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1 February 6, 2018

1.1 Administrivia

“For those of you who just came in, I said something really important
that you already missed—welcome to this class.”—vebrunel

So welcome to the class!

• 11 problem sets, with the lowest grade dropped (30% of grade)

• 2 midterm exams on March 15 and April 19, with lower grade dropped
(30% of grade)

• final exam (40% of grade)

1.2 Introduction

Suppose we want to estimate a parameter p associated with a coin, where p is
the proportion of the mass of tails side to heads. We flip the coin n times and
observe each outcome.

Formally, for i = 1, 2, . . . , n, let Hi = 1 if heads shows up and 0 otherwise.
The estimate of p is the average

H̃n =
1

n

n∑
i=1

Hi.

We assume that

• each Hi is a Bernoulli random variable with parameter p,

• and H1, . . . ,Hn are mutually independent.

Definition 1.1 (Population mean). The population mean µ for each random
variable Hi is its expected value E [Hi].

Note that not all random variables have means. For example the Cauchy
random variable

f(x) =
2

π

1

x2 + 1
, x ∈ R

has no mean because the integral∫
R
xf(x)dx

does not exist.

Theorem 1.2 (Law of large numbers)

For i.i.d. random variables X1, . . . , Xn,

X̃n =
1

n

n∑
i=1

Xi → µ

as n approaches ∞.

1
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Theorem 1.3 (Central limit theorem)

For i.i.d. random variables X1, . . . , Xn,

√
n
X̃n − µ
σ

→ N (0, 1)

as n approaches ∞.

Equivalently, we can write

√
n(X̃n − µ)→ N (0, σ2) (1.1)

since multiplying a random variable by c increases its variance by c2.

We can apply these laws to our Bernoulli random variables, for which
σ =

√
p(1− p). Let z ∼ N (0, 1). Then

Pr

{∣∣∣∣∣√n H̃n − p√
p(1− p)

∣∣∣∣∣ ≤ t
}
→ Pr {|z| ≤ t} .

That is, the probability distributions converge point wise. With this inequality,
we can bound p as ∣∣∣∣∣√n H̃n − p√

p(1− p)

∣∣∣∣∣ ≤ t
−t ≤

√
n

H̃n − p√
p(1− p)

≤ t

H̃n −
t
√
p(1− p)√
n

≤ p ≤ H̃n +
t
√
p(1− p)√
n

So p is contained within the interval

It =

[
H̃n −

t
√
p(1− p)√
n

, H̃n +
t
√
p(1− p)√
n

]
We take t = 1.96, so

Pr {|z| ≤ 1.96} = 0.95,

or
Pr {p ∈ I1.96} ≈ 95%.

But we are sad! Because I depends on the true value of p! So we substitute p
with H̃n, to obtain

Ĩt =

H̃n −
t
√
H̃n(1− H̃n)
√
n

, H̃n +
t
√
H̃n(1− H̃n)
√
n


The above is valid since

It ⊂
[
H̃n −

t

2
√
n
, H̃n +

t

2
√
n

]
because

√
p(1− p) ≤ 1/2 (think about this geometrically).

2
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2.1 Recitation 1

Recitations focus on problem solving. Without further ado, consider a sequence
of i.i.d. Bernoulli random variables X1, X2, . . . , Xn with parameter p.

1. Show that
√
n(x̃n − p)/(

√
p(1− p)) d

= z.

Using the central limit theorem, E [X1] = p and VarX1 = p(1− p).

2. Prove that ∀t > 0,

Pr {|z| ≤ t} = 2 Pr {z ≤ t} − 1.

Proof. We can expand Pr {|z| ≤ t} as

Pr {|z| ≤ t} = Pr {−t ≤ z ≤ t}

= Pr {z ≤ t} − Pr {z < −t}

= Pr {z ≤ t} − Pr {−z < −t} , since z = −z for Gaussian z

= Pr {z ≤ t} − Pr {z > t}

= Pr {z ≤ t} − (1− Pr {z ≤ t})

= 2 Pr {z ≤ t} − 1

3. For t > 0, let

It =

[
X̃n −

t
√
p(1− p)√
n

, X̃n +
t
√
p(1− p)√
n

]
.

Prove that as n→∞,

Pr {It 3 p} → 2Φ(t)− 1

where Φ is the cdf of z.

Proof.

Pr {It 3 p} = Pr

√n
∣∣∣X̃n − t

∣∣∣√
p(1− p)

≤ t


= Pr

{∣∣∣∣∣√n X̃n − p√
p(1− p)

∣∣∣∣∣ ≤ t
}

3
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since X̃n−p√
p(1−p)

→ z. So

Pr

{
√
n

X̃n − p√
p(1− p)

≤ t

}
→ Pr {|z| ≤ t}

= 2 Pr {z ≤ t} − 1

= 2Φ(t)− 1

4. Solve for 2Φ(t0)− 1 = 0.95. Using the table of Gaussian distributions, we
find that t ≈ 1.96.

5. Prove that for all p, p(1− p) ≤ 1/4.

0 ≤ (2p− 1)2

0 ≤ 4p2 − 4p+ 1

p(1− p) ≤ 1/4

6. Find an interval It centered around X̃n that does not depend on p but
still contains p with probability ≥ 0.95.

We can plug in 1/4 for the p(1− p) term, and using t = 1.98, we obtain

It0 ≤

[
X̃n −

t0 ·
√

0.25√
n

,Xn +
t0 ·
√

0.25√
n

]

=

[
X̃n −

0.98√
n
,Xn +

0.98√
n

]
.

What if we know beforehand that p ≤ 0.3?

We now bound p(1− p) ≤ 0.3 · 0.7 = 0.21. Now we obtain

It0 ≤

[
X̃n −

t0 ·
√

0.21√
n

,Xn +
t0 ·
√

0.21√
n

]
.

7. Prove that the statement It 3 p is equivalent to a polynomial inequality
of degree 2 in p.

We just say that

√
n
∣∣∣X̃n − p

∣∣∣ ≤ t0√p(1− p)
n(X̃n − p)2 ≤ t20p(1− p)

(n+ t20)p2 − (2nX̃n + t20)p+ nX̃n
2 ≤ 0.

We find that the roots of this polynomial are

2nX̃n + t20 ±
√
t40 + 4t20 + X̃n(1− X̃n)

2n+ 2t20
,

which bound p.

8. Substitute p with our approximation.

4
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3.1 Convergence

Let Tn for n ≥ 1 be a sequence of random variables and T a random variable.

Definition 3.1. We say a sequence converges in probability, Tn
P−→

n→∞
T if

and only if
Pr {|Tn − T | ≥ ε} → 0,∀ε > 0.

In the law of large numbers, X̃n → µ.

Definition 3.2. We say a sequence converges in distribution, Tn
d−→

n→∞
T if

and only if
Pr {Tn ≤ x} → Pr {T ≤ x}

for all x ∈ R at which the cdf of T is continuous.

Equivalent definitions include

1. E [f(Tn)] →
n→∞

E [f(T )]

2. moment generating function converges point wise ∀x

That is, the cdf of Tn converges to the cdf of T wherever it is continuous. In

the central limit theorem,
√
n(X̃n − µ)/σ

d−→
n→∞

z, where z ∼ N (0, 1).

Example 3.3

Suppose we have X1, . . . , Xn uniformly distributed random variables on

the interval [0, 1]. Then maxiXi
P−→

n→∞
1. Exercise to prove this.

The quantity n(1 − maxiXi)
d−→

n→∞
z, where z ∼ Exp(1), or Pr {z ≤ x} =

1− e−x,∀x ≥ 0.

