
18.404

Rachel Wu

Fall 2017

These are my lecture notes from 18.404, Theory of Computation, at the
Massachusetts Institute of Technology, taught this semester (Fall 2017) by
Professor Michael Sipser1.

I wrote these lecture notes in LATEX in real time during lectures, so there may
be errors and typos. I have lovingly pillaged Evan Chen’s and Tony Zhang’s
formatting commands. Should you encounter an error in the notes, wish to
suggest improvements, or alert me to a failure on my part to keep the web notes
updated, please contact me at rmwu@mit.edu.

This document was last modified 2017-12-08. The permalink to these notes
is http://web.mit.edu/rmwu/www.

1sipser@mit.edu

i

mailto:rmwu@mit.edu
http://web.mit.edu/rmwu/www
mailto:sipser@mit.edu

Rachel Wu Contents

Contents

1 September 7, 2017 1

1.1 Administrivia . 1

1.2 Finite automata . 1

1.3 Regular languages . 2

2 September 8, 2017 4

2.1 Practice problems . 4

3 September 12, 2017 5

3.1 Nondeterministic finite automata 5

3.2 Regular expressions to finite automata 7

4 September 14, 2017 9

4.1 Finite automata to regular expressions 9

4.2 Non-regularity . 10

4.3 Context-free grammars . 11

5 September 15, 2017 12

5.1 Reversibility . 12

5.2 Practice problems . 12

6 September 19, 2017 14

6.1 Context free languages . 14

6.2 Pushdown automata . 15

6.3 Context free grammar to pushdown automata 16

7 September 21, 2017 18

7.1 Non context-free languages . 18

7.2 Turing machines . 19

8 September 22, 2017 21

8.1 CFL closure under reversal . 21

8.2 Practice problems . 21

9 September 26, 2017 22

9.1 Turing machine variants . 22

9.2 Church-Turing thesis . 23

10 September 28, 2017 25

10.1 Decision problems . 25

10.1.1 Notes on problem set 2 27

ii

Rachel Wu Contents

11 October 3, 2017 28

11.1 Turing machine decidability . 28

11.2 Diagonalization method . 29

12 October 5, 2017 31

12.1 Reducibility . 31

13 October 12, 2017 33

13.1 Quiz tips . 33

13.2 Computation history method . 33

13.3 Post-Correspondence problem . 34

14 October 17, 2017 35

14.1 Quiz tips, ctd. 35

14.2 Undecidability, ctd. 35

14.3 Recursion . 35

15 October 19, 2017 38

15.1 Complexity . 38

16 October 24, 2017 41

16.1 Nondeterministic complexity . 41

16.2 P vs. NP . 42

17 October 31, 2017 43

17.1 Polynomial time reducibility . 43

18 November 2, 2017 46

18.1 NP-completeness . 46

19 November 7, 2017 49

19.1 Space complexity . 49

20 November 9, 2017 52

20.1 Recursive PSPACE proofs . 52

21 November 14, 2017 54

21.1 PSPACE-complete games . 54

21.2 Logarithmic space . 55

22 November 16, 2017 57

22.1 NL-completeness . 57

22.2 NL = coNL . 58

iii

Rachel Wu Contents

23 November 17, 2017 59

23.1 Practice problems . 59

24 November 28, 2017 60

24.1 Hierarchy theorem . 60

24.2 Exponential space . 60

25 November 30, 2017 62

25.1 Oracles . 62

25.2 Probabilistic complexity . 62

25.3 Branching programs . 63

26 December 1, 2017 66

26.1 Review . 66

27 December 5, 2017 68

27.1 Branching programs is BPP . 68

28 December 7, 2017 70

28.1 Interactive proofs method . 70

28.2 Graph isomorphism . 70

28.3 IP = PSPACE . 71

29 December 8, 2017 73

29.1 Final review . 73

iv

Rachel Wu 1 September 7, 2017

1 September 7, 2017

1.1 Administrivia

• Lectures are Tuesdays and Thursdays, 2:30-4p in 2-190.

• This course is split into two halves: computability and complexity. Com-
putability is essentially a solved problem, but complexity deals with “what
is computable, in practice?”

1.2 Finite automata

q0 q2 q3

0 1

0

1
0,1

Figure 1: Finite automaton. If the input leads to a double circle, the input is
accepted. Otherwise the input is rejected.

Collections of strings in this topic are called languages. Let the finite au-
tomaton beA. Then, L(A) is the language ofA. Here, the set {w|w has substring 11}
is the set of accepted inputs.

Definition 1.1. A finite automaton M is a 5-tuple

M = (Q,Σ, δ, q0, F)

where Q is a finite set of states, Σ is a set of input symbols, δ : Q × Σ → Q
is the transition function,2 q0 is the starting state, and F is the set of accept
states.

Definition 1.2. M accepts input w = w1, w2, . . . , wn (for wi ∈ Σ) if there is
a corresponding sequence r0, r1, r2, . . . , rn ∈ Q.

Observe that r0 = q0, since we must start at q0. Then given some ri,
ri+1 = δ(ri+1, w0),∀1 ≤ i ≤ n. Finally, rn must be an accepting state. So
L(M) = {w|M accepts w} is the language of M , and M “recognizes” L(M).

Definition 1.3. Language A is regular if A = L(M) is the language for some
finite automaton M .

Conceptually, a finite automaton can represent anything a finite computer
can compute. We now characterize the family of regular languages.

2Here, we use δ as δ(q2, 0) = qi.

1

Rachel Wu 1 September 7, 2017

1.3 Regular languages

There are three regular operations: union ∪, concatenation ◦, and star *. We
refer to ab as the concatenation of string a and string b. Given two languages A
and B, their union is

A ∪B = {w|w ∈ A or w ∈ B.} (1.1)

Concatenation is the cartesian product of A and B.

A ◦B = {xy|x ∈ A, y ∈ B} (1.2)

Star is a unary symbol, applied only on A.

A∗ = {w = x1x2x3 . . . xk|xi ∈ A, k ≥ 0} (1.3)

Note that A∗ must contain the empty string, which the professor emphasizes is
different from the empty set.

We can use regular operations to build up regular expressions. Atomic
regular expressions are members of the alphabet, Σ, ε, ∅,Σ., where ε is the empty
string. Composite regular expressions are r1 ◦ r2, r1 ∪ r2, r

∗, where r1, r2 are
regular expressions.

Example 1.4

Suppose we have atomic elements 0 and 1. Then (0 ∪ 1)∗ is the set of all
possible strings Σ∗.

There are some interesting quirks.

• If we take ∅ ◦A, then we get ∅ since there are no strings in ∅ to choose as
a first element.

• If we want A, we would do εA = A.

• Also, ∅∗ is the set that has only the empty string.

Theorem 1.5

If A1 and A2 are regular languages, so is A1 ∪A2. That is, the collection
of regular languages is closed under union.

Proof. Let finite automata M1,M2 recognize A1, A2, respectively. We construct
M = (Q,Σ, δ, q0, F) that recognizes A1 ∪A2.

M1 M2

2

Rachel Wu 1 September 7, 2017

The naive approach is to feed the input twice, once into each and reset,
but we’re not allowed to choose the path; we can only feed the input once.
Theoretically, we could run the paths in parallel, and if either accepts, we
accept.

We construct M as follows.

1. Q = Q1 × Q2 {qr|q ∈ Q1, r ∈ Q2}, or the cartesian product of the two
automata’s states.

2. The transition function is δ((qr), a) = δ1(q, a)δ2(r, a)

3. The accept states are F = Q1 × F2 ∪ F1 ×Q2 = {fg|f ∈ F1 or g ∈ F2}.

3

Rachel Wu 2 September 8, 2017

2 September 8, 2017

Our TA is Rishad,3 and office hours are Tuesdays 12:30-2:30p in G6 lounge.
Recitations don’t cover new material, but we go over problems.

2.1 Practice problems

Exercise 2.1. Construct finite automata to show that the following languages
are regular. Let Σ = {0, 1}∗.

1. L = {w|# of 1s in w is divisible by 5}
2. L = {w|w is divisible by 5}

We can solve the first question by counting the number of 1s.

q0

0

q1

0

q2

0

q3

0

q4

0

1 1 1 1

1

We can perform long division with a state machine as well. For example,
59 = 1110112 divided by 5 = 1012 is 1101 with a remainder of 100.

q0

q1

q2

q3

q4

s

0

1

0

1

1

0

01

0

1
1

0

For each character we read, we shift left by 1 bit, add the new character,
and find the remainder modulo 5. Each state qi corresponds to the current
remainder i.

Question. Will it be useful if I take notes in class? Well you might want to jot
down what’s confusing. . . and we’re opening a Piazza. . . but wait OF COURSE
IT’S USEFUL TO TAKE NOTES!

Exercise 2.2. What’s the regular expression for exactly one 1? 0∗10∗ Two 1s?
0∗10∗10∗ Number of 1s divisible by 5? (0∗10∗10∗10∗10∗10∗)∗ ∪ 0∗

3rrrahman@mit.edu

4

mailto:rrrahman@mit.edu

Rachel Wu 3 September 12, 2017

3 September 12, 2017

3.1 Nondeterministic finite automata

Professor Sipser casually remarks to do extra problems if you want a recommen-
dation letter.

Definition 3.1. A nondeterministic finite automaton M = (Q,Σ, δ, q0, F)
is a finite automaton where Q,Σ, q0, F are standard, but

δ = Q× Σ = P(Q) = {R|R ⊆ Q} ,

a set of possible states.

There are three equivalent ways to think about NFAs.

1. Computational: fork new threads, and if one thread accepts, we accept

2. Mathematical: tree of possibilities, and if any leaf accepts, the tree accepts

3. Magical: machine guesses a path and is always right

Example 3.2

Consider the following NFA.

q1 q2 q3 q4

a, b

a a b, ε

Inputs ab and aabb are rejected, while aa and aab are accepted.

Theorem 3.3

If nondeterministic finite automaton N recognizes A, then A is regular.

Proof. We convert N = (Q,Σ, δ, q0, F) into an equivalent deterministic finite
automaton M = (Q′,Σ′, δ′, q′0, F

′).

N

=⇒

M

• The new set of states is Q′ = P(Q).

• We obtain the new transition function by following each potential state.
For R ∈ Q′ (or R ⊆ N) and a ∈ Σ, δ′(R, a) = {q|q ∈ δ(r, a)} for any
r ∈ R.

5

Rachel Wu 3 September 12, 2017

• The set of accepting states is F ′ = {R ∈ Q′|R ∩ F 6= ∅}.

Now that we have introduced nondeterministic finite automata, we can
provide a new proof for closure under ∪.

Proof of closure under union. We construct a NFA M with a single new start
state that sends two threads, one through each of M1,M2.

M1

M2

M

Theorem 3.4

If A1, A2 are regular, so is A1A2. That is, concatenation is regular.

The naive approach is to first run through M1, then M2. However, the
machine doesn’t know where M1 ends and M2 begins. We could break off M1

too early and not find M2.

w =
εA1 εA2

Instead, we use nondeterministic finite automata.

Proof. We prove by construction. At any time, M1 has the option to switch to
M2 whenever it finds an initial prefix of A2.

M1 M2 M

We consider all potential states reached by the input. If at least one potential
state is accepted at the end, then we accept.4

M accepts if some possible state accepts at the end of input.

4Put a finger on each potential state and if any of the fingers accepts, we accept. If there
are no more paths, we remove the finger.

6

Rachel Wu 3 September 12, 2017

Theorem 3.5

If A1 is regular, then so is A∗1.

