PKE = (K, E ,D) be any public key encryption scheme with standard (non-

tampering) security. Then PKE is a Cnst-RKA secure public key encryption scheme.

Proposition 9.7 Let IBE = (M,K, E ,D) be any identity based encryption scheme with standard

(non-tampering) security. Then IBE is a Cnst-RKA secure identity based encryption scheme.
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Together, this yields a whole suite of relations – no primitive that can be shown to be Cnst-RKA

secure can be contained in a primitive that can never be Cnst-RKA secure.

This gives that none of Signature, PKE, or IBE schemes can be contained in PRF, wPRF, or

SE schemes.

9.3 Separating Φ-RKA secure PRFs from Φ-RKA secure wPRFs

Since wPRFs are a relaxation of PRFs, a family of functions that is a Φ-RKA secure PRF is also

a Φ-RKA secure wPRF, and so RKA[PRF] ⊆ RKA[wPRF]. We will show that the converse fails

to be true; in our set based notation, this is expressed as RKA[wPRF] 6⊆ RKA[PRF]. In this case

the constant RKD functions do not provide the separation since both primitives are insecure under

these functions. Instead, we create RKD functions which help the attacker only if they can obtain

different RKD functions evaluated with the same point in the domain of the function family, which

happens only with negligible probability in the wPRF game.

Proposition 9.8 RKA[wPRF] 6⊆ RKA[PRF].

Proof:

For K ∈ {0, 1}∗ we let K− denote the string that is K with the first bit flipped. Let φi(K) return

K if K[i] = 1 and K− otherwise. Additionally, we define φflip(K) to always return K. We let Φ be

the collection of all φi, φflip, and φID.

Let PRF = (K,F) be any PRF that is compatible with Φ with domain given by DomPRF (k) – we

show that PRF is not a Φ-RKA secure PRF. Let `(k) denote the length of keys for PRF when the

security parameter is k.

We now construct an adversary A against the Φ-RKA security of PRF . A picks x at random from

DomPRF (k), and then queries its oracle for the pair (φID, x), computing = yid ← OΦ(φID, x). Then

for each 1 ≤ i ≤ `(k) A queries yi ← OΦ(φi, x) and sets K ′[i] = 1 if yi = yid and 0 otherwise. (It is

crucial that all queries use the same x.) If F(K,x) 6= F(K−, x), this will generate K ′ = K, and so

A has recovered the key. Once it has the key, it can easily distinguish between game PRFReal and
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game PRFRand by making a few queries under φID at random inputs and returning 1 if the results

are consistent with K ′ and 0 otherwise. If F(K,x) = F(K−, x), meaning the functions under keys

K and K− agree at x, then the attack will instead recover the string K ′ = 1`(k) and not recover

the key. We resolve this problem by knowing that φflip in Φ: this, combined with the given Φ-RKA

security of PRF, ensures that the functions defined by keys K,K− look like random, independent

ones. Thus, our adversary can simply return 1 if K ′ = 1`(k), meaning declare that the challenge

bit was 1.

Let wPRF = (K,F) be a normal-secure wPRF and for simplicity assume that keys are random

(k − 1)-bit strings. (Formally, this is assuming that K(1k) generates the uniform distribution on

{0, 1}k−1 for all k ∈ N.) We now construct a Φ-RKA secure wPRF wPRF = (K,F) based on any

normal-secure wPRF = (K,F). Key generation K returns a random k-bit string on input 1k. The

evaluation algorithm F(K,x) lets L be the last (k− 1)-bits of K and returns F(L, x). As a result,

the functions F(K, ·) and F(K−, ·) are identical.