Definition 3.4. We say that a sequence converges in Lp for p ≥ 1

Tn
Lp−→

n→∞
T iff E [|Tn − T |p] −→

n→∞
0.

Definition 3.5. We say that a sequence converges in almost surely

Tn
a.s.−→
n→∞

T iff Pr
{
Tn −→

n→∞
T
}

= 1

Proposition 3.6

X̃n
L2

−→
n→∞

µ

5
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Proof. We show that

E
[∣∣∣X̃n − µ

∣∣∣2] −→
n→∞

0.

We know that E
[
X̃n

]
= µ. By definition, the left hand side is Var X̃n, which is

expanded as

Var
1

n

∑
i

Xi =
1

n2
Var

∑
i

Xi.

Since the Xi are independent,

1

n2
Var

∑
i

Xi =
1

n2

∑
i

VarXi =
1

n2

∑
i

σ2 =
σ2

n
→ 0.

“Markov’s inequality is just for your culture. . . It looks like ehhh but
we don’t care.”—vebrunel

What wimps.

Theorem 3.7 (Markov’s inequality)

Let z be a positive random variable that has an expectation. Then for all
x > 0,

Pr {z > x} ≤ E [z]

x

Proof. Observe that
x1z>x ≤ z.

If z > x, then this event is satisfied, and the left hand side is x. Otherwise, the
left hand side is 0. We take the expected value of both sides,

x · E [1z>x] ≤ E [z] .

The expectation of the indicator is a probability,

x · Pr {z > x} ≤ E [z]

Pr {z > x} ≤ E [z]

x
.

Recall theorem 1.2 from the previous lecture, or the law of large numbers,
restated below for clarity.

Theorem

For i.i.d. random variables X1, . . . , Xn,

X̃n =
1

n

n∑
i=1

Xi → µ

as n approaches ∞.

6
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Proof. We show that for all ε > 0,

Pr
{∣∣Xn − µ

∣∣ > 0
}
−→
n→∞

0.

Earlier we have shown that this quantity converges in L2. Note that Pr
{∣∣Xn − µ

∣∣ > 0
}

is equivalent to Pr
{

(Xn − µ)2 ≥ ε2
}

. Using Markov’s inequality,

Pr
{

(Xn − µ)2 ≥ ε2
}
≤

E
[
(Xn − µ)2

]
ε2

.

Example 3.8

Let X be a Bernoulli random variable. Then

X/n
a.s.−→
n→∞

0.

Example 3.9

Let X1, . . . , Xn be Bernoulli random variables with p = 1/2. Then

Xn/n
a.s.−→
n→∞

0

since 0 ≤ Xn/n ≤ 1/n.

These ideas extend to multivariate random variables with the Euclidean
norm instead of absolute value.

1. Convergence a.s. implies convergence in probability, and the two limits
are equal a.s.

2. Convergence in Lp implies convergence in Lq for all q ≤ p and in probability,
with equivalent limits a.s.

3. If f is a continuous function, convergences Tn → T imply f(Tn)→ f(T ).

The last fact motivates

Pr

{∣∣∣∣√nXn − µ
σ

∣∣∣∣ ≤ t}→ Pr {|z| ≤ t} .

“Is it accepted in the US to say ‘pain in the ass’?”—vebrunel

7



Rachel Wu 4 February 13, 2018

4 February 13, 2018

Recall that last class we discussed the various forms of convergence.

Proposition 4.1

If Xn
P−→

n→∞
p, then Xn is known as a consistent estimator for p. For any

continuous f , f(Xn)
P−→

n→∞
f(p).

Example 4.2

Suppose we would like to estimate the variance p(1−p). If Xn
P−→

n→∞
p, then

Xn(1−Xn) is a consistent estimator for the variance.

One can add and multiply limits almost surely and in probability. That is,

if Un
P−→

n→∞
U and Vn

P−→
n→∞

V , then

• Un + Vn
P−→

n→∞
U + V

• UnVn
P−→

n→∞
UV

• and if V 6= 0 a.s., then Un/Vn
P−→

n→∞
U/V .

The same holds for
a.s.−→. However, these rules do not apply to convergence in

distribution unless the pair (Un, Vn) convergences in distribution to (U, V ).

Example 4.3

Let Tn be a sequence such that T
d−→

n→∞
z, where z is a standard Gaussian

variable. Now consider −Tn. If we take f(x) = −x, then

f(Tn)
d−→

n→∞
f(z)

−Tn
d−→

n→∞
−z

−Tn
d−→

n→∞
z

since z = −z. Note here that we cannot say that Tn − Tn
d−→

n→∞
2z because

0 is a deterministic constant.

Note that (U, V ) is the joint distribution. It may be possible that the
marginals of Un, Vn converge to the marginals of U, V , but the joint distribution
may not converge.

8
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Example 4.4

We observe that the times between arrivals at a call center is T1, . . . , Tn.
We may assume that these times are mutually independent, and

T1, . . . , Tn ∼ Exponential(λ).

We may want to estimate λ.

Mutual independence is reasonable because customers are unrelated to
each other; they do not coordinate to DDoS the call center at the same time.
Furthermore, exponential variables exhibit lack of memory, such that

Pr {T1 > t+ s | T1 > t} = Pr {T1 > s} .

Suppose the density of T1 is

f(t) = λe−λt

so E [T1] = 1/λ. Thus, a reasonable estimate of 1/λ is Tn = 1
n

∑
i Ti. By the

law of large numbers, Tn → E [T1] = 1/λ, so

1

Tn

P−→
n→∞

λ.

4.1 The Delta method

We can use the central limit theorem to provide bounds on this estimate.

√
n

(
Tn −

1

λ

)
d−→

n→∞
N (0, λ−2)

However, we care about λ, not 1/λ. Let f(x) = 1/x and θ = 1/λ. From calculus,

f(Tn)− f(θ) ≈ f ′(θ)(Tn − θ)

or the first order approximation. In context,

√
n(f(Tn)− f ′(θ)) ≈ f(θ)

√
n(Tn − θ)

d−→
n→∞

z

where z ∼ N (0, 1/λ2). So

f ′(θ)z ∼ N
(

0, f ′(θ)2 1

λ2

)
.

Definition 4.5. Let (Zn)n≥1 be a sequence of random variables that satisfies

√
n(Zn − θ)

d−→
n→∞

N (0, σ2).

Then Zn is asymptotically normal around θ with asymptotic variance σ2.

Note 4.6. The asymptotic variance should be some function of θ that does not
depend on n and is not a random variable.

9
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Theorem 4.7

Let g : R → R be continuously differentiable around the point θ. Then
g(Zn) is also asymptotically normal.

√
n(g(Zn)− g(θ))

d−→
n→∞

N (0, g′(θ)2σ2).

There are several implications.

√
n(λ̂− λ)

d−→
n→∞

N (0, λ2)

If we rearrange terms, √
n(λ̂− λ)

λ

d−→
n→∞

z

where z ∼ N (0, 1). Let α ∈ (0, 1). Now we want to find an interval I that only
depends on T1, . . . , Tn such that I 3 λ with probability approaching 1− α for n
sufficiently large.

Since absolute value is a continuous function, ∀t ≥ 0,

Pr

{∣∣∣∣∣√nλ̂− λλ
∣∣∣∣∣ ≤ t

}
−→
n→∞

Pr {|z| < t}

Solving for λ,

Pr {Idumb 3 λ} = Pr

{
λ̂− λt√

n
≤ λ ≤ λ̂+

λt√
n

}
when Idumb = [λ̂− λt√

n
, λ̂+ λt√

n
]

How do we choose t? Well Pr {|z| ≤ t} = 1−α. Solving, 1−α = 1−2(1−Φ(t)),
so Φ(t) = 1− α/2. So take t = q1−α/2, where q is the quantile of N (0, 1).