Proof. The new language is essentially a concatenation of many A1s.

w =
∈ A1 ∈ A1 ∈ A1 . . .

Every time we reach an empty string, we have the option of returning to the
beginning. We make a new start state with an ε transition to the original start
state.

3.2 Regular expressions to finite automata

Now that we have proved closure under union, concatenation, and star, we can
show that regular expressions generate finite automata.

Theorem 3.6

Every regular expression r generates a regular language.

Proof. If r is atomic, then we construct with the following rules.

a ∈ Σ

ε

∅

r =

a

Otherwise R is composed by regular expressions, for which we use the proven
constructions.

r =

r1 ∪ r2

r1r2

(r1)∗

7

Rachel Wu 3 September 12, 2017

Example 3.7

Convert regular expression a ∪ a∗b into a NFA.

We first convert the “primitives.”

a

b

a∗

a

b

ε a

ε

Now we string them together.

ε a

ε

ε

ε b

a
ε

ε

8

Rachel Wu 4 September 14, 2017

4 September 14, 2017

4.1 Finite automata to regular expressions

Recall that last class, we converted regular expressions to finite automata. Today,
we prove that the converse is true as well.

We first introduce the generalized nondeterministic finite automata
as a tool for this proof. Instead of single words, we accept arbitrary regular
expressions on the transitions.

s

a

b

a∗b

abb

The GNFA also has the following properties:

1. There is a transition from every state to every other state, even if the
accepted string is ε, except that

2. the start state has no in degrees, and

3. there is a unique accept state with no out degrees.

4. Every state also has a self-loop, possibly empty.

Proposition 4.1

For every k ≥ 2, we can convert a GNFA with k states to a regular expression
R by induction on k.

Proof. The base case is k = 2, where R = r.

s a
r

Now we induct on k. Suppose we have a k-state GNFA and we remove state
q, which is neither the start nor accept state.

k-state GNFA

q

q1

q2

r1

r3

r4

r2

k − 1-state GNFA

q1 q2

r1(r2)∗r3 ∪ r4

9

Rachel Wu 4 September 14, 2017

Suppose r1 pointed from q1 to q, r2 looped back to q, r3 pointed from q to
q2, and r4 pointed from q1 to q2. Then after removing q, we replace the edge
from q1 to q4 with r1(r2)∗r3 ∪ r4. We repeat this for each q1, q2.

Theorem 4.2

If A is regular, then A = L(R) for some regular expression R.

Proof. We create a GNFA A from R with the above method.

4.2 Non-regularity

We provide a property that governs all regular expressions, so that if an expression
does not obey that property, it is not regular.

Lemma 4.3 (Pumping lemma)

If A is a regular language, there exists a number p (pumping length) such
that if s ∈ A and |s| ≥ p, then we can write s = xyz where

1. xyiz ∈ A for all i ≥ 0,

2. y 6= ε,

3. and |xy| ≤ p.

That is, any sufficiently long strings in A can be split into 3 pieces, where
the middle piece is repeated.

s =
x y y y z. . .

Proof. Given regular language A, consider the DFA for A. By pigeonhole, some
state must be repeated if the length of the input is longer than the number of
states in the machine. If A is finite, then we set p greater than the maximum
length string in A.

Example 4.4

Let A =
{

0k1k|k ≥ 0
}

, or all strings with a string of 0s, followed by an
equal number of 1s. Show that A is not regular.

Proof. Assume for contradiction that A is regular. The pumping lemma gives
the pumping length p. Let s = 0p1p. Since s ∈ A and |s| ≥ p, there must exist
some partition of s = xyz. By (3), y can contain only 0s, but xyyz has more 0s
than 1s, so xyz is not in A. Therefore, A is not regular.

10

Rachel Wu 4 September 14, 2017

Example 4.5

Let B = {w|w has equal # of 0s and 1s}. Show that B is not regular.

Proof. Regular languages are closed under intersection, so if B is regular, then
B ∩ 0∗1∗ is regular. However, this intersection is A, which is not regular, so B
is not regular.

4.3 Context-free grammars

Context-free grammars constitute a more powerful computational model, found
in compilers and other fields.

They consist of substitution rules, which map variables to terminals.

Example 4.6

A context-free grammar has symbols S,R with substitution rules

S → 0S1 S → R R→ ε

and terminals on the right side.

S

S0 1

R

ε

This structure is known as a parse tree.

Here, 01 ∈ L(G) =
{
ok1k|k ≥ 0

}
.

11

Rachel Wu 5 September 15, 2017

5 September 15, 2017

5.1 Reversibility

This proposition is useful for the problem set!

Proposition 5.1

If L is regular, then so is its reverse, LR.

Proof. We prove by construction. Suppose L is recognized by the following
machine.

qi qj

x

Then LR is recognized by the machine we construct below.

qi qjx

We flip the arrows for each qi, qj pair, convert the start state into the accept
state, and create a new start state with transitions to all the old accept states.

Proposition 5.2

To test for L = 1n, we require at least n states.

Proof. If we required fewer, there may be a loop before reaching qn−1 from q0.
Then we could reach qn−1 without traversing the loop, and strings not in {1n}
may be accepted.

5.2 Practice problems

We are so “pumped” to do practice problems.

Example 5.3

Show that the following languages are not regular.

1. L =
{

0i1j |i ≥ j
}

2. L =
{

0i12i|i ≥ 0
}

3. L = {1n|n prime}

4. L =
{

0i1j |i 6= j, i 6= 2j
}

5. L =
{
xiyjzk|k = i+ j

}

12

Rachel Wu 5 September 15, 2017

If L is regular, we have pumping length p.

1. Consider 0p1p. Then
x = 0k, y = 0p−k.

However, if we pump 0 times, then we contradict i ≥ j, so L is not regular.

2. Consider 0p12p. Then
x = 0k, y = 0p−k

and xyyz 6∈ L.

3. Consider 1k, where k ≥ p and k is prime. Let y = 1. Then the string with
2k 1s is not in L.

4. Consider something that’ll pump from in between to 2j.

5. Consider apbpc2p. Then y = a, and xyyz 6∈ L. Alternatively, consider
j = 0. Then L ∩ a∗b∗ = xiy2i, which is not regular.

13

Rachel Wu 6 September 19, 2017

6 September 19, 2017

6.1 Context free languages

Recall our brief foray into context free grammars last week. We continue with a
more formal treatment.

Definition 6.1. A context free grammar (CFG) G is a 4-tuple (V,Σ, R, S),
where

• V is the set of variables,

• Σ is the set of terminals,

• R contains the rules from V → Σ, and

• S is the start variable (root).

If u, v ∈ (V ∪Σ)∗), then we say that u⇒ v if we can go from u to v with one

substitution, Furthermore, u
∗⇒ v if there exists some path from u to v, where u

derives v. If u = S is the start variable, then we say that u is a derivation of v.

We also introduce the notation that A→ X|Y means A→ X and A→ Y .

Example 6.2

Consider the following grammar G2.

E → E + T |T T → T × F |F F → (E)|a

The set of terminals is {+,×, (,), a} and the variables are {E, T, F}.

This grammar looks a lot like arithmetic expressions.

E

E + T

T T × F

F

F a

a

a

An important thing to note is that grammars bring meaning in their struc-
tures. For example, the example arithmetic grammar builds in the dominance
of multiplication over addition.

Often, there are multiple parse trees that arise from the same grammar. This
fact is known as ambiguity.

14

Rachel Wu 6 September 19, 2017

Definition 6.3. If A = L(G) for some context free grammar G, then A is a
context free language,

L(G) =
{
w|S ∗⇒ w,w ∈ Σ∗

}
.

6.2 Pushdown automata

Definition 6.4. A pushdown automaton (PDA) B = {Q,Σ,Γ, δ, q0, F},
where

• Q is the finite set of states,

• Σ is the finite input alphabet,

• Γ is the finite stack alphabet, which may be more permissive than Σ,

• δ is the (nondeterministic) transition function,

δ : Q× Σε × Γε → P(Q× Γε)

• q0 is the start state, and

• F ⊆ Q are the accept states.

Note 6.5. Our pushdown automata are always nondeterministic in this class.
Deterministic and nondeterministic PDAs are not equivalent in power.

Note 6.6. Before reading any input symbols, the machine pushes the “end of
stack” symbol. In this class, we can assume this happens automatically.

finite control a a b a b b

b

a

$

Figure 2: Pushdown automata that reads a’s and b’s.

We “push” to write a symbol on top of the stack and “pop” to read (and
remove) from the top.

15

Rachel Wu 6 September 19, 2017

Example 6.7

Use pushover automata to recognize
{
akbk|k ≥ 0

}
.

1. Read a’s and push them onto the stack, until a b is read.

2. For each b read, pop an a.

3. If the stack is empty at the end of input, we accept.

Note that if we encounter an a after a b, then the input is bad anyways.

Example 6.8

Use pushdown automata to recognize
{
wwR|w ∈ {0, 1}∗

}
.

1. Read a symbol and push it onto the stack.

2. Repeat (1). Nondeterministically branch to (3).

3. Read symbol and compare with popped symbol.

4. Repeat until end of input.

5. Accept if stack empty.

This language cannot be recognized without nondeterminism.

6.3 Context free grammar to pushdown automata

Time to connect!

Theorem 6.9

Every context free grammar has an equivalent pushdown automaton.

The converse also holds, though the proof is slightly complicated.

Proof. We convert context free grammar G to pushdown automaton B. Suppose
we receive input w.

1. We write the starting symbol S onto the stack.

2. If we have a variable on top, pop and replace.

3. If we have a terminal on top, check directly against w.

4. If there are many options, nondeterministically try them all.

5. Accept at end of input if stack is empty.

For example, suppose that S → aRb. We substitute aRb into the stack.

16

Rachel Wu 6 September 19, 2017

finite control w1 w2 w3

b

R

a

17

Rachel Wu 7 September 21, 2017

7 September 21, 2017

7.1 Non context-free languages

We continue our discussion of context-free languages. Theorem 6.9 gives two
corollaries.

Corollary 7.1

If A is regular, then A is a CFL.

Corollary 7.2

If A is regular and B is a CFL, then A ∩B is a CFL.

CFLs are closed under ∪, ◦, ∗, but not under ∩.

Lemma 7.3 (Pumping lemma for CFLs)

If A is a CFL, there is a pumping length p such that if s ∈ A and |s| ≥ p,
we can split s into 5 pieces, s = uvxyz where

1. uvixyiz ∈ A for i ≥ 0,

2. |vy| > 0, and

3. |vxy| ≤ p.

s =
u vi x yi z

Proof sketch. Let A = L(G), where G is a CFG. Select a long s ∈ A.

E

s

R

R

u v x y z

tall

long

The general idea is that the parse tree must be really tall. If so, there must
be a really long path, so some variable R must be repeated.

We can take a copy of the vxy-triangle and stick it in again.

18

Rachel Wu 7 September 21, 2017

E

s

R

R

R
u v

v x

y

y

z

We can similarly take out the x-triangle.

Let b be the length of the longest right-hand side of any rule in G (maximum
branching factor). If the tree’s height is h, then the length of s is at most bh.
Let p = b|V |+1, where |V | is the number of variables in G. If |s| ≥ p, then
h ≥ |V |+ 1.

Example 7.4

Show that B =
{
akbkck|k ≥ 0

}
is a non context-free language.

Proof. Assume for contradiction that B is a CFL. The pumping lemma gives
pumping length p. Consider s = apbpcp.

s =
a . . . b . . . c . . .

If s = uvxyz, then |xyz| ≤ p, so we can have at most two types of symbols.
Therefore, if we pump v and y, we’ll have unequal numbers of symbols.