We reduce the Φ-RKA security of wPRF to the normal security of wPRF : for any adversary A

against the normal security of wPRF , we build an adversary B against the Φ-RKA security of

wPRF such that Advwprf-rka

wPRF ,B,Φ
(k) + neg(k) ≥ Advwprf-rka

wPRF ,A,ID(k) For B to answer A’s oracle queries

OwPRF ,Φ, B uses its own oracle access to get (x, y)← OwPRF ( ), and returns (x, y). We note that

for all φ ∈ Φ, φ(K) either returns K or K−, and F agrees at these two values– thus for any K,

wPRF (φ(K), ·) = wPRF (K, ·) = wPRF (L, ·), where L is the last (k − 1) bits of K – and so if

B has access to the real wPRF in game wPRFReal, it correctly simulates A’s queries in the game

wPRFReal. If B instead has access to a truly random function in wPRFRand, B receives a truly

random value from the range of the wPRF for each unique pair (x, L) of x in the domain and key

L, where as A should instead receive separately generated random value for (x, 0 ‖L) and (x, 1 ‖L);

here B correctly simulates responses to A’s queries in game wPRFRand except when A receives

both (x, 0 ‖L) and (x, 1 ‖L).

Since the inputs to a wPRF are random rather than adversary-selected, the probability of a repeated

input x in q queries is at most q2

|DomwPRF (k)| , which is negligible since q must be polynomial in k and
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|DomwPRF (k)| is super-polynomial. Thus Advwprf-rka

wPRF ,B,Φ
(k) ≥ Advwprf-rka

wPRF ,A,ID(k) − neg(k), and so

wPRF is Φ-RKA secure, since we have assumed that wPRF is a normal secure wPRF.

9.4 Separating Φ-RKA CPA SE from Φ-RKA CCA SE

We use a similar technique to show that RKA[SE-CPA] 6⊆ RKA[SE-CCA]. In this case the attack

exploits the fact that the decryption oracle rejects if a query (φ,C) results in (K ′, C) being in S,

meaning that C was a challenge ciphertext created under K ′, and this can be made to happen

depending on a certain bit of K so that the rejection leaks information about K that eventually

allows the attacker to recover K.

Proposition 9.9 RKA[SE-CPA] 6⊆ RKA[SE-CCA].

Proof:

For K ∈ {0, 1}∗ we let K− denote the string that is K with the first bit flipped. Let φi(K) return

K if K[i] = 1 and K− otherwise. We let Φ be the collection of all φi, and φID.

First, we show that there exists a Φ-RKA CPA secure symmetric encryption scheme. Let SE =

(K, E ,D) be any CPA secure symmetric encryption scheme. We build a new SE = (K, E ,D) as

follows:

• K(1k) selects a random bit c
$← {0, 1}, and returns c ‖K(1k)

• E(K,m): let L = K[2, |K|], and return E(L,m)

• D(K, c): let L = K[2, |K|], and return D(L, c)

Note that E(K, ·) is the same as E(K−, ·), and D(K, ·) is the same as D(K−, ·).

We reduce the Φ-RKA CPA security of SE to the normal CPA security of SE . An adversary A of

SE receives oracle access to OE(m0,m1), and receives encryptions of either m0 or m1. To answer

oracle queries of adversary B of OE,Φ(φi,m0,m1), A can correctly simulate the answer by returning
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OE(m0,m1). When B correctly guesses the hidden bit, A does also. Thus Advse-cc-rka
SE ,A,ID

(k) =

Advse-cc-rka
SE ,B,Φ (k), and SE is Φ-RKA CPA secure.

Despite the fact that we have built a Φ-RKA CPA secure symmetric encryption scheme, no Φ-RKA

CCA secure symmetric encryption scheme can exist. The problem here is although D(φ(K), ·) might

be simulatable by some function without tampering allowed as D′(K, ·), the oracle actually depends

on the value of the secret key in order to determine what ciphertexts are allowed for decryption,

and so OD,Φ will not be simulatable by OD′
.

We complete the proof by building an adversary A against the Φ-RKA CCA security of any en-

cryption scheme SE = (K, E ,D). To begin, A generates C∗ ← OE,Φ(φID,m0,m1). Note that

C∗ is generated with φID(K) the original secret key. Then for each 1 ≤ i ≤ |K| A queries

yi ← OD,Φ(φi, C
∗) and sets K ′[i] = 1 if yi = ⊥ and 0 otherwise. Note that OD,Φ(φi, C

∗) will

only return ⊥ if φi(K) = K, which occurs only if the i-th bit of K is 1. Once A is done, K ′ = K

and A can decrypt C∗ as D(K ′, C∗), and will always correctly guess b.
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