But recall! Idumb still contains λ!

1. We can write that λ 3 Idumb and solve the inequalities.

2. We can also substitute λ with λ̂.

We prove that the latter works. We need to show that

√
n
λ̂− λ
λ̂

d−→
n→∞

z

where the denominator gave us the original annoying λ. We know that λ/λ̂→ 1,

so if we multiply the original expression by this term, we have our λ̂!

10
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Theorem 4.8 (Slutsky’s theorem)

Let Xn, Yn be two sequences of random variables such that Xn
d−→

n→∞

X,Yn
P−→

n→∞
c, where X is a random variable and c ∈ R. Then

(Xn, Yn)
d−→

n→∞
(X, c).

In particular,

Xn + Yn
d−→

n→∞
X + c

XnYn
d−→

n→∞
cX

This is where the 1 works in.

11
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5.1 Inference

Often, we have a lot of data and we want to learn something from them.

Suppose we know how the data are distributed, but we do not know the
exact parameters of those distributions. We may want to infer parameters from
our observations.

Example 5.1

We know that arrival time at a call center is exponentially distributed.
Given arrival time data, observed over the course of a week, how is arrival
time distributed?

This question relies on the strong assumption that X1, . . . , Xn are exponen-
tial, and its answer is simple: estimate λ.

A harder problem would be to estimate the distribution of X. Is it Poisson
distributed? Exponential? Gaussian? This “testing” problem falls under
non-parametric inference. Non-parametric estimation also includes density
estimation, which is a really hard problem (we’ll talk about it in a month!)

Since it’s only the second week, we’ll focus on the easy problem today. We
assume a parametric model and do parametric inference.

• Estimation is a subset of inference. We can assume a Gaussian and
estimate the mean and variance.

• Hypothesis testing is another type of inference. This includes answering a
decision problem: is the mean positive?

• Confidence intervals are yet another type. What is a 95% interval that
contains the true mean?

5.2 Parametric inference

Definition 5.2. Let the observed outcome of a statistical experiment be a
sample X1, . . . , Xn of i.i.d. random variables in space E ⊆ R. Let P be their
common distribution. A statistical model is a pair (E,Pθ∈Θ) where

• E is the sample space,

• P is the family of probability distributions on E, and

• Θ is the parameter set.

We assume P = Pθ for some θ ∈ Θ.

If the last statement does not hold, the statistical model is misspecified.

12
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Example 5.3

Here are some sample statistical models.

• For n Bernoulli trials:(
{0, 1} ,Bernoulli(p)p∈{0,1}

)
.

• If X1, . . . , Xn
i.i.d∼ ε(λ), for some unknown λ > 0:

({0,∞} , ε(λ)λ>0) .

• If X1, . . . , Xn
i.i.d∼ N (µ, σ2), for some unknown µ ∈ R and σ2 > 0:(
{0,∞} ,N (µ, σ2)(µ,σ2)∈R×(0,∞)

)
.

We introduce standard notation for statistical models.

• We assume that the model is well-specified. That is, P = Pθ for some
θ ∈ Θ.

• We denote the expectation operator association with Pθ as Eθ.

• θ is known as the unknown true parameter.

In this class, we assume that Θ ⊆ Rd.

“Let us agree that σ2 is one symbol. It’s not a Greek letter, it’s
French. It’s written as sigmasquared.”—vebrunel

Definition 5.4. The parameter θ is identified iff the map θ ∈ Θ 7→ Pθ is
injective. That is,

θ 6= θ′ ⇒ Pθ 6= Pθ′ .

Suppose our model is(
{0, 1} ,Bernoulli

(
Φ(
µ

σ
)
)

(µ,σ2)∈R×(0,∞)

)
.

Then we cannot identify the values of µ, σ2 from this model. That is because
multiple settings of µ, σ2 result in the same distribution.

Definition 5.5. A statistic is a measurable function of the sample.

Definition 5.6. A estimator of θ is any statistic whose expression does not
depend on θ.

Definition 5.7. An estimator θ̂n of θ is consistent iff

θ̂n
P−→

n→∞
θ

with respect to Pθ.

13
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Definition 5.8. The bias of an estimator θ̂n is

Eθ[θ̂n]− θ.

Definition 5.9. The risk (or quadratic risk) of an estimator θ̂n is

Eθ
[∣∣∣θ̂n − θ∣∣∣2] .

It is not necessarily true that an unbiased estimator is consistent. For
example, X1 is not biased, but it is not consistent.

Theorem 5.10 (Bias-variance decomposition)

If Θ ⊆ R, then quadratic risk is bias2 + variance.

Proof. We expand the risk.

Eθ
[∣∣∣θ̂n − θ∣∣∣2] = Eθ

[∣∣∣θ̂n − En[θ̂n] + Eθ[θ̂n]− θ
∣∣∣2]

= Eθ
[
(θ̂n − Eθ(θ̂n)2

]
+ 0 + (Eθ[θ̂n]− θ)2

= Var θ̂N + bias2

14
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The problem sets have been graded, and the professor will have them at office
hours tomorrow.

“I know for some people in the room, handwriting is a big problem,
but please make an effort—just for your name! Your name!—veb

6.1 Confidence intervals

Let E, (Prθ)θ∈Θ be a statistical model based on observations X1, . . . , Xn and
assume Θ ⊆ R.

Definition 6.1. Let α ∈ (0, 1). A confidence interval of level α for θ is any
random interval I whose boundaries do not depend on θ and

Pr {I 3 θ} ≥ 1− α,∀θ ∈ Θ.

A confidence interval of asymptotic level α is an interval such that

lim
n→∞

Pr {I 3 θ} ≥ 1− α,∀θ ∈ Θ.

Question 6.2. How big of n is big enough? In most models we care about,
n = 30 is as good as n→ ∞ in practice.

Example 6.3

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2).

First, assume that σ2 is known. Since Xi are Gaussian distributed,

√
n
Xn − µ
σ

∼ N (0, 1).

Note that we do not require n→∞, and we do not use the central limit theorem.
So for z ∼ N (0, 1),

Pr

{√
n
Xn − µ
σ

≤ t
}

= Pr {|z| ≤ t} = 2 Pr {z ≤ t} − 1

= Pr

{[
Xn −

tσ√
n
,Xn +

tσ√
n

]
3 p
}

Interval It contains p with probability 2φ(t)−1. We take t such that 2φ(t)−1 =
1− α, so

φ(t) = 1− α2, t = φ−1
(

1− α

2

)
= q1−α/2.

Now suppose σ2 is not known. Recall that

Var(X) = E
[
X2
]
− E [X]

2
= E [E − E [X]]

2
.
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Let σ̂2 be the sample variance

σ̂2 =
1

n

∑
i

X2
i −

(
1

n

∑
i

Xi

)2

=
1

n

∑
i

(Xi −Xi)
2 = X2

n − (Xn)2.

We show that σ̂2 is a consistent estimator of σ2. By the law of large numbers,

1

n

∑
i

X2
i

P−→
n→∞

E
[
X2

1

]
(

1

n

∑
i

Xi

)2

P−→
n→∞

E [X1]
2

Subtracting the two lines, we find that

σ̂2 P−→
n→∞

E
[
X2
i

]
− E [Xi]

2
= σ2.

However. this is a biased estimator. If we replace n with n − 1, we have the
bias-corrected sample variance. Let

J =

[
Xn −

tσ̂√
n
,Xn +

tσ̂√
n

]
where σ̂ =

√
σ̂2 and t = q1−α/2. So we can say that

Pr {J 3 p} −→
n→∞

1− α

a la Slutsky’s theorem,

√
n
Xn − µ
σ̂

=
√
n
Xn − µ
σ

· σ
σ̂
.