7.2 Turing machines

We arrive at the meat of this course. Past the appetizers and veggies.

finite control a a b — — —

The finite control can read from and write to an infinite tape with two-way head
motion. Beyond the input, the tape has infinite blank symbols —. The machine
can accept anywhere by entering the unique qaccept state.

Example 7.5

Create a Turing machine that recognizes B from example 7.4.

19

Rachel Wu 7 September 21, 2017

FC a a a b b b c c c —

1. Scan right until we encounter a blank symbol —. Check if input ∈ a∗b∗c∗,
and reject if not.

2. Return to left end.

3. Scan right, crossing off an a, b, c.

× a a × b b × c c —

4. Keep crossing off sets of a, b, c until we run out of some symbol, and accept
if all symbols have been crossed off. Reject otherwise.

Definition 7.6. A Turing machine M = (Q,Σ,Γ, δ, q0, qaccept, qreject), where

• Q are the states,

• Σ is the input alphabet,

• Γ is the tape alphabet (Σ ⊆ Γ),

• δ : Q× Γ→ Q× Γ× {L,R}, and

• q0, qaccept, qreject) are the initial, accept, and reject states.

The transition function takes in a state and reads a symbol, to return a
new state, a symbol to write, and either left or right motion. For example,
δ(q1, b) = (q2, d, L) means to switch to state q2, write a d, and move left.

Once a TM has started running, it can either accept, reject by halting, or
reject by looping.

Definition 7.7. For a Turing machine M , the language of M is

L(M) = {w|M accepts w} .

• If A = L(M), then M recognizes A, and A is Turing-recognizable.

• If M always halts on any input, then M is a decider.

• If A = L(M) for a decider, then A is decidable.

20

Rachel Wu 8 September 22, 2017

8 September 22, 2017

8.1 CFL closure under reversal

To reverse a CFG, we can reverse the outputs of each variable.

Example 8.1

The production rule S → aTb reverses to SR → bTRa.

8.2 Practice problems

We are “pumped” to do pumping lemma problems again. . .

Example 8.2

Prove that the following languages are not context-free.

1. L =
{

0i1j2max(i,j)|i, j ≥ 0
}

2. L = {ww|w ∈ Σ∗}

1. Consider the word 0p1p2p. Since the length of the center string |vwy| ≤ p,
v and y must contain two characters (1 character cannot be pumped up).
If v and y contain 0 and 1, then 2 is no longer the maximum of them. If v
and y contain 1 and 2, then we cannot pump down.

2. Consider the word 0p1p0p1p. Similar argument as the problem set.

Example 8.3

Consider a Turing machine that can only reset (cannot move arbitrarily
left). Show that a Turing machine is equivalent to a reset Turing machine.

Proof. Normal TM simulates reset TM by moving all the way to the left. To
simulate a normal TM with a reset TM,

1. mark the original state and reset,

2. shift all symbols to the right by transitioning to the state and writing the
previous state,

3. reset, and find the marked state.

21

Rachel Wu 9 September 26, 2017

9 September 26, 2017

9.1 Turing machine variants

We continue on our epic journey through Turing machine land. Today’s first
destination is the multi-tape Turing machine.

finite control

Theorem 9.1

A is Turing-recognizable if and only if A = L(M) for some multi-tape
Turing machine M .

Proof. Single-tape to multi-tape is trivial. One is a special case of many.

In the other direction, we want to convert multi-tape M into single-tape
S. We concatenate the input strings in M into S and delimit the tapes with a
special symbol #.

The transition function is

δ : Q× Γk → Q× Γk × {L,R}k .

We remember the multiple heads with special symbols, so we can think of them
as virtual heads.

ȧ # a ḃ . . . # ḃ a # —

We summarize below.

1. Format S’s tape into k blocks.

2. For each step of M , scan across the tape to determine the virtual heads
(symbols under dots).

3. Scan to update according to M ’s rules. If we run out of empty tape, shift
right.

4. If M enters qaccept or qreject, S follows suit.

22

Rachel Wu 9 September 26, 2017

Our next stop is the non-deterministic Turing machine. At any given
point, there may be multiple possible transitions. If any state accepts, the
machine accepts.

The transition function is

δ : Q× Γ→ P(Q× Γ× {L,R}).

Theorem 9.2

A is Turing-recognizable if and only if A = L(M) for some non-deterministic
Turing machine M .

Proof. Deterministic to non-deterministic is again trivial.

We would like to convert non-deterministic Turing machine N into deter-
ministic Turing machine M . For every input w, M keeps track of every single
possible thread. If a thread splits, we make a copy at the end.

Our final stop is the enumerator, which is a Turing machine with a printer.
The generator starts with no input and an empty roll of paper. We define the
language of E as

L(E) = {w|E prints w, started on blank input} .

Theorem 9.3

A is Turing-recognizable if and only if A = L(E) for some enumerator E.

Proof. Given enumerator E, we first construct a recognizer M for L(E). On
input w, simulate E. If E prints w, accept. Otherwise, reject by looping (waiting
forever on a hopeless printer).

In the other direction, we construct an enumerator E given M . Run M for
k steps on s1, . . . , sk ∈ Σ∗ for each k. Print s if M accepts s.

9.2 Church-Turing thesis

After seeing so many Turing machines, we find that actually, they’re all equivalent
in computing power! In modern day terms, we can see that different programming
languages—Java, Python, Haskell—can all do what every other language can
do. To convert between languages, we just write an interpreter.

algorithm

informal

= Turing machine

formal

We take a trip down memory avenue. In 1900, Hilbert published a list of 23
problems for the next century. Of those, we discuss the 10th:

23

Rachel Wu 9 September 26, 2017

Is there an algorithm that can answer if a polynomial has integral
solutions?

Initially, this question was fuzzy since we did not have a clear definition for
what an “algorithm” could do. Later, people redefined an algorithm as solvable
by a Turing machine. Let

D = {p|p is a multivariable polynomial with integer solutions} .

In 1970, it was proven that there is no such algorithm—D is not Turing-decidable.
However, D is Turing-recognizable.

24

Rachel Wu 10 September 28, 2017

10 September 28, 2017

10.1 Decision problems

For any object B (automaton, grammar, graph, string, polynomial, etc.), we
denote B’s binary string encoding as 〈B〉, and we use 〈B1, B2, . . . 〉 to denote a
set of reasonable encodings.

Theorem 10.1

Let ADFA = {〈B,w〉|B is a DFA that accepts w}. ADFA is decidable.

Proof. Take Turing machine decider M . On input s, Test if s = 〈B,w〉 for some
B,w. Reject if not. Now simulate B on w. If B is in an accepting state at end
of w, accept. Else reject.

Theorem 10.2

Take Turing machine P . Let ANFA = {〈B,w〉|B is a NFA that accepts w}.
ANFA is decidable.

Proof. On input 〈B,w〉, Convert NFA B to DFA D. Run M from above on
input 〈D,w〉. Accept if M accepts, and reject otherwise.

Theorem 10.3

Let EDFA = {〈B〉|B is a DFA,L(B) = ∅}. EDFA is decidable.

Proof. Take Turing machine T . On input 〈B〉, choose your favorite graph search
algorithm and see if there’s a path to any accept state.

Mark the start state q0 and repeat until nothing new is marked. Mark every
state with an arrow from a previously marked state. If any accept state is
marked, reject. Accept if no accept states are marked.

Theorem 10.4 (DFA equivalence)

Let EQDFAs = {〈A,B〉|A,B are DFAs, L(A) = L(B)}. EQDFAs is decid-
able.

Proof. Take Turing machine S. On input 〈A,B〉, let F be the symmetric
difference of L(A), L(B),

F = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

Construct DFA C, where F = L(C). Run Turing machine T on C to test if
F = ∅. Accept if T accepts, and reject otherwise.

25

Rachel Wu 10 September 28, 2017

Theorem 10.5

Let ACFG = {〈G,w〉|CFG G generates w}. ACFG is decidable.

Proof. Take Turing machine H. On input 〈G,w〉, convert G to Chomsky normal
form.5 Try all derivations of length 2 |w| − 1. Accept if any string is equal to w,
and reject otherwise.

Corollary 10.6

Every CFG is decidable.

Proof. Let G be the grammar for CFL A. Take Turing machine MG. On input
w, run H on 〈G,w〉. Accept if H accepts, and reject otherwise.

regular

context-free

decidable

Turing-recognizable

Figure 3: Hierarchy of languages

Theorem 10.7

Let ECFG = {〈G〉|L(G) = ∅}. ECFG is decidable.

Proof. Take Turing machine J . On input 〈G〉, mark off all terminals. Mark
variable T goes to uvw, which are all marked, for each variable T . Repeat
until no more new variables. reject if the start variable is marked, and accept
otherwise.

Example 10.8

Let

S → 01T0|RT01

T → 0R|T0

R→ 0.

We mark R, then T , then S.

5All rules are of the form A→ BC|a, where a 6= ε, except for the start state.

26

Rachel Wu 10 September 28, 2017

Theorem 10.9 (CFG equivalence)

Let EQCFG = {〈G1, G2〉|G1, G2 are equivalent CFGs}. EQCFG is not de-
cidable or recognizable.

Theorem 10.10 (Universal Turing machine)

Let ATM = {〈M,w〉|M accepts w}. ATM is recognizable.

Proof. Take Turing machine U . On input 〈M,w〉, run M on w. Accept if M
accepts, and reject otherwise. Therefore, ATM is Turing-recognizable.

10.1.1 Notes on problem set 2

Question 10.11. Let C be a language. Prove that C is Turing-recognizable iff
a decidable language D exists such that

C = {x|∃y ∈ {0, 1}∗ where (〈x, y〉 ∈ D)} .

y

x
C

D

That is, every Turing-recognizable language

D → C is easy and C → D is hard. D is a collection of pairs of strings, and
C is a projection of D.

C = {p|polynomial p has solution in integers.}.

27

Rachel Wu 11 October 3, 2017

11 October 3, 2017

11.1 Turing machine decidability

Recall our hierarchy of languages from figure 3. Last lecture, we proved that
ATM is Turing-recognizable. Today, we prove that it is not decidable.6

Theorem 11.1

Let ATM = {〈M,w〉|M accepts w}. ATM is not decidable.

Proof. Assume for contradiction that ATM is decidable by Turing machine H.
On input 〈M,w〉, we accept if M accepts w and reject if M does not accept w
(reject by halting or looping).

We use H to make Turing machine D. On input 〈M〉, simulate H on
〈M, 〈M〉〉, where the latter is a description of M .

“In fantasy land, this sounds like theoreticians gone wild”—sipser

Accept if H rejects, and reject otherwise. D on 〈M〉 accepts if and only if
〈M〉 on M doesn’t accept. Now let M = D. D on 〈D〉 accepts if and only if
〈D〉 on D doesn’t accept. A bunny was just born.

We can visualize the proof as a diagonalization problem. Let 1 represent
accept and 0, reject.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . .
M1 1 0 1 0
M2 1 1 1 1
M3 0 0 0 0

...

D on 〈Mi〉 reverses the the effect of Mi on 〈Mi〉, so it reverses the diagonals
of the list. However, if D is a Turing machine, it is also on this list, and it
cannot flip itself.

Theorem 11.2

If B,B are both Turing-recognizable, then B is decidable.

Proof. Let M1,M2 recognize B,B respectively. We construct decider M . On
input w, run both machines in parallel, since B ∪B = Σ∗. Accept if M1 accepts
and reject if M2 accepts.

6There is some proofy fluff in the next section, which may or may not be useful for you.
You can also read that first for cuteness (literally!)