“You’re losing 12 precious seconds of your life, I know I know.”—veb

Example 6.4

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, 1). What is an upper bound for µ?

Just take t = qα, where t is the threshold.

6.2 Covariance review

Let

σ̂2 = g(
1

n

∑
i

Xi,
1

n

∑
i

X2
i ).

The following pair should converge to(
1
n

∑
iXi

1
n

∑
iX

2
i

)
=

1

n

∑
i

(
Xi

X2
i

)
= N (0,Σ)

where Σ is the covariance matrix.
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Example 6.5

If X1, . . . , Xn
i.i.d.∼ N (θ, 1), then Xn ∼ N (θ, 1/n). So

Pr
{
Xn ≤ 0

}
= Pr

{√
n(Xn − θ) ≤ −

√
nθ
}

= Φ(−
√
nθ).

17
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7.1 Multivariate extensions

Theorem 7.1 (Multivariate CLT)

Let X1, . . . , Xn ∈ Rd i.i.d.∼ N (µ,Σ) where µ ∈ Rd,Σ ∈ Rd×d. Then

√
n(Xn − µ)

d−→
n→∞

N (0,Σ).

We know that by CLT,

√
n(Xn − E [X1])

d−→
n→∞

N (0,VarX1).

We rewrite the equation in terms of z,

√
n(Xn − E

[
X2

1

]
)

d−→
n→∞

z

where z ∼ N (0,Σ). By the Delta method,

√
n(Xn − E [X1]

2
)

d−→
n→∞

z′

where z′ ∼ N (0, 4E [X1]
2

VarX1).

Let U, V be two random variables, and let Y =
(
U V

)T
. Then

E [Y ] =

(
E [U ]
E [V ]

)
and

VarY =

(
VarU cov (U, V )

cov (V,U) VarV

)
.5

Remark 7.2. Note that we often say σ =
√
σ2 is the standard deviation. In

multiple dimensions, σ doesn’t make sense, so the more general quantity to
report is variance.

Example 7.3

Show that
(
Xn X

2

n

)T
is asymptotically normal.

We expand as (
Xn

X
2

n

)
=

(
1
n

∑
iXi

1
n

∑
iX

2
i

)
=

1

n
·
( ∑

iXi∑
iX

2
i

)
=

1

n
·
∑
i

Yi

where Yi =
(
Xi X2

i

)T
.

5Recall that cov (X,Y ) = E [XY ]− E [X]E [Y ] = E [(X − E [X]) · (Y − E [Y ])].
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By the CLT, √
n(Y n − E [Y1])

d−→
n→∞

N2(0,Σ).

where Σ = VarY1. We take g(u, v) = v − u2, so g(Y n) = X2
n −X

2

n = σ̂2. By
the delta method,

√
n
(
g(Y n)− g(E [Y1])

) d−→
n→∞

N
(
0,∇g(E [Y1])T · Σ · ∇g(E [Y1])

)

Theorem 7.4 (Multivariate Delta method)

Let (Tn)n≥1 ∈ Rd be a sequence of random vectors that satisfies

√
n(Tn − θ)

d−→
n→∞

Nd(0,Σ)

for some θ ∈ Rd and some symmetric positive semidefinite matrix Σ ∈ Rd×d.
Let g : Rd → Rk, k ≥ 1 be continuously differentiable at θ. Then

√
n(g(Tn)− g(θ))

d−→
n→∞

N
(
0,∇g(θ)Tσ∇g(θ)

)
.

7.2 Likelihood functions

Let X1 have a given density fθ for some unknown θ ∈ Θ. How should we
estimate θ? We should choose the density that maximizes the likelihood of X1.

Example 7.5

Let X1 ∼ ε(λ). How do we select λ?

Suppose gλ(x) = λe−λx, for x ≥ 0. Let gλ(X1) = L(λ), where we fix X1.
Then the maximum likelihood estimate for λ is

λ∗ = arg max
λ

L(λ).

We write
L′(λ) = e−λX1(1− λX1) = 0

and find that λ∗ = 1/X1. We check that this point is indeed a maximum.

More generally, letX1, . . . , Xn
i.i.d.∼ fθ. Then the joint density is fθ(x1), . . . , fθ(xn),

which we evaluate at x1 = X1, etc.

Remark 7.6. It is standard to use upper case for random variables X and lower
case for parameters x.

Definition 7.7. Let (E, (Pθ)θ∈Θ be a statistical model associated with a sample
of i.i.d. random variables X1, . . . , Xn. Assume that all the Pθ have a density fθ
w.r.t. the Lebesgue measure (θ ∈ Θ).

The likelihood of the model is map L defined as:

Ln : En ×Θ→ R.
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8.1 Continuous likelihood

We continue our discussion of likelihood functions. Recall that if X1, . . . , Xn
i.i.d.∼

fθ, then
∏
i fθ(Xi) is the joint density.

Example 8.1

(x1, x2) has density given by

fθ(x1)fθ(x2),∀x1, x2 ∈ E.

Note 8.2. Distribution and density are not synonymous. Bernoulli distribution,
for instance.

Example 8.3

We have X1, . . . , X67
i.i.d.∼ ε(λ). At T = 500, we observe all the machines

and record their lifetimes. We observe Yi = min(Xi, 500), i = 1, . . . , 67.

The statistical model is
((0, 500],Pλ)

where Prλ is the distribution of min(X, 500) for any X ∼ ε(λ).

Example 8.4

Suppose X1, . . . , Xn
i.i.d.∼ ε(λ), λ ∈ (0, 3). Find the likelihood function?

The statistical model is (
(0,∞), {ε(λ)}λ∈(0,3)

)
.

Then the likelihood function is

Ln : (0,∞)n × (0, 3)→ R.

(x1, . . . , xn, λ) 7→
∏
i

λe−λxi = λne−λ
∑
i xi .

Example 8.5

Suppose x1, . . . , xn
i.i.d.∼ Uniform([0, θ]), θ > 0. Find the likelihood function?

The statistical model is(
[0,∞), {Uniform([0, θ])}θ>0

)
.

Note that [0, θ] cannot be the domain because we do not know θ. Thus, we
cannot define the sample space in terms of θ. If we know a priori that θ < c,
then we could write [0, c) instead.
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Then the likelihood function is

Ln : [0,∞)n × (0,∞)→ R.

(x1, . . . , xn, θ) 7→
∏
i

(1/θ)1xi∈[0,θ] = (1/θn)1maxi xi≤θ.

Example 8.6

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2). Find the likelihood function.

It is

Ln : Rn × (R× (0,∞))→ R.

(x1, . . . , xn, θ) 7→
∏
i

1
√

2πσ2
n exp

(
− 1

2σ2

∑
i

(xi − µ)2

)
.

8.2 Discrete likelihood

Definition 8.7. The likelihood of a discrete model is the map Lθ defined as

Ln : En ×Θ→ R
(x1, . . . , xn, θ) 7→ Pr

θ
(X1 = x1, . . . , Xn = xn).

Example 8.8

Suppose X1, . . . , Xn
i.i.d.∼ Poisson(λ), λ > 0. Find the likelihood function.

The statistical model is (
N, {Poisson(λ)}λ>0

)
.

The likelihood function is

Ln : Nn × (0,∞)→ R

(x1, . . . , xn, θ) 7→
∏
i

e−λ
λxi

xi!
= e−nλ

λ
∑
i xi∏
i xi!

.

Example 8.9

Suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(λ), λ > 0. Find the likelihood function.

The statistical model is(
N, {Bernoulli(p)}p∈(0,1)

)
.

The likelihood function is

Ln : {0, 1}n × (0, 1)→ R

(x1, . . . , xn, θ) 7→
∏
i

pxi(1− p)1−xi = p
∑
i xi(1− p)n−

∑
i xi .
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8.3 Maximum likelihood estimator

Definition 8.10. The maximum likelihood estimator of θ is defined as

θ̂MLE
n = arg max

θ∈Θ
Ln(X1, . . . , Xn, θ),

provided that it exists.

Remark 8.11. In practice, we use the log likelihood estimator

θ̂MLE
n = arg max

θ∈Θ
logLn(X1, . . . , Xn, θ).

Example 8.12

Suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(p), p ∈ (0, 1).

Recall that the likelihood function is

Ln : (x1, . . . , xn, θ) 7→ p
∑
i xi(1− p)n−

∑
i xi .

The MLE p̂MLE is the value of p ∈ (0, 1) that maximizes Ln(X1, . . . , Xn, p). In
this case, we find that p̂MLE = Xn.

“I know a lot of you in the physics department take the log of 0 and
call it −∞. We’re in the math department here, and we do not do
such horrible things.”—veb
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9.1 Fisher information

Recall that last class, we introduced maximum likelihood estimators. How do we
evaluate this estimator? Sometimes it might make intuitive sense, but intuition
may lead to useless, or even wrong results in mathematics.

Let us denote the log likelihood as

`(X, θ) = logL1(X, θ), θ ∈ Θ

where L1 represents the likelihood for a single sample (n = 1). We assume that
` is twice differentiable.

Definition 9.1. The Fisher information of the statistical model is defined
as

I(θ) = −Eθ
[
∂2`

∂θ∂θ′
(X, θ)

]
where θ′ represents the transpose.

Note 9.2. If θ ∈ Rd, then the Fisher information is a d by d matrix.

Example 9.3

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p), p ∈ (0, 1). Compute the Fisher informa-

tion.

The L1 likelihood is

L1 : {0, 1} × (0, 1)→ R
(x, p) 7→ px(1− p)1−x.

We can define `(X1, p) = logL1(X1, p) since our parameter space is an open
interval,6

`(X1, p) = X1 log p+ (1−X1) log(1− p).

The second-order derivative is

∂2`

∂p2
(X1, p) =

∂`

∂p

X1

p
− 1−X1

1− p

= −X1

p2
− 1−X1

(1− p)2
.

Now we take the expectation,

−Ep
[
∂2`

∂p2
(X1, p)

]
=

1

p
+

1

1− p
=

1

p(1− p)
.

Example 9.4

Suppose X1, . . . , Xn
i.i.d.∼ ε(λ), λ > 0. Compute the Fisher information.

6 It is very important that the parameter space is an open interval!
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The L1 likelihood is

L1 : (0,∞)× (0,∞)→ R
(x, λ) 7→ λe−λx.

Since e−λx is always positive,

`(X1, λ) = log λ− λX1

and we find that
∂2`

∂λ2
(X1, λ) = − 1

λ2
.

So the Fisher information is

I(λ) = −Eλ
[
− 1

λ2

]
=

1

λ2
.

Example 9.5

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2). Compute the Fisher information.

The L1 likelihood is

L1 : R× R× (0,∞)→ R

(x, λ, σ2) 7→ 1√
2πσ2

exp(− (x− µ)2

2σ2
).

The log likelihood is

`(X1, µ, σ
2) = −1

2
log(2πσ2)− 1

2σ2
(X1 − µ)2.

Since our parameter is two-dimensional, we compute the Hessian, whose entries
we bash out below.

∂2`

∂µ2
(X1, µ, σ

2) = − 1

σ2

∂`

∂(σ2)
(X1, µ, σ

2) = − 1

2σ2
+

1

2(σ2)2
(X1 − µ)2

∂2`

∂(σ2)2
(X1, µ, σ

2) =
1

2(σ2)2
− 1

(σ2)3
(X1 − µ)2

∂2`

∂µ∂(σ2)
(X1, µ, σ

2) = −X1 − µ
(σ2)2

Now we compute the expectations.

−Eµ,σ2

[
∂2`

∂µ2
(X1, µ, σ

2)

]
=

1

σ2

−Eµ,σ2

[
∂2`

∂(σ2)2
(X1, µ, σ

2)

]
= − 1

2σ4
+

1

σ6
· Eµ,σ2

[
(X1 − µ)2

]
=

1

2σ4

−Eµ,σ2

[
∂2`

∂µ∂(σ2)
(X1, µ, σ

2)

]
= 0

Finally, the Fisher information is

I(µ, σ2) =

(
1
σ2 0
0 1

2σ4

)
.
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9.2 Performance of MLE

We have good news! The MLE is both consistent and asymptotically normal.

Theorem 9.6

Let θ∗ ∈ Θ be the true parameter. Assume the following.

1. The model is identified.

2. ∀θ ∈ Θ, the support of Pθ does not depend on θ.

3. θ∗ is not on the boundary of Θ.

4. I(θ) is invertible in a neighborhood of θ∗.

5. A few more unmentioned.

Then θ̂MLE satisfies

θ̂MLE P−→
n→∞

θ∗ w.r.t. Pθ∗
√
n(θ̂MLE − θ∗) d−→

n→∞
N (0, I(θ∗)−1) w.r.t. Pθ∗ .

Generally, these conditions require that parameter space be open. Further
details are irrelevant to this class. Now we provide some notes on the conditions.

• Suppose we considered the support of Bernoulli(p), for p ∈ [0, 1]. Including
the boundaries, the support is

Support =


{0, 1} p ∈ (0, 1)

{0} p = 0

{1} p = 1.

Therefore, if we say that p ∈ [0, 1], then this theorem does not apply.

• Suppose we considered the support of Uniform(0, θ). The support is [0, θ],
while the domain is R, so we cannot apply the theorem here either.

Example 9.7

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2).

The maximum likelihood estimators are

µ̂ = Xn

σ̂2 =
1

n

∑
i

(Xi −Xn)2.

Then we know that

√
n

[(
µ̂
σ̂2

)
−
(

µ
σ2

)]
d−→

n→∞
N
((

0
0

)
,

(
σ2 0
0 2σ4

))
.
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10.1 Recitation 5

Consider a finite space E = {a1, a2, . . . , ar} of size r ≥ 2 and let X be a random
variable taking values in E. For j ∈ [r], let p∗j = Pr {X = aj}, where p∗j > 0,∀j.

Consider a sample of n i.i.d. copies X1, . . . , Xn of X. Based on this sample,
we would like to estimate the multivariate parameter p∗ = (p∗1, . . . , p

∗
r).

1. The parameter space is

Θ =

{
~p = (p1, . . . , pr) ∈ (0, 1)r |

∑
i

pi = 1

}
.

2. The likelihood is

Ln : En ×Θ→R

(x1, . . . , xn, ~p ) 7→
∏
i

Pr {Xi = xi}

=
∏
i

p
1xi=ai
1 . . . p

1xr=ar
r

= p
∑
i 1xi=a1

1 . . . p
∑
i 1xi=ar

r .

3. To compute the maximum likelihood estimator p̂, we use the method of
Lagrange multipliers7

L(~p, λ) = logLn(X1, . . . , Xn, ~p) + λ

(
−1 +

∑
i

pi

)
.

The first-order conditions say that

nj
pj

+ λ = 0,∀j,

so λ = −nj/pj . So we see that p̂j = nj/n.

A minor caveat is that we assume λ 6= 0, which assumes that nj > 0,∀j.
The TA will check with the professor on this.