28

Rachel Wu 11 October 3, 2017

Theorem 11.3

ATM is not Turing-recognizable.

Proof. This follows from theorems 11.1 and 11.2.

Theorem 11.4

Let HALTTM = {〈M,w〉|M on w halts.}. HALT is undecidable.

Proof. Assume for contradiction that Turing machine R decides HALTTM . If
M runs forever, we are done. Otherwise, run M on w and return the result.
Then ATM is decidable, which we know not to be true. Therefore, no such R
exists.

11.2 Diagonalization method

Today we introduce some math to prove more decidability theorems.

Definition 11.5. Two sets A,B have the same cardinality if there exists a
bijection f : A→ B.

Definition 11.6. Set A is countable if |A| = |N|.

Example 11.7

Let Σ = {0, 1}. Then Σ∗ = {ε, 0, 1, 00, 01, . . .} is countable.

Just count them. By corollary, all Turing machines are countable since we
can encode any Turing machine M as a binary string 〈M〉.

Example 11.8

The set of rationals

Q =

{
p

q
| p, q ∈ N and in lowest terms

}
is countable.

Write the fractions in a table and count the diagonals, skipping seen values.

Theorem 11.9

R is not countable.

Proof. Suppose we could count them. Then sneaky pesky real numbers keep
sneaking in like cockroaches. But I prefer bunnies.

29

Rachel Wu 11 October 3, 2017

There are too many bunnies and we can’t count them all, because they keep
having babies while we line them up.

Now that we good on math, we can return to our Turing machines above.

30

Rachel Wu 12 October 5, 2017

12 October 5, 2017

Happy birthday bae!

12.1 Reducibility

Last class, we reduced the acceptance problem ATM to the halting problem
HALTTM .

Definition 12.1 (Reducibility). If A can be reduced to B, then a solution to
B implies a solution to A.

Its contrapositive is also true: a lack of solution to A implies a lack of solution
to B. In this class, we will usually use this latter fact.

Example 12.2

We can reduce the problem of earning a living to the problem of finding a
job. If a person cannot earn a living, then we assume that he/she could
not find a job.

Theorem 12.3

Let ETM = {〈M〉|M is a TM and L(M) 6= ∅}. ETM is undecidable.

Proof. Assume for contradiction that Turing machine R decides ETM . We
construct Turing machine S that decides ATM using R. Create a modified
Turing machine Nw which rejects all inputs 6= w and runs as normal otherwise.
Run R on Nw. If L(Nw) = ∅, then we reject. Otherwise, we accept, and ATM
is decidable. Therefore, ETM cannot be decidable.

Definition 12.4. A function f : Σ∗ → Σ∗ is computable if there is a Turing
machine F where for all inputs w, F on w halts with f(w) on the tape.

Definition 12.5 (Mapping reducibility). For languages A,B, A is mapping-
reducible to B if there exists a computable function f : A→ B. where for all
w, w ∈ A iff f(w) ∈ B. We use notation A ≤m B.

A is no harder than B.

Theorem 12.6

If A ≤m B and B is decidable, then A is decidable.

Proof. Let R decide B. We construct S that decides A. On input w, compute
f(w) and run R on f(w). Give the same answer as R.

The same holds for Turing-recognizable (with essentially the same proof).

31

Rachel Wu 12 October 5, 2017

Theorem 12.7

ATM ≤m HALTTM .

Proof. Let f(〈M,w〉) = 〈M ′, w〉, which maps ATM to HALTTM . We construct
M ′, where on input w, halt if M accepts w and loop if M halts and rejects
w.

Now we show that ATM ≤m ETM . We construct f(〈N,w〉) = 〈Nw〉, where
〈N,w〉 decides if N accepts w and 〈Nw〉 decides if Nw is empty.

Since ATM is not recognizable, then ETM is also not recognizable.

Theorem 12.8

Let EQTM = {〈M,N〉|M,N are TMs and L(M) = L(N)}. Neither EQTM
nor its complement are Turing-recognizable.

Proof. We reduce ATM to both EQTM and EQTM . Let f : 〈M,w〉 → 〈M1,M2〉.
First we show that ATM ≤m EQTM .

• On input x, M1 always rejects.

• On input x, M2 rejects if x 6= w and runs M on w otherwise.

Now we show that ATM ≤m EQTM .

• On input x, M1 always accepts.

• On input x, M2 accepts if x 6= w and runs M on w otherwise.

“I shouldn’t joke around when you’re confused. It’s not nice”—sipser

32

Rachel Wu 13 October 12, 2017

13 October 12, 2017

13.1 Quiz tips

We have a quiz in a week, so professor provides the following tips.

• If A is reducible to B, then

B solvable → A solvable, and
A unsolvable → B unsolvable.

• To show that B is undecidable, reduce ATM to B. Use decider for B to
build decider for ATM.

• To show that B is not recognizable, show that ATM ≤m B. Give a
computable f : Σ∗ → Σ∗.

• A handy fact: A ≤m B if and only if A ≤m B.

13.2 Computation history method

Definition 13.1. A linearly bounded automaton (LBA) is a Turing ma-
chine whose tape is the same size as the input.

Definition 13.2. A configuration of a Turing machine (or LBA) is a triple
(q, p, t) of state, head position, and tape contents.

Theorem 13.3

Let ALBA = {〈B,w〉| LBA B accepts w}. ALBA is decidable.

Proof. The number of configurations for a tape of length n is

N = |Q| · n · |Γ|n .

So on input 〈B,w〉, run B on w for N steps. If B has accepted, then accept.
If B has rejected, then reject. Otherwise, B is still running, so reject.

Definition 13.4. A computation history is a sequence of configurations.

Definition 13.5. An accepting computation history for Turing machine
M on w is the sequence of configurations c1, c2, . . . , cl that M goes through
when accepting w.

Theorem 13.6

Let ELBA = {〈B〉|B is an LBA and L(B) = ∅}. ELBA is undecidable.

Proof. We reduce ATM to ELBA. Let R decide ELBA. Then we can construct S
deciding ATM.

On input 〈M,w〉, we construct LBA BM,w which checks if its input x is an
accepting computation history for M on w. If M accepts w, then L(B) contains
a single string, but if M does not accept w, then L(B) = ∅.

If R decides whether L(B) is empty, then S can decide ATM.

33

Rachel Wu 13 October 12, 2017

13.3 Post-Correspondence problem

Suppose we have a set of dominoes. We have a “match” in an arrangement of
dominoes if the top row of dominoes and the bottom row are the same.{[

aa
aba

]
,

[
ab
aba

]
,

[
ba
aa

]
,

[
abab
b

]}
For example, we can manually make a match.{[

ab
aba

] [
aa
aba

] [
ba
aa

] [
aa
aba

] [
abab
b

]}
Formally, suppose we have a set of dominoes

P =

{[
u1

v1

]
,

[
u2

v2

]
, . . . ,

[
uk
vk

]}
Given the sequence i1, i2, . . . , il ∈ P of dominoes, we have a match if

u1u2 . . . ul = v1v2 . . . vl.

Definition 13.7. We define the PCP language as

PCP = {〈P 〉|P has a match} .

Theorem 13.8

PCP is undecidable.

Proof. Reduce ATM to PCP using the computation history method. Assume
for contradiction that Turing machine R decides PCP. Then we can construct S
deciding ATM.

On input 〈M,w〉, construct a PCP instance PM,w, whose match must start
with [

u1

v1

]
=

[
#

#q0w1w2 . . . wn#

]
.

For each tape symbol a ∈ Γ, we add domino[
a
a

]
.

If δ(q, a) = (r, b, R)—state r, writes b, moves right—then we add[
qa
br

]
.

34

Rachel Wu 14 October 17, 2017

14 October 17, 2017

14.1 Quiz tips, ctd.

The professor provides several examples of the computation history method.

1. Build LBA BM,w which accepts only accepting computation history for
M on w.

2. Build PCP problem PM,w where a match is the only accepting computation
history.

3. To show
D = {〈p〉 | p has integer solutions}

is undecidable, build polynomial (for example)

pM,w(x1, x2, . . . , x9) = 5x2
1 − 22x1x

7
2x3 + · · ·+ 425 = 0

where the only solution x1 is an accepting computation history.

14.2 Undecidability, ctd.

We present one last undecidability proof.

Theorem 14.1

Let
ALLPDA = {〈D〉 | D is a PDA and L(D) = Σ∗.}

ALLPDA is undecidable.

Proof. We reduce ATM to ALLPDA by the computation history method. For
contradiction, assume that Turing machine R decides ALLPDA. We build Turing
machine S that decides ATM.

On input 〈M,w〉,

1. Build PDA DM,w which accepts all x 6= accepting computation history
for M on w.

2. At each step in the computation history, accept if illegal move.

3. Run R on 〈DM,w. If R says that L(DM,w) = Σ∗, then reject (no accepting
computation history). Otherwise accept.

14.3 Recursion

There is a philosophical question: can you make something that is more compli-
cated than yourself?

Computationally, yes.

35

Rachel Wu 14 October 17, 2017

Theorem 14.2 (Recursion theorem)

There is a Turing machine “SELF” which prints (leaves on the tape) a
description of “SELF” on any input.

Lemma 14.3

There is a computable function q : Σ∗ → Σ∗ where ∀w, q(w) = 〈Pw〉 where
Pw prints w.

Proof of lemma. The function simply says “print w.”

Proof of recursion theorem. Now we construct “SELF.”

SELF

A

P〈B〉

B 〈AB〉 = 〈SELF 〉

A should be P〈B〉, which leaves 〈B〉 on the tape. B computes q of the tape
contents 〈B〉, which is 〈P〈B〉〉 = 〈A〉. We print these before tape contents.

“You think this is all theory, but there is at least one application in
the real world—maybe even two!”—sipser

Example 14.4

We implement recursion in the fancy programming language, English.

Print out two copies of the following, 2nd one in quotes.

“Print out two copies of the following, 2nd one in quotes.”

Theorem 14.5

For any Turing machine T , there is a Turing machine R where for all w,
R(w) = T (〈R,w〉).

In English, mumble jumble.

We can use “get own description” when writing Turing machines.

The real world application? Computer viruses.

“Self-documenting code”—txz

We provide a new proof for ATM is undecidable. Assume that H decides
ATM. We build Turing machine R, which on w:

36

Rachel Wu 14 October 17, 2017

1. Retrieve its own description 〈R〉.

2. Run H on 〈R,w〉.

3. Accept if H says R doesn’t accept w, and reject if R accepts w.

Theorem 14.6 (Fixed point theorem)

Given computable f : Σ∗ → Σ∗, there is some Turing machine R where for
all w, R accepts w iff f(〈R〉) accepts w.

Proof. We construct Turing machine R, which on input w,

1. Retrieve its own description 〈R〉.

2. Compute 〈S〉 = f(〈R〉).

3. Simulate S.

Now we can show that ALLTM 6≤m ALLTM.

37

Rachel Wu 15 October 19, 2017

15 October 19, 2017

15.1 Complexity

Today, computability is largely considered a solved problem, with little active
research.

However, besides what is computable, we are also interested in how hard a
problem may be to solve. Complexity is the study of how difficult problems
are. There is much active research in complexity, and the second half of this
course will focus on these topics.

We introduce asymptotic notation as a way to evaluate the difficulty of
solving problems.

Definition 15.1. We use Big-O notation to denote

O(f(x)) = cf(x)

for some fixed constant c.

Theorem 15.2

Let
A =

{
akbk|k ≥ 0

}
.

A is decidable by a 1-tape Turing machine M that uses at most cn2 steps
for all inputs of length n for some fixed constant c.