4. We show that p̂ is asymptotically normal. Recall that

p̂j =
nj
n

=
1

n

∑
i

1xi=aj .

Let Yi be the vector of pj ’s. By the multivariate central limit theorem,

√
n(p̂− E [Yi])

d−→
n→∞

Nσ(0,Σ)

where E [Yi] = p, and Σ = Var(Yi), computed below.

The covariances are

E
[
1xi=aj1xi=ak

]
− E

[
1xi=aj

]
E [1xi=ak ] = −pjpk

7To maximize f subject to g = 0, we use L = f − λg.
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and the variances are Bernoulli variances, p(1 − p). So the covariance
matrix is

VarYi =


p1(1− p1) −p1p2 . . .
−p1p2 p2(1− p2) . . .
. . .
. . .

pr(1− pr)

 .

5. Σ is not invertible since it has a nontrivial kernel (vector of ones), so the
theorem for maximum likelihood cannot be applied here.
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11 March 8, 2018

11.1 Fisher information and MLE

First we make some remarks on supports. Recall that the support is a subset of
the sample space.

Example 11.1

Suppose we have variables Xi
i.i.d.∼ ε(λ). We may write the likelihood in two

ways, depending on the domain.

If we let E = R, that is, the sample space is the real line,

Ln : Rn × (0,∞)→ R

(x1, . . . , xn, λ) 7→
∏
i

λe−λxi1xi>0.

However, if we take E = (0,∞), then we redefine the likelihood with a different
domain, but may omit the indicator.

Ln : (0,∞)n × (0,∞)→ R

(x1, . . . , xn, λ) 7→
∏
i

λe−λxi .

We see here that if the support does not depend on Θ, we can change the domain
to match the support without changing the likelihood.

As a result, in the continuous case we may write

Ln : En ×Θ→ R

(x1, . . . , xn, θ) 7→
∏
i

fθ(xi)

since fθ(xi) > 0 by definition of support.

Proposition 11.2

I(θ) = Varθ(∇θ`(X, θ)).

That is, the Fisher information is equal to the covariance matrix of the
gradient of the log likelihood.

Proof. Without loss of generality (and with gain of clarity), suppose Θ ⊆ R.
Recall that

I(θ) = −Eθ
[
∂2 logL1

∂θ2
(x, θ)

]
.

Note that
∫
E
L1(x, θ)dx = 1,∀θ ∈ Θ, so

∂

∂θ

∫
E

L1(x, θ)dx =

∫
E

∂L1

∂θ
(x, θ)dx

=

∫
E

∂ logL1

∂θ
(x, θ)L1(x, θ)dx

= Eθ
[
∂ logL1

∂θ
(X1, θ)

]
= 0.
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So we have shown that Eθ
[
∂ logL1

∂θ (X1, θ)
]

= 0,∀θ. Now we differentiate again

with respect to θ to obtain∫
E

∂

∂θ

(
∂ logL1

∂θ
L1

)
(x, θ)dx =

∫
E

(
∂2 logL1

∂θ2
L1 +

∂ logL1

∂θ

∂L1

∂θ

)
(x, θ)dx

= Eθ
[
∂2 logL1

∂θ2
(X1, θ)

]
+ Eθ

[(
∂ logL1

∂θ
(X1, θ)

)2
]

= 0.

Therefore, we can say that

Eθ

[(
∂ logL1

∂θ
(X1, θ)

)2
]

= −Eθ
[
∂2 logL1

∂θ2
(X1, θ)

]
= −I(θ).

Since the random variable in the first term is centered, the expectation of its
square is its variance. Finally,

Var

[
∂ logL1

∂θ
(X1, θ)

]
= −I(θ).

“It’s a dummy variable. You can call it ‘computer’ or ‘bug’ but I
call it x because it sounds less silly”—veb

11.2 Limitations of MLE

There are some limitations to consider.

• Often, there is no closed form solution for the MLE. For example, consider

X1, . . . , Xn
i.i.d.∼ Cauchy(α),∀x ∈ R.

fθ =
1

π

1

(x− α)2 + 1

But there is no solution for the MLE.

• There are numerical methods, such as the Newton-Raphson algorithm and
expectation-maximization (EM). These don’t always work.

• The MLE is not always robust (e.g. contaminated samples, outliers).

11.3 Method of moments

We may consider complicated models in which the MLE has no closed form.
How can we provide consistent, asymptotically normal estimators? Let’s look at
some examples.

• X1, . . . , Xn
i.i.d.∼ Poisson(λ), λ > 0. Then λ̂ = Xn.

• X1, . . . , Xn
i.i.d.∼ ε(λ), λ > 0. Then λ̂ = 1/Xn.
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• X1, . . . , Xn
i.i.d.∼ N (µ, σ2). For a Gaussian, we need the first moment

E [X1] = µ and the second moment E
[
X2

1

]
= µ2 + σ2. Then

µ = E [X1]

σ2 = E
[
X2

1

]
− E [X1]

2
.

From these, we can craft estimators

µ̂ = Xn

σ̂2 = X2
n −X

2

n.

Note that if we convert all parameters into some expectation, then we can
provide consistent estimators by the law of large numbers.

Formally, let X1, . . . , Xn be an i.i.d. sample associated with statistical model
(E, (Pθ)θ∈Θ). We assume that E ⊆ R and θ ⊆ Rd, d ≥ 1.

Definition 11.3. A population moment is mk(θ) = Eθ
[
Xk

1

]
, 1 ≤ k ≤ d.

Definition 11.4. An empirical moment is

m̂k(θ) = Xk
n =

1

n
=
∑
i

Xk
i , 1 ≤ k ≤ d.

Let M be a vector of the first d moments,

M : Θ→ Rd

θ 7→ (m1(θ), . . . ,md(θ)).

If we assume that M is bijective, we can reconstruct θ as

θ = M−1(m1(θ), . . . ,md(θ)).

Definition 11.5. The moment estimator of θ is

θ̂MM
n = M−1(m̂1, . . . , m̂d)

provided that it exists.

Example 11.6

Suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(p), p ∈ (0, 1).

We compute the first moment Ep[X1] = p, so p = Ep[X1], so p̂ = Xn.
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12 March 14, 2018

Happy π day! Tomorrow is the exam, let’s do a lot of practice problems today.

12.1 Recitation 6

Let X1, . . . , Xn be i.i.d. random variables with density fθ given by

fθ(x) =


θ if − 1 ≤ x < 0

1− θ if 0 ≤ x ≤ 1

0 otherwise

where θ > 0 is unknown.

1. Plot the function f1/4.

1/4

3/4

•
• •

fθ is the density of Uniform([−1, 1]) for θ = 1/2.

2. The likelihood is

Ln : [−1, 1]n × (0, 1)→R

(x1, . . . , xn, θ) 7→
∏
i

fθ(xi)

=
∏
i

θ1xi<0(1− θ)1xi≥0 .

3. We find the MLE. From above,

Ln(x1, . . . , xn, θ) = θN−(1− θ)N+

where N− is the number of negative samples and N+ is the number of
positive samples. We maximize logLn,

logLn(x1, . . . , xn, θ) = log θN− + log(1− θ)N+

whose derivative is set to 0:

∂

∂θ
logLn(x1, . . . , xn, θ) =

N−
θ
− N+

1− θ
= 0.

So the MLE is equal to the proportion of negative numbers in the sample,

θ̂ =
N−
n
.

4. Using the central limit theorem, show that θ̂ is asymptotically normal.

We redefine

θ̂ =
N−
n

=
1

n

∑
i

1xi<0

as a sample average. Then by the central limit theorem,

√
n(θ̂ − E [1X1<0])

d−→
n→∞

N (0, θ(1− θ))

since the indicator is a Bernoulli with parameter θ.
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5. We find the Fisher information. By definition,

`(X1, θ) = 1X1<0 log θ + 1X1≥0(1− θ).