Proof. We build Turing machine M . On input w,

1. Scan w to determine if w ∈ a∗b∗.

2. Repeat until done:

(a) Scan and cross off a single a and a single b per round.

(b) If one symbol finishes first, reject.

3. Accept.

Step 1 takes O(n) steps. Step 2 takes O(n) steps for O(n) iterations, so the
entire algorithm completes in O(n2).

But we can do better! If we cross off every other character and keep track of
parity, then we obtain an O(n log n) solution.

With two tapes, however, we can attain O(n). Just cross off both tapes at
the same time.

This should worry us. It would be a shame if all of complexity theory
depended on which type of Turing machine we chose. Fortunately, we can bound
this dependency, so we continue our analysis with a 1-tape Turing machine.

Definition 15.3. A Turing machine M runs in time t(n), where t : N→ N, if
for all w of length n, M on w halts within t(n) steps.

38

Rachel Wu 15 October 19, 2017

n

n log n

n2

. . .

Figure 4: Hierarchy of TIME problems.

Definition 15.4. We define a new problem

TIME(t(n)) = {A | A is decidable by a TM in O(t(n))} .

Note 15.5. We can only attain O(n) on regular languages.

Theorem 15.6

If a fixed-tape multi-tape Turing machine decides B in time t(n), then
B ∈ TIME(t2(n)) on a 1-tape Turing machine.

Proof. We have O(t(n)) copies of the original tape, each of length t(n), so we
take t(n)2 steps.

In fact, any conversion between two reasonable deterministic machines is
polynomial in t.

Proposition 15.7 (Polynomial equivalence)

Converting between any two reasonable deterministic models can only
change the running time from t(n) to tk(n).

Definition 15.8 (Class P). We define class P as

P = ∪kTIME(nk) = TIME(polynomial in n).

There are several implications.

• Class P is invariant for reasonable deterministic models.

• Polynomial time vaguely corresponds to “practically” solvable.

Example 15.9

Let
PATH = {〈G, s, t〉|∃s t ∈ G}

where G is a directed graph.

Let n = |〈G, s, t〉|. On 〈G, s, t〉:

39

Rachel Wu 15 October 19, 2017

1. Mark s.

2. For each marked node, scan G and mark its neighbors.

3. Repeat until no new nodes marked.

4. Accept if t marked. Reject otherwise.

Example 15.10 (Hamiltonian path)

Let
HamPath = {〈G, s, t〉 | ∃ Hamiltonian path s t ∈ G}

where G is a directed graph.

It is unknown whether we can find a Hamiltonian path in P.

40

Rachel Wu 16 October 24, 2017

16 October 24, 2017

16.1 Nondeterministic complexity

Problems like Hamiltonian path can be verified in polynomial time, but we
cannot check if a graph does not have a Hamiltonian path.

Definition 16.1. A nondeterministic Turing machine runs in time t(n) if for all
inputs of length n, the Turing machine uses at most t(n) steps on every thread.

Accordingly, NTIME is defined as

NTIME = {A | A is decidable by a NTM in O(t(n))} .

TM • • • • • . . . •

length t(n)

NTM • •
•

••
•• • •• •

• •
• •

• •

• •
. . . ••

•
•

•

•

length t(n)

Definition 16.2 (Class NP). Class NP is

NP = ∪kNTIME(nk)

or “nondeterministic polynomial time.”

“You will make me very, very upset if you call it ‘not-polynomial
time.’ —sipser

Theorem 16.3

Hamiltonian path is in NP.

Proof. We give a nondeterministic decider for Hamiltonian path. On input
〈G, s, t〉, we nondeterministically write a sequence of nodes v1, v2, . . . , vm of
nodes, where m is the number of nodes. Check that

• start and ends are correct: s = v1, t = vm,

• every edge is valid: vi → vi+1 for all i,

• and there are no repeated vi.

Accept if all true, and reject otherwise.

41

Rachel Wu 16 October 24, 2017

Theorem 16.4 (Composite numbers)

Let the composite numbers be the set

C = {x|x ∈ N;x = yz, y, z ∈ N≥1} .

C is in NP.

Proof. On input x, nondeterministically guess y ≤ x. Test if y > 1, y < x, and
if y evenly divides x. Accept if so, and reject otherwise.

In lay terms, P is the class of languages whose membership can be “tested”
quickly, while NP is the class of languages that can be “verified” quickly.

And. . . we come to the wonderful world of certificates. We can verify NPness
with a short certificate of membership.

16.2 P vs. NP

Our professor has an entire folder dedicated to wacky P vs. NP proof correspon-
dences.

Theorem 16.5

If A is a context-free language, then A is NP.

Proof. It is easy to show that A is in NP. We convert A to Chomsky normal
form, so that all derivations are length 2k − 1.

We construct a NTM for A. On input w, nondeterministically guess a
derivation of length 2 |w| − 1 for w. Accept if valid, reject otherwise.

Now we show that A is in P. We use dynamic programming. Suppose start
state S → TU . Then we verify that T goes to the left half of w, and U goes to
the right half. Consider all substrings from wi . . . wj . Then we just fill in the
table with the derivations of each substring.

“If you’re not here, come back—come back!!!”—sipser

“Now we’re going to add in the secret ingredient to dynamic pro-
gramming: don’t be stupid.”—sipser

Example 16.6 (SAT)

A boolean formula is satisfiable if there exists an assignment of variables
that renders the formula true.

SAT = {φ|φ is a boolean formula that is satisfiable}

SAT is in NP.

Proof. Just guess the assignment.

42

Rachel Wu 17 October 31, 2017

17 October 31, 2017

17.1 Polynomial time reducibility

Definition 17.1. A is polynomial time reducible to B (A ≤p B) if A is mapping
reducible to B (A ≤m B) and the reduction is computable by a Turing machine
that runs in polynomial time.

Theorem 17.2

If A ≤p B and B ∈ P , then A ∈ P .

This is the same proof as decidable.

Proof. Suppose Turing machine decides B in polynomial time. We construct
Turing machine S that decides A in polynomial time. On input w, compute
f(w) and test if f(w) ∈ B with R. Return the same result.

Now, we can show that every language A ∈ NP is polynomial time reducible
to SAT.

Definition 17.3 (Conjunctive normal form). A literal is x or x and a clause is
an OR of literals. A formula is in conjunctive normal form (cnf) if it is an
AND of clauses.

For example,

φ = (a ∨ b ∨ c̄ ∨ d̄) ∧ (b̄ ∨ c) ∧ · · · ∧ (t ∨ o ∨ n̄ ∨ y)

is in conjunctive normal form. To satisfy a cnf formula, at least one literal from
each clause must be true. Every boolean formula can be converted to a cnf
formula, but not necessarily in polynomial time.

Example 17.4 (3-SAT)

A k-cnf formula is a cnf formula in which every clause has exactly k literals.
3-SAT is the problem

{〈φ〉 | φ is satisfiable 3-cnf formula} .

For example, (a ∨ b ∨ c) ∧ (a ∨ b̄ ∨ d) is a 3-cnf formula.

Example 17.5 (k-clique)

A k-clique can be defined as

{〈G, k〉 | G is undirected graph with k fully connected nodes} .

The k-clique problem is in NP—we just provide the clique.

43

Rachel Wu 17 October 31, 2017

Theorem 17.6

If clique is in P , then 3-SAT is in P .

Proof. We show that 3-SAT ≤p clique.

We convert 3-SAT problems to clique problems. Suppose we have formula

(a ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ d ∧ · · · ∧ (c̄ ∨ f̄ ∨ g).

We create a node for each literal.

a

•
b̄
•

c

•
ā

•
b̄
•

d

• . . .
c̄

•
f̄

•
g

•

We draw edges according to the following rules.

1. We do not connect two literals in the same clause.

2. We do not connect any literal with its complement.

3. We draw all other edges.

We have constructed G, where k is the number of clauses.

If the formula is satisfiable, then G has a k-clique. Suppose we have a
satisfying assignment. Then we select the satisfied literal from each clause.
These literals form a k clique because complements cannot be connected, and
each literal comes from a single clause.

In the other direction, we could not have picked 2 literals from the same
clause, because they are not connected. Furthermore, there are exactly k
literals from k clauses. Finally, literals selected must be true, and there are no
contradictions.

Theorem 17.7

B is NP-complete if

1. B ∈ NP, and

2. ∀A ∈ NP, A ≤p B.

Theorem 17.8

3-SAT is NP complete.

Theorem 17.9

3-SAT is reducible to Hamiltonian path.

44

Rachel Wu 17 October 31, 2017

Proof. Consider the same boolean formula from above,

(a ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ d ∧ · · · ∧ (c̄ ∨ f̄ ∨ g).

We construct Hamiltonian path gadgets. For each variable, we draw these
diamond paths.

variables
•

•

•

•a

•

•

•

•b

•

•

•

•u

•

•

•

•

•

•

clauses

a ∨ b̄ ∨ c

ā ∨ b̄ ∨ d

...

Note the following.

1. Each clause must be visited at least once, but needs not be visited for
each node.

2. Each variable is either true or false. If the variable is true, then it must be
true for all the clauses in which it is selected as the token literal. Therefore,
the path must be moving in the same direction (same truth value).

3. If any clause is not selected for a variable, we just take the swirls to the
next part.

45

Rachel Wu 18 November 2, 2017

18 November 2, 2017

We begin by going over a problem in the problem set.

Example 18.1

Prove that
{
a, b, c, p | ab ≡ c mod p

}
∈ P .

The key is to keep taking numbers modulo p.

“Two words—dynamic programming.”—sipser, about problem 2,
problem set 4.

18.1 NP-completeness

Imagine you worked super hard to prove whether P
?
= NP , and then you realize

that there are harder problems in NP. You’d be really sad. But not if you chose
an NP-complete problem.

NP

P

NP-complete

Theorem 18.2 (Cook-Levin theorem)

If SAT ∈ P , then NP = P . That is, SAT is NP-complete.

Proof. It is clear that SAT ∈ NP . We guess the assignment.

Now let A ∈ NP be decided by NTM M in nk time. We show that A ≤p SAT
by giving reduction f where f(w) = φw, w ∈ A ⇐⇒ φw ∈ SAT .

We create a nk by nk tableau for M on w, where each row is a configuration
for M . Without loss of generality, if the machine accepts before nk steps, it
stays at the same state.

nk

nk

start

accept

46

Rachel Wu 18 November 2, 2017

In other words, this is a computation history for one thread. Within nk

steps, the machine can only accept nk of the tape, so this tableau contains the
possible configurations.

φw “says” that M accepts w, so φw is the logical representation that M
accepts w. Equivalently, a tableau exists for M on w.

Let
φw = φcell ∧ φstart ∧ φmove ∧ φaccept.

In each cell, we have boolean variables xijσ where i, j ∈
{

1, . . . , nk
}

and
σ = Q ∪ Γ. For example, x3,4,a = 1 means that row 3, column 4 has the symbol
a.

φcell says that each cell has at most 1 symbol.

φcell =
∧

i,j∈{1,...,nk}

 ∨
σ∈Q∪Γ

xijσ

︸ ︷︷ ︸
at least one symbol

∧

 ∧
σ,τ∈Q∪Γ,σ 6=τ

xijσ ∨ xijτ

︸ ︷︷ ︸

at most one symbol

Each cell has at least one symbol selected, and between every pair of cells at
the same i, j, only one symbol is selected.

Furthermore, φstart says that the top row is the start configuration.

φstart = x1,1,q0 ∧ x1,2,w1
∧ x1,3,w2

. . .

Likewise, φaccept says that the bottom row has an accept state somewhere.

φaccept =
∨

j∈{1,...,nk}

xnkjqacc

Finally, qmove says that each row follows from the previous. Consider each 2 by
3 “neighborhood.” We can check whether these transitions are legal, and we
can enumerate all legal neighborhoods.

∧
i,j∈{1,...,nk}

∨
abcdef

xi−1,j,axi,j,bxi+1,j,cxi−1,j+1,dxi,j+1,exi+1,j+1,f︸ ︷︷ ︸
i,j neighborhood is valid

where a, b, c, d, e, f come from legal neighborhoods.

a b c
d e f

The entire proof works in size O(n2k).

Suppose φ = ((x ∧ y) ∨ z) ∧ (x ∨ y). We want to convert φ→ ψ, which is an
equivalent 3-cnf.

47

Rachel Wu 18 November 2, 2017

∧

∨ ∨

∧ x y

x y

Let b4 = x ∧ y.

x y b4
0 0 0
0 1 0
1 0 0
1 1 1

48

Rachel Wu 19 November 7, 2017

19 November 7, 2017

19.1 Space complexity

Definition 19.1. Turing machine M in f(n) space (f : N → N) if M is a
decider and M on w uses at most f(n) tape cells on all inputs of length n.

M

n

We can define two new problems,

SPACE(f(n)) = {A | some TM M decides A with O(f(n)) space}
NSPACE(f(n)) = {A | some NTM M decides A with O(f(n)) space}

Correspondingly, we can define two new classes of problems.

PSPACE =
⋃
k

SPACE(nk)

NSPACE =
⋃
k

NSPACE(nk)

Theorem 19.2

We assume that f(n) ≥ n.

1. TIME(f(n)) ⊆ SPACE(f(n))

2. SPACE(f(n)) ⊆ TIME(2O(f(n))) =
⋃
k TIME(cf(n))

Proof. The proofs are simple.

1. In f(n) steps, we can reach at most f(n) space.

2. With f(n) cells, there are at most 2O(f(n)) configurations (before we start
looping, and these are deciders). Therefore, we take at most 2O(f(n)) steps.

It directly follows from (1) that P ⊆ PSPACE.

Theorem 19.3

NP ⊆ PSPACE.

Proof. We begin with two observations.

First, SAT ∈ PSPACE. Given a formula φ, we cycle through assignments
on the tape and verify. Therefore, SAT ∈ SPACE(n).

49

Rachel Wu 19 November 7, 2017

Second, if A ≤p B and B ∈ PSPACE, then A ∈ PSPACE. The polynomial
time reduction converts from B to A.

We know that SAT ∈ PSPACE. For all A ∈ NP , SAT ≤p A, so A ∈
PSPACE.

Definition 19.4. coNP is the set of complements of NP problems,

coNP =
{
A | A ∈ NP

}
.

We claim that coNP ∈ PSPACE. We think our world view looks like the
following, though everything would collapse down to one space if P = PSPACE.

PSPACE

P

NPcoNP P = NP =
coNP =
PSPACE?

Example 19.5 (Quantified boolean formulas)

Each variable in the boolean formula is quantified with either ∃ or ∀. For
example,

• ∀x∃y such that [(x ∨ y) ∧ (x ∨ y)],

• ∃x∀y such that [(x ∨ y) ∧ (x ∨ y)].

The former is TRUE and the latter is FALSE.

This is a generalized form of SAT, which only has ∃ quantifiers on each
variable.

Theorem 19.6

Let
TQBF = {〈φ〉 | φ is a TRUE QBF} .

TQBF ∈ PSPACE.

We recursively set x = 0, x = 1 and figure out the rest. This takes polynomial
space.

50

Rachel Wu 19 November 7, 2017

Example 19.7

We can play word ladders!

WORK

PORK

PORT

SORT

SOOT

SLOT

SLAT

SLAY

PLAY

English is ill-defined mathematically, so we consider a DFA instead.

Theorem 19.8

Let

LADDERDFA = {〈B,w, x〉 | B is DFA,∃y1, . . . , yk ∈ L(B)}

where y1 = w, yk = x, and each yi, yi+1 differs in 1 place.

We claim that LADDERDFA ∈ NPSPACE.

Nondeterministically, we write out each word we’re looking at, make a
transition, and forget the old word. After a certain number of steps (amount of
combinations possible), we shut down a thread if it hasn’t found the target.

Deterministically, we solve this problem recursively. For each recursion,
we halve the possible ladder height. We try every possible legal word for the
“middle” word. The base case is a ladder of 1 step, which is easy to check.

On 〈B,w, x, t〉,

1. If t = 1, then check if w, x differ in 1 place.

2. Otherwise, try all possible y,

This takes n2 memory.

51

Rachel Wu 20 November 9, 2017

20 November 9, 2017

20.1 Recursive PSPACE proofs

Recall that

LADDERDFA = {〈B,w, x〉 | B is a DFA, exists ladder in B from w to x} .

We can show that LADDERDFA ∈ PSPACE.

Proof. Let the bounded ladder problem be

BL = {〈B,w, x, t〉 | ladder of length t} .

1. If t = 1, test whether w, x ∈ L(B) and
w, x differ at at most 1 symbol.

2. If t > 1, for each y of length |w|, recursively
run BL on 〈B,w, y, t/2〉 and 〈B, y, x, t/2〉.
Accept if both accept for some y.

3. Reject if no accepting y is found.

We analyze the space complexity. Each recursive
level stores y in O(n) space. There are log2 t
levels, so the total space is O(n log t).
To solve the original LADDER problem on
〈B,w, x〉, we run BL on 〈B,w, x, t〉, where
t = dn, d = |Σ|.

WORK

PLAY

≤ t = |Σ|m

m

x

w

Theorem 20.1 (Savitch’s theorem)

For f(n) ≥ n, NSPACE(t(m)) ≤ SPACE(f(m)2).

This theorem implies that PSPACE = NPSPACE.

Proof. We convert NTM N to Turing machine M . Consider the tableau for N
on w. We assume that the machine cleans up and parks its head at the left, so
there is only one accepting configuration.

cf(n)

f(n)

cstart

caccept

For configurations ci, cj , we write that ci
k−→ cj

if ci can yield cj in at most k steps.

N accepts w if cstart
t−→ caccept where t = cf(n).

Recursively test if ci
k−→ cj for each configuration

on f(n) space. For each cmid, test if ci
k/2−−→ cmid

and cmid
k/2−−→ cj .

The base case is k = 1, at which point we check
of ci → cj via N ’s rules.
There are log cf(n) = O(f(n)) levels, each of
which is f(n).

52

Rachel Wu 20 November 9, 2017

Definition 20.2. Language B is PSPACE-complete if

1. B ∈ PSPACE and

2. for every A ∈ PSPACE, A ≤p B.

Theorem 20.3

TQBF is PSPACE-complete.

Proof. We’ve already shown that TQBF ∈ PSPACE.

Let A ∈ PSPACE be decided by Turing machine M in space nk. We show
that A ≤p TQBF .

We give a reduction f : w → φw where w ∈ A if and only if φw is true. That
is, φw “says” M accepts w.

Let’s draw another tableau.

cn
k

nk
M on w

cstart

caccept

For configurations ci, cj , we construct φci,cj ,k which “says” that ci
k−→ cj ,

φci,cj ,k = ∃cmid[φci,cmid,k/2 ∧ φcmid,cj ,k/2]

when k > 1. We directly check configurations when we reach φci,cj ,1.

Unfortunately, this doesn’t work. There are O(nk) levels, but at each level,
we double the number of formulas. Fortunately, we’re very close!

φci,cj ,k = ∃cmid∀(cα, cβ) ∈ {(ci, cmid), (cmid, cj)} [φcα,cβ].

Or equivalently,

∀cα, cβ [((cα, cβ) = (ci, cmin)) ∨ ((cα, cβ) = (cmin, cj))].

53

Rachel Wu 21 November 14, 2017

21 November 14, 2017

21.1 PSPACE-complete games

Consider the “geography” game. We name off countries, where you must name a
country starting with the opponent’s country’s last letter, no repeats. Eventually,
we’ll start looping.

But under optimal conditions, who has an advantage? This question is
PSPACE-complete (unproven, but can be shown by induction).

s

A winning strategy is a forced win under optimal play.

Theorem 21.1

Let GG = {〈G, s〉 | player 1 has a winning strategy in geography game.}.
GG is PSPACE-complete.

Proof. We can show that GG ∈ PSPACE by induction.

Now we show that TQBF ≤p GG. Let’s play a formula game. Suppose we
have a TQBF

φ = ∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ . . .]

where the inside is a cnf formula. There are two players: ∃ and ∀. Each player
gets to pick an assignment for his corresponding variables. Player ∃ wants the
formula to be true, while ∀ wants the formula to be false.

If φ is true as a formula, then ∃ has a winning strategy, and if φ is false,
then ∀ has a winning strategy.

∃ has a winning strategy iff φ ∈ TQBF .

Example 21.2

Consider the TQBF

∃x1∀x2∃x3 . . . ∀xk[(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4 ∧ · · · ∧ ()].

We construct a generalized geography game.

Without loss of generality, assume that there are alternating ∃ and ∀ quanti-
fiers. (We can add in dummy variables.)

54

Rachel Wu 21 November 14, 2017

x1

x2

xk

c1 c2 c3 c4 c5

We assign left to true and right to false. At each turn, one player will take a
left or right on a diamond and assign a variable.

If ∀ wins, some clause was not satisfied, so ∀ can pick the unsatisfied clause.
Then ∃ must select the offending literal (if ∀ lied). If ∃ is correct, then he can
keep playing (nodes have not been visited). Otherwise, ∃ is stuck.

21.2 Logarithmic space

We shift to a 2-tape model. There is a read-only input tape of length n and a
working tape of size O(log n).

M w

|w|

log |w|

Definition 21.3. Let L be the class of SPACE(log n) and letNL beNSPACE(log n).

Logarithmic space is exactly enough space to write a pointer into the input.

Example 21.4

The language of palindromes{
wwR | w ∈ Σ∗

}
∈ L.

The path problem

{PATH = {〈G, s, t〉|∃s t ∈ G}} ∈ NL

For palindromes, we can check symbol for symbol, at both ends. For path,
we nondeterministically guess paths and keep a count of how many steps we’ve
taken.

55

Rachel Wu 21 November 14, 2017

“If we’re nondeterministic, we don’t even need friends!”—sipser

Proposition 21.5

Not worth being a theorem. L ⊆ P .

Proof. Let a configuration of M on w be a tuple (q, p1, p2, t), where q is the
state, p1, p2 are the head locations, and t is the work tape. There are

|Q| · n ·O(log n) · cO(logn)

configurations possible.

In a L-space machine M , we can’t run for more than a polynomial number
of steps before repeating configurations.

Proposition 21.6

NL ⊆ P .

Proof. Let A ∈ NL be decided by NTM M in O(log n) space. We convert NTM
N (log space) to TM M (polynomial space).

For M on w:

1. Construct the computation graph for N on w, where the nodes are
configurations of N on w and the edges are valid configuration transitions.
(We add edge ci → cj if ci yields cj .)

2. Test if there exists a path from the start configuration to an accepting
configuration.

3. Accept if yes, reject if no.

Nqcstart w

t

qacccaccept w

blank

56

Rachel Wu 22 November 16, 2017

22 November 16, 2017

22.1 NL-completeness

Definition 22.1. B is NL-complete if

1. B ∈ NL and

2. ∀A ∈ NL,A ≤L B, where ≤L stands for log-space reduction.