We take the second derivative,

∂2

∂θ2
`(X1, θ) =

−1X1<0

θ2
− 1X1≥0

(1− θ)2
.

Finally, we find the expectation,

−E
[
∂2

∂θ2
`(X1, θ)

]
=

1

θ
+

1

1− θ
=

1

θ(1− θ)
,

which is equal to the Fisher information.

This quantity is equal to the inverse of the asymptotic variance for the
MLE, found above.

6. The first moment is

E [X1] =

∫
R
xfθ(x)dx

= θ

∫ 0

−1

xdx+ (1− θ)
∫ 1

0

xdx

=
1

2
− θ

so θ = 1
2 − E [X1], and our estimator is θ̃ = 1

2 −Xn

7. We prove that θ̃ is asymptotically normal. By the central limit theorem,

√
n(Xn − E [X1])

d−→
n→∞

N (0,VarX1).

We calculated the expectation above, and the variance is

VarX1 = E
[
X2

1

]
− E [X1]

2
=

1

12
+ θ(1− θ).

So θ̂ has the smaller asymptotic variance.

8. For θ̂, the quadratic risk is

E
[
(θ̂ − θ)2

]
= Bias2(θ) + Var(θ)

= 0 +
1

n
· θ(1− θ)

since θ̂ converges to θ.

For θ̃, the quadratic risk is

E
[
(θ̃ − θ)2

]
= 0 +

1

n

(
1

12
+ θ(1− θ)

)
.

So the risk for θ̂ is smaller.
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9. Now we provide a confidence interval using θ̂.

√
n

θ̂ − θ√
θ(1− θ)

d−→
n→∞

N (0, 1).

Since θ̂(1− θ̂) d−→
n→∞

θ(1− θ), by Slutsky’s theorem,

√
n

θ̂ − θ√
θ̂(1− θ̂)

d−→
n→∞

N (0, 1).

So we provide a confidence interval

I = [xxx]
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13 March 20, 2018

The professor is sad that the graders are too nice, so he will randomly select 10
problem sets every week to grade by himself.

“Those who are selected will be unlucky, since the grades will be
very low—but the problem sets are worth 1, and the midterm is
worth 10!”—veb

We had an exam last Thursday and a snow day the previous Tuesday, so
now we return to our wonderful method of moments.

13.1 Method of moments theorem

Recall that the moment estimator is

θ̂ = M−1
(

( Xn X2
n . . . Xd

n )T
)
,

where M is an invertible function. By the central limit theorem, each moment
is asymptotically normal,

√
n
(
Xn −m1

) d−→
n→∞

N (0,VarX1)

√
n
(
X2
n −m2

)
d−→

n→∞
N (0,VarX2

1 )

...
√
n
(
Xd
n −md

)
d−→

n→∞
N (0,VarXd

1 ).

“I’m not asking you to know the central limit theorem perfectly. I’m
asking you to master it, which is even more. You must be able to
write these lines with your eyes closed.”—veb

However, it is insufficient to state that each of the moments is asymptotically
normal. Rather, we should use the multivariate central limit theorem,

√
n ·




Xn

X2
n

...

Xd
n

− E




X1

X2
1

...
Xd

1



 d−→

n→∞
N
(
~0,Σ

)

where Σ is the covariance matrix Σ = Var( Xn X2
n . . . Xd

n )T with entries

Σi,j = cov
(
Xi

1, X
j
1

)
= E

[
Xi+j

1

]
− E

[
Xi

1

]
E
[
Xj

1

]
.

Now we can use the multivariate delta method to obtain our theorem.
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Theorem 13.1

Let θ̂MM
n be the estimator obtained by the method of moments. Then

√
n
(
θ̂MM
n − θ

)
d−→

n→∞
N (0,Γ(θ))

where

Γ(θ) =

[
∂M−1

∂θ
M(θ)

]T
Σ(θ)

[
∂M−1

∂θ
M(θ)

]
.

13.2 Generic method of moments

Unfortunately, the method of moments does not always for a simple reason: M
may not always have an inverse.

Example 13.2

Let X1, . . . , Xn
i.i.d.∼ fθ(x) where

fθ(x) =
1

2

(
1√
2π

exp(−(x− θ)2/2) +
1√
2π

exp(−(x+ θ)2/2)

)

This is a mixture of two Gaussians.

First, we might want to find the MLE, but will will quickly realize that the
likelihood is disgusting. Then, we will try for the method of moments, so we
will compute the first moment (since there is only one parameter θ). However,
the first moment is 0! That is totally not bijective.

Instead we can use the second moment,

E
[
X2

1

]
= θ2 + 1,

so we may estimate that θ̂ =

√
X2
n − 1.

Example 13.3

Suppose we want to determine the distribution of eye colors in Boston, and
our sample space is

Xi ∈ {blue, green,brown} .

If X1, . . . , Xn are iid, then we would like to estimate the probability of each
eye color.

If we use the old method of moments, we write the first four moments. . .

E [X1] =

E
[
X2

1

]
= . . .
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but wait, X1 is a color. Can we square a color? How about no. Instead, let’s
look at these friendly moments.

E [1Xi=blue] = pblue

E [1Xi=green] = pgreen

E [1Xi=brown] = pbrown

Then our estimators are very intuitive!

p̂blue =
1

n

∑
i

1Xi=blue =
# blue

n

p̂green =
1

n

∑
i

1Xi=green =
# green

n

p̂brown =
1

n

∑
i

1Xi=brown =
# brown

n

Note 13.4. The estimators obtained by the method of moments are often
multidimensional, so we cannot apply d separate central limit theorems to show
that the estimator is asymptotically normal; we should apply the multivariate
central limit theorem.

More generally, let g1, . . . , gd : E → R be some functions, chosen for conve-
nience.8 Let

mk(θ) = Eθ [gk(X)] ,∀k = 1, . . . , d

Σ(θ) = Var(g1(X1), g2(X1), . . . , gd(X1))

Then [TODO]

Compared to the moment estimator, the MLE is often more accurate, but it
may also be intractable. Therefore, each has tradeoffs.

13.3 M-estimators

Let X1, . . . , Xn be iid for some unknown distribution P in some sample space
E ⊆ Rd, d ≥ 1. We need not assume a statistical model. Suppose we want to
estimate some parameter µ∗ associated with P (e.g. mean, variance, etc.).

• The mean and variance are easy. We just take the sample mean or variance,
and we can use the central limit theorem to show that they are consistent.

• However, what if we wanted to estimate the median? We could consider
the sample median, but it’s a bit harder to show consistency.

In general, we want to find a function ρ : E ×M→ R, where M is the set
of all possible values for the known µ∗, such that

Q(µ) := E [ρ(X1, µ)]

achieves its minimum at µ = µ∗.

8Previously, we let gk(x) = xk, but this need not be the case.
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Example 13.5

X1, . . . , Xn have mean µ.

We take ρ(x, µ) = (x− µ)2, and

Q(u) = E [ρ(X1, µ)] = E
[
(X1 − µ)2

]
= E

[
X2

1

]
− 2µE [X1] + µ2.

This is a parabola with its minimum at µ. We see that Q depends on an
expectation, but it’s very easy to estimate Q,

Q̂(µ) =
1

n

∑
i

ρ(Xi, µ)

which converges by the law of large numbers. As desired, the µ that minimizes
this function is the sample mean!9

If we instead take ρ(x, µ) = |x− µ|, then

Q(u) = E [ρ(X1, µ)] = E [|X1 − µ|] ,

which is minimized when µ is a median of X1.10

If we want to estimate the α-quantile instead, take ρ(x, µ) = Cα(x − µ),
where Cα is the check function

Cα =

{
−(1− α) if x < 0

αx if x ≥ 0.