Definition 22.2. A log-space transducer is a 3-tape Turing machine with a
read-only input tape (length n), a read/write work tape (log n), and a write-only
output tape (unrestricted length).

T w

work

output

Definition 22.3. We say that A ≤L B if A ≤m B and the reduction is log-space
computable by a log-space transducer.

Theorem 22.4

If A ≤L B and B ∈ L, then A ∈ L.

Proof. For A on w, compute f(w) and run the decider for B on f(w).

We might not have space to store f(w), so we store instead a pointer into
f(w). For each bit of f(w) we wish to ingest, restart the transducer and obtain
the bit in question.

“You have to recompute the bit multiple times. . . I think I’m recom-
puting the proof multiple times at this point.”—sipser

Theorem 22.5

PATH is NL-complete.

Proof. PATH is clearly in NL.

For all A ∈ NL, we show that A ≤L PATH. Suppose NTM N decides A.
Then we define f : w → 〈G, s, t〉, where w ∈ A if and only if there exists a s t
path. G is a computation graph for N on w.

57

Rachel Wu 22 November 16, 2017

reduction w

ci cj

〈G, s, t〉 = cstart, cacc, (c0, c2), (c1, c4), . . .

We go through every pair of configurations (ci, cj) and print out all valid
configurations. The configurations are log space because A ∈ L.

22.2 NL = coNL

The NP
?
= coNP question is an open problem. However, there is an interesting

result for NL.

Theorem 22.6

Let coNL =
{
A | A ∈ NL

}
. NL = coNL.

Proof. We show that PATH ∈ NL.

Let Ri be the nodes reachable from s within i steps, and let ci = |Ri|.

s t

On 〈G, s, t, c〉:

1. For every node v, nondeterministically pick a path s v or declare that
v is unreachable (each thread assigns reachable or not).

2. For every v that is reachable, there will be some thread that finds the
right path for everything.

3. Check if the count of reachable is equal to c. Accept if yes, and t is
unreachable.

We can test if t ∈ Ri, given some ci. Starting a 0, we look at all nodes
reachable within 0, 1, . . . steps, each step building off the previous, until we
reach |V | steps. This is essentially BFS.

58

Rachel Wu 23 November 17, 2017

23 November 17, 2017

23.1 Practice problems

We reviewed the past few lectures and do practice problems.

Example 23.1

A directed graph G is strongly connected if ∀u, v ∈ V,∃(u, v), (v, u) ∈ E.
Let

SC = {〈G〉 | G is strongly connected} .

Show that SC is NL-complete.

Solution. SC ∈ NL since we can non-deterministically select vertices u, v and
check if there exists (u, v), (v, u) ∈ E.

Now we give a reduction from PATH. On input 〈G, s, t〉:

1. For all nodes v ∈ V , add edge v → s and edge t→ v in G′.

2. If G′ is strongly connected, then for every u, v, there exists a path from
u v via u→ s→ t→ v. Thus, there must exist a s t path in G.

In the reverse direction, if G′ is strongly-connected, then any edges in G′ \G
cannot be used in a s t path. Therefore, there must exist a path from s t
in G.

Example 23.2

Show that BIPARTITE ∈ NL.

Solution. A graph is bipartite if there are no odd cycles. Since NL = coNL, we
show that BIPARTITE ∈ coNL. Nondeterministically select a vertex v ∈ V and
select a path from v. Keep track of the path length until |V |. If we ever return
to v and the length is odd, accept.

59

Rachel Wu 24 November 28, 2017

24 November 28, 2017

24.1 Hierarchy theorem

The professor mentions that the hierarchy theorem is a proof by diagonalization.

There are some solvable problems that are not decidable in P , but may be
decidable, given more time.

24.2 Exponential space

Today we show that there is a natural problem we can solve in exponential
space, but not with polynomial space. That is, we might care about it; it’s not
too contrived.

Example 24.1

Let EQREX = {〈R1, R2〉 | L(R1) = L(R2)} be the equality problem for
regular expressions.

This language is in PSPACE

Proof. First convert R1, R2 to NFAs B1, B2 (linear space increase). Since
PSPACE = NPSPACE, we can use the corresponding NFAs. Now we guess
the w where B1, B2 disagree.

We can make the problem a bit harder. Let

Rk = R ◦R ◦ · · · ◦R︸ ︷︷ ︸
k

be an “enhanced” regular expression, where k is written in binary.

Theorem 24.2

Let EQREX↑ = {〈R1, R2〉 | L(R1) = L(R2)} be the equality problem for
enhanced regular expressions. EQREX↑ 6∈ PSPACE.

Definition 24.3. EXPSPACE=
⋃
k SPACE(2n

k

).

Definition 24.4. EXPTIME=
⋃
k TIME(2n

k

).

Definition 24.5. B is EXPSPACE-complete if

1. B ∈ EXPSPACE and

2. ∀A ∈ EXPSPACE, A ≤p B.

The hierarchy theorem shows that

PSPACE (EXPSPACE

P (EXPTIME.

“If you got lost, I haven’t done anything, so feel free to ask a question
about nothing.”—sipser

60

Rachel Wu 24 November 28, 2017

Theorem 24.6

EQREX↑ is exponential-space complete.

Proof. EQREX↑ ∈ EXPSPACE since it is in PSPACE.

Now let A ∈ EXPSPACE be decided by Turing machine M in space 2n
k

. We
give a reduction f : w → 〈R1, R2〉 such that w ∈ A if and only if L(R1) = L(R2).

Let L(R1) be all strings ∆∗, and let L(R2) be all strings except for a rejecting
computation history for M on w.

The tape is 2nk long, so the computation history is really big.

2n
k

22n
k

q0w1w2 . . .#

q1 . . .#

...

qreject

R2 = Rbad,start ∪Rbad,move ∪Rbad,reject

If M accepts w, there is no rejecting computation history, so L(R2) = ∆∗ =
L(R1).

We need a smol regular rexpression, so let’s begin!

Rbad,start = s0 ∪ s1 ∪ s2 · · · ∪ sn ∪ sblanks ∪ s#

where each si describe all strings that mess up at location i. For example,
s0 = ∆− q0∆∗, or all strings that don’t start at q0, and s1 = ∆−∆w1∆∗, etc.
The general term is sn = ∆n(∆− wn)∆∗.

Unfortunately, there are too many. Fortunately, we write them all as

∆n+1(∆ ∪ ε)2n
k
−(n+1)(∆− w)∆∗

We use a similar expression for all strings that end wrong.

Now we weed out the bad moves (e.g. Tony dancing). Recall the 3 by 2
window we used for the Cook-Levin construction.

∆∗
⋃

illegal windows

[abc∆2n
k
−3def]

where 2n
k − 3 is the distance between c and d in the computation history as a

string.

61

Rachel Wu 25 November 30, 2017

25 November 30, 2017

25.1 Oracles

Definition 25.1 (Oracles). For any language A, a Turing machine M with an
oracle for A (MA) can answer “is x in A” for free.

So
PA =

{
B | B solvable in polynomial time by some MA

}
Since SAT is NP-complete,

NP ⊆ PSAT coNP ⊆ PSAT.

Theorem 25.2

For A = TQBF, NPA = PA

Proof. TQBF is PSPACE-complete, so

NPTQBF ⊆ NPSPACE ⊆ PSPACE ⊆ PTQBF.

Since TQBF is solvable in PSPACE, every time we call the oracle, we can also
just solve it ourselves.

Suppose we provide a proof where A simulates B, and we give both machines
an oracle C. The proof still works the same, since A can call C on its own; it does
not depend on the fact that B has an oracle. This is known as relativization.

Prof. Sipser’s interpretation of oracle relativation is that we cannot prove
P = NP by mere simulation.

25.2 Probabilistic complexity

Often, practical algorithms do not require an exact answer; they can produce
effective approximations with much less effort.

Example 25.3

Suppose we want to know, “who will be elected the next President of the
United States?” We could make everyone vote, but we could also poll a
sample. There are potential issues:

• We could be wrong! The sample could be bad.

• We could be systematically choosing more from one group than the
other group.

But that’s okay! Error is inherent to these models.

Definition 25.4. A probabilistic Turing machine M is a NTM where at
every point, there are either 1 or 2 successors (next steps).

62

Rachel Wu 25 November 30, 2017

•
•

•

•

•
• •

•
•
•M on w

reject

accept

k

For thread b, let Pr {b} = 2−k where k is the number of coin tosses on b.
Then

Pr {M accepts w} =
∑

accepting b

Pr {b} .

For language A, M decides A with error probability ε for 0 ≤ ε ≤ 1/2 if

• for w ∈ A, Pr {M accepts w} ≥ 1− ε, and

• for w 6∈ A, Pr {M rejects w} ≥ 1− ε.

Definition 25.5 (Class BPP). We define class BPP as

BPP = {A | some probabilistic TM decides A with ε = 1/3} .

Lemma 25.6 (Amplification lemma)

If a probabilistic polynomial-time Turing machine M decides A with error
probability ε < 1/2, there is some probabilistic polynomial-time Turing
machine N deciding A with error probability δ for any δ > 0.

25.3 Branching programs

Definition 25.7 (Branching program). On some input (e.g. 〈x1, x2, x3, . . . 〉 =
〈0, 1, 1, . . . 〉), branching program P is a decision tree computes a function
f : {0, 1}n → {0, 1}.

x1

x2 x3

x4 x1 x3

0 1

0 1

0 1 0 1

0 10 10 1

Theorem 25.8

Let
EQBP = {〈B1, B2〉 | B1, B2 compute same language}

where B1, B2 are branching programs. EQBP ∈ coNP.

63

Rachel Wu 25 November 30, 2017

Definition 25.9. In a read-once branching program, every path queries a
variable at most once (note above that x1 and x3 appear twice).

The equivalence problem for read-once branching programs is in BPP.

Theorem 25.10

Let
EQROBP = {〈B1, B2〉 | B1, B2 compute same language}

where B1, B2 are read-once branching programs. EQROBP ∈ BPP.

Proof. Suppose we have two ROBPs B1, B2.

B1 B2

We feed in an input and check the output.

Find a path from x1 to an output and mark that path: assign every edge on
the path to 1 and all other edges to 0

x1

x2 x3

x4 x1 x3

0 1

1 0

0 1 0 0

0 01 00 0

Now suppose we arrive at the following intersection.

x

a

0
a ∧ x

1
a ∧ x

We take the left path if a ∧ x and the right path if a ∧ x.

We can convert boolean expressions to arithmetic expressions.

a ∧ b→ ab a→ 1− a a ∨ b→ (a+ b)− ab

Consider the following branching program, which computes XOR.

64

Rachel Wu 25 November 30, 2017

x1

x2 x2

0 1 (1− x1)x2 + x1(1− x2)

1

1− x1 x1

x1(1− x2)0

(1− x1)x2

1

The formula at the 1 output is the function that this branching program
evaluates! But now we are not limited to assigning boolean values to the variables.
We can just as easily say x1 = 2, x2 = 3 and compute that “2⊕ 3 = 7.”

65

Rachel Wu 26 December 1, 2017

26 December 1, 2017

26.1 Review

Definition 26.1 (Class RP). For language A, we say that A is in class RP if

1. for w ∈ A, Pr {M accepts w} ≥ 2/3, and

2. for w 6∈ A, Pr {M rejects w} = 0.

Example 26.2

Here are some open problems.

• PSAT ?
= NPSAT

• NPSAT ?
= coNPSAT

• P
?
= BPP

Example 26.3

BPP ⊆ PSPACE.

Proof. We simply run every possible path and keep track of how many accept.
There are at most 2k paths of length k, so we require log 2k = k bits to keep
track of which path we’re on. Accept if and only if ≥ 2/3 of the paths accept.

Example 26.4

MIN-FORMULA ∈ coNPSAT.

Proof. We can decide MIN-FORMULA as follows. On input φ:

1. Non-deterministically select a formula ψ shorter than φ with the same
variables.

2. Use the SAT oracle to determine if ψ ≡ φ. Accept if so. Reject otherwise.

Example 26.5

RP ∈ NP.

Proof. Certificate is any accepting path, since for w 6∈ A, we will never accept.

66

Rachel Wu 26 December 1, 2017

Example 26.6

If SAT ∈ BPP, then SAT ∈ RP.

Proof. Let M be the BPP solver for SAT. We construct the RP solver R. On
input φ:

1. Run M on φ.

2. If M rejects, reject. If M accepts, try an assignment for each xi, a la
problem 3 from the pset.

3. Check the assignment at the end.

67

Rachel Wu 27 December 5, 2017

27 December 5, 2017

27.1 Branching programs is BPP

We continue the proof from the last lecture.

Here are two cute theorems.

Theorem 27.1

Let p(x) = a1x
d + a2x

d−1 + · · ·+ adx+ ad+1. If non-zero p(x) has degree
d, then p has at most d roots.

Proof by easy induction.

Theorem 27.2

Given p1, p2 of degree d, then p1 and p2 agree on at most d places.

Let p = p1 − p2. p has at most d roots, so they can agree at most d places.

We do arithmetic in some finite field Fq.

Theorem 27.3

For p 6= 0 of degree d and a randomly selected x ∈ Fq,

Pr {p(x) = 0} ≤ d

q
.

Theorem 27.4 (Schwartz-Zippel lemma)

Let p(x1, x2, . . . , xm) be a polynomial of degree d in each xi. For random
values (x1, . . . , xm) ∈ Fmq ,

Pr {p(x1, x2, . . . , xm) = 0} ≤ md

q
.

Another easy proof by induction.

The intuition is that if p is not zero everywhere, then it is zero rarely.

We return to branching programs. We convert ROBP B1, B2 into equivalent
polynomials p1, p2 that simulate the branching programs.

1. If B1 ≡ B2, then p1(x) = p2(x) for all x.

2. If B1 6≡ B2, then Pr {p1(~x) = p2(~x)} for random ~x ∈ Fmq is small.

Each polynomial p is a sum of products of every xi term, positive or negated.
For example,

p = x1(1− x2)(1− x3) . . . (1− xm) + (1− x1)x2x3 . . . xm + . . .

68

Rachel Wu 27 December 5, 2017

Not every variable need appear, but no variable appears more than once in each
clause. Here, d = 1 and m is the number of variables. So let q ≥ 3m (for proving
the BPP bound). Then

Pr {p(x1, x2, . . . , xm) = 0} ≤ md

q
=
m

q
≤ 1

3
.

69

Rachel Wu 28 December 7, 2017

28 December 7, 2017

28.1 Interactive proofs method

We introduce the interactive proofs method to prove an interesting result
about graph isomorphism. We have a verifier V that runs in probabilistic
polynomial time and a prover P that is computationally unlimited.

Both P and V see input w. They exchange nk messages, and then V ouputs
accept or reject.

Definition 28.1. Pr {V ↔ P accepts} is the probability that V accepts w while
interacting with P .

Definition 28.2 (Class IP). A ∈ IP if there is a V and P where for every w:

• If w ∈ A, then Pr {V ↔ P accepts w} ≥ 2/3

• If w 6∈ A, then for every P̃ . Pr
{
V ↔ P̃ accepts w

}
≤ 1/3.

The former P is known as an honest prover, while the latter is known as the
crooked prover (it cannot accept no matter how hard it tries).

“I’m old. I’m just a bounded probabilistic time. But you’re my
research group, and you’re young! You’re unlimited computationally—
you’re unconstrained in the amount of effort you put in. You can
spend all night on the problem.”—sipser

28.2 Graph isomorphism

Given graphs A,B, are they isomorphic?

Let ISO be the problem

ISO = {〈A,B〉 | A = B} .

ISO is in NP, but we don’t know if it is NP-complete. We can provide a mapping
as a certificate.

It is also unknown if ISO
?
= NP.

A recent result is that ISO ∈ TIME(nlogk n), which is quasi-polynomial time.

Theorem 28.3

ISO ∈ IP.

Proof. We give a protocol for ISO. On input 〈A,B〉:

70

Rachel Wu 28 December 7, 2017

1. V : pick A or B at random and randomly permute. Send result C to prover
(repeat twice).

2. P : determine if C ≡ A or C ≡ B and report back to the verifier.

3. V : accept if both correct. Reject otherwise.

If A 6≡ B, then Pr {V ↔ P} = 1, since the honest prover will always obtain the
right answer. On the other hand, if A ≡ B, then for every P̃ , Pr {V ↔ P} ≤ 1/4,
within the bounds.

28.3 IP = PSPACE

Suppose we were to play a game of chess, and wanted to determine if white has
a winning strategy. For us, we could only walk down the computation tree. . .

Theorem 28.4

IP = PSPACE.

. . . But if we had a computationally unlimited prover, then we could determine
the answer without walking the exponentially-large tree. That’s cool!

We prove a slightly weaker result, since it’s easier.

Proposition 28.5

coNP ⊆ coNP.

Definition 28.6. #-SAT = {〈φ, k〉 | φ has exactly k satisfying assignments}.

#-SAT is coNP-hard since SAT ≤p #-SAT (test if there are 0 satisfying
assignments φ→ 〈φ, 0〉).

Given φ(x1, . . . , xm), we define

T (a1, . . . , ai) =
∑

ai+1,...,am∈{0,1}

φ(a1, . . . , am).

We preset the first i values and determine the number of satisfying assignments,
given the existing values. Note the following properties.

• T () with no presets is equal to the number of satisfying assignments.

• T (a1, . . . , am) = φ(a1, . . . , am).

• T (a1, . . . , ai) = T (a1, . . . , ai, 0) + T (a1, . . . , ai, 1).

Now we can provide the protocol for #-SAT. On input 〈φ, k〉:

1. P : send T (). V : verify that k = T ().

2. P : send T (0), T (1). V : verify that T () = T (0) + T (1).

3. P : send T (00), T (01), T (10), T (11). V : verify that T (0) = T (00) + T (01),
etc., and so on.

. . .

71

Rachel Wu 28 December 7, 2017

4. P : send T (a1, . . . , am) for each a1, . . . , am ∈ {0, 1}m. V : verify.

5. V : verify that T (a1, . . . , am) = φ(a1, . . . , am) for each a1, . . . , am ∈
{0, 1}m.

T ()

T (0) T (1)

T (00) T (01)

...

T (0, . . . , 0)

φ(0, . . . , 0)

A lie at the root propagates down all the way to the leaves, which the verifier
can catch on its own.

72

Rachel Wu 29 December 8, 2017

29 December 8, 2017

29.1 Final review

Let’s look at all the complexity classes.

solid line is ⊆, dashed line is (.

L

NL = coNL

P

coNP

NP

BPP

PSAT

coNPSAT

NPSAT

PSPACE = IP

EXPTIME

EXPSPACE

There are also many open problems. If your solution “solves” an open
problem, the solution if probably wrong.

P
?
= NP→ SAT

?
∈ P PSAT ?

= NPSAT

P
?
= NP ∩ coNP P

?
= PSPACE

BPP
?
= P L

?
= NL

NP
?
= coNP→ SAT

?
∈ coNP

We move on to techniques to show membership.

L • To show that A ∈ L, we provide a log-space Turing machine
for A, in which we can store pointers and counters.

• We can also show that A ⊆ B for B ∈ L.

NL • To show that A ∈ NL, we provide a log-space NTM for A or
A.

• We can reduce from PATH or BIPARTITE.

NP • To show that A ∈ NP, we provide a NTM for A.

• Provide a polynomial-length certificate for a verifier.

• Reduce from SAT, 3-SAT, etc.

Example 29.1

Let UNIQUE-SAT be the problem

UNIQUE-SAT = {φ | φ has exactly one satisfying assignment.}

Show that UNIQUE-SAT ∈ PSAT.

73

Rachel Wu 29 December 8, 2017

Query both assignments for each variable. Reject if both 0 and 1 satisfy
some xi.

Now we give recipes for showing completeness using reductions.

NL-complete • Show that A ∈ NL or A ∈ NL.

• Show that B ≤L A for NL-complete B, e.g. PATH, PATH,
ENFA, EQNFA, or strongly-connected subcomponents.

NP-complete • Show that A ∈ NP.

• Show that B ≤L A for NP-complete B, e.g. SAT, 3-SAT.

• For 3-SAT reduction, design gadgets for the variables of the
clauses and relate them to φ. Enforce consistency. Argue
that φ ∈ 3-SAT↔ w ∈ A.

coNP-complete • Show that A ∈ coNP.

• Show that B ≤L A for coNP-complete B, e.g. EQBP.

PSPACE-complete • Show that A ∈ PSPACE.

• Give a direct reduction, or show that B ≤L A for NP-complete
B, e.g. TQBF, ALBA, GG, EQREX.

• For

EXPSPACE-complete • Show that A ∈ EXPSPACE.

• Show that B ≤L A for NP-complete B, e.g. EQREX↑.

Example 29.2

Show that 2-SAT is NL-hard.

Proof. We show that PATH ≤L 2-SAT.

For edge (x, y) ∈ G, we add clause (x ∨ y). Since we travel away from s
and towards t, we map s → s and t → t. If there exists a s t path, then
all variables along that path are forced to be true until t, at which we reach
contradicting assignments for t. By similar argument, if there does not exists a
s t path, then there is a satisfying assignment.

74

	September 7, 2017
	Administrivia
	Finite automata
	Regular languages

	September 8, 2017
	Practice problems

	September 12, 2017
	Nondeterministic finite automata
	Regular expressions to finite automata

	September 14, 2017
	Finite automata to regular expressions
	Non-regularity
	Context-free grammars

	September 15, 2017
	Reversibility
	Practice problems

	September 19, 2017
	Context free languages
	Pushdown automata
	Context free grammar to pushdown automata

	September 21, 2017
	Non context-free languages
	Turing machines

	September 22, 2017
	CFL closure under reversal
	Practice problems

	September 26, 2017
	Turing machine variants
	Church-Turing thesis

	September 28, 2017
	Decision problems
	Notes on problem set 2

	October 3, 2017
	Turing machine decidability
	Diagonalization method

	October 5, 2017
	Reducibility

	October 12, 2017
	Quiz tips
	Computation history method
	Post-Correspondence problem

	October 17, 2017
	Quiz tips, ctd.
	Undecidability, ctd.
	Recursion

	October 19, 2017
	Complexity

	October 24, 2017
	Nondeterministic complexity
	P vs. NP

	October 31, 2017
	Polynomial time reducibility

	November 2, 2017
	NP-completeness

	November 7, 2017
	Space complexity

	November 9, 2017
	Recursive PSPACE proofs

	November 14, 2017
	PSPACE-complete games
	Logarithmic space

	November 16, 2017
	NL-completeness
	NL = coNL

	November 17, 2017
	Practice problems

	November 28, 2017
	Hierarchy theorem
	Exponential space

	November 30, 2017
	Oracles
	Probabilistic complexity
	Branching programs

	December 1, 2017
	Review

	December 5, 2017
	Branching programs is BPP

	December 7, 2017
	Interactive proofs method
	Graph isomorphism
	IP = PSPACE

	December 8, 2017
	Final review