9If we have d-dimensional vectors, then we replace this with the Euclidean norm, and the
estimator still converges to the mean.

10Medians are not always uniquely defined. Consider X1, . . . , Xn
i.i.d.∼ Bernoulli(1/2).
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14.1 Recitation 7

Let X1, . . . , Xn be iiid continuous random variables with density

fλ,θ(x) = Cxλ−1
10≤x≤θ

for all x ∈ R, where λ, θ > 0 are unknown parameters and C is some positive
constant.

1. Find the value of C. Proper densities must integrate to 1.∫ θ

0

Cxλ−1dx = 1

Cθλλ−1 = 1

C = λθ−λ

So our density is
fλ,θ(x) = λθ−λxλ−1

10≤x≤θ.

2. Is the parameter (λ, θ) identified?

• θ is the rightmost boundary of the support of fλ,θ.

• λ is also identified: consider f(θ). Then the density evaluates to λ/θ,
so we can find λ.

So the pair is identified.

3. Define the likelihood function.

Ln : [0,∞)n × (0,∞)2 → R

(x1, . . . , xn, (λ, θ)) 7→ λnθ−nλ

(∏
i

xi

)λ−1

1maxi xi≤θ,mini xi≥0

4. Compute the maximum likelihood estimator (λ̂, θ̂).

Upon inspection, we see that θ̂ = maxiXi (that’s how we showed that θ
is identified).

Without loss of generality, assume 0 ≤ xi ≤ θ,∀i. The density is positive
and continuous here, so

logLn(x1, . . . , xn, (λ, θ)) = n log λ− nλ log θ + (λ− 1)
∑
i

log xi.

The derivative with respect to λ is

∂

∂λ
logLn(x1, . . . , xn, (λ, θ)) = n/λ− n log θ +

∑
i

log xi.

When we set the derivative to 0,

λ̂ =

(
− 1

n

∑
i

log
x

maxi xi

)−1

.
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5. We observe that θ̂ is not asymptotically normal. Intuitively, this is because
θ̂ is biased. There’s a more mathy way the TA showed but I was busy
doing number 7 oops.

6. Show that λ̂ is asymptotically normal.

By the central limit theorem,

√
n

(∑
i

log
Xi

θ
− E

[∑
i

log
Xi

θ

])
d−→

n→∞
N (0, V ) .

Let Y =
∑
i logXi/θ. By lots of disgusting calculus,

E [Y ] = − 1

λ

E
[
Y 2
]

=
2

λ2

V =
1

λ2
.

Now we might not be too interested in an expression that depends on θ,
but we can express this in terms of θ̂ instead.

√
n

(∑
i

log
Xi

θ̂
−+

1

λ

)
=
√
n

(∑
i

log
Xi

θ
−+

1

λ

)
+
√
n log

θ

θ̂
.

Since θ̂
P−→

n→∞
θ, we know that log θ/θ̂

P−→
n→∞

0, so by Slutsky’s theorem,

√
n

(∑
i

log
Xi

θ̂
−+

1

λ

)
d−→

n→∞
N (0, V ).

7. Find the estimator (λ̃, θ̃) obtained by the method of moments.

E [X1] =
λθ

1 + λ

E
[
X2

1

]
=

λθ2

2 + λ

Solving for (λ̃, θ̃),

λ̃ = −1 +
X2
n√

X2
n

2
−X2

n ·X
2

n

θ̃ =
X2
n +

√
X2
n

2
−X2

n ·X
2

n

Xn

.

8. Show that (λ̃, θ̃) is asymptotically normal.

I’m lazy.

9. Which of λ̂ has the smallest asymptotic variance?

I’d assume λ̂ but I honestly don’t know cuz we didn’t get here lol.

10. Confidence interval for λ

11. I wanna go home already and play phone games omo.
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15.1 M-estimators, ctd.

A few notes from last time.

• Often there may be multiple meadians. For example, considerX1, . . . , Xn
i.i.d.∼

Bernoulli(1/2).

1/2

1•

Q(u) = E [|X1 − µ|] =
1

2
(1− µ) +

1

2
µ =

1

2
.

Since Q is constant, any value between [0, 1) is a valid median.

Theorem 15.1

Let M = Θ and ρ(x, θ) = − logL1(x, θ), provided the likelihood is positive
everywhere. Then

µ∗ = θ∗

where P = Pθ∗ .

Make this
a cohesive
story.

Make this
a cohesive
story.

In general, we would like to find ρ such that

Q(u) = E [ρ(X1, µ)]

is minimized when µ = θ∗. We take ρ(X1, θ) = − logL1(X1, θ) if ρ is well-defined
(that is, L1 is positive).

Lemma 15.2

Q(θ)−Q(θ∗) ≥ 0,∀θ ∈ Θ

Proof.

Q(θ)−Q(θ∗) = −E [logL1(X1, θ)] + E [logL1(X1, θ
∗)]

= −E
[
log

L1(X1, θ)

L1(X1, θ∗)

]
where the latter line follows from linearity of expectation and properties of the
logarithm. By Jensen’s inequality,

E
[
log

L1(X1, θ)

L1(X1, θ∗)

]
≤ logE

[
L1(X1, θ)

L1(X1, θ∗)

]
.
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Let us examine the expectation. In the continuous case, L1(X1, θ) = fθ(X1),
where fθ is the density of Pθ. So

E
[
L1(X1, θ)

L1(X1, θ∗)

]
= E

[
fθ(X1)

fθ∗(X1)

]
=

∫
E

fθ(x)

fθ∗(x)
· fθ∗(x)dx = 1

since fθ integrates to 1 over its support. Therefore,

Q(θ)−Q(θ∗) = −E
[
log

L1(X1, θ)

L1(X1, θ∗)

]
≥ 0.

Let µ̂n be a minimizer of the form

Qn(θ) :=
1

n

∑
i

ρ(X1, µ).

Note that above, the minimizer for θ∗ is

min
θ
− 1

n

∑
i

logL1(X1, θ)⇔max
θ

∑
i

logL1(X1, θ)

= log
∏
i

L1(Xi, θ)

= Ln(X1, . . . , Xn, θ).

Therefore, the M-estimator for ρ = logL1 is simply the MLE!

15.2 M-estimator asymptotics

Now that we have seen that the MLE is just a special M-estimator, we might
recall that the MLE converges asymptotically in many cases. Are there similar
guarantees for M-estimators in general?

Let

J(µ) = − ∂2Q
∂µ∂µT

(µ)

K(µ) = Var
∂ρ

∂µ
(X1, µ)

where J is equivalent to −E [xxx] under some regularity conditions.

Remark 15.3. In the log-likelihood case, where µ = θ,

J(θ) = K(θ) = I(θ),

the Fisher information. In the general case, J might not equal K.
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Theorem 15.4

Let µ∗ ∈M be the true parameter. Assume the following:

1. M is an open set.

2. µ∗ is the only minimizer of the function Q.

3. J(µ) is invertible ∀µ ∈M.

4. A few other unmentioned conditions.

Then µ̂n satisfies

θ̂n
P−→

n→∞
θ∗

√
n(µ̂n − µ∗)

d−→
n→∞

N (0, J(µ∗)−1K(µ∗)J(µ∗)−1).

Let’s discuss these conditions.

• We have seen throughout the course so far that open sets are love for
parameters.

• When we discussed the median, we recognized that the median may not
be unique. Thus, the median violates condition (2).

Jensen’s inequality only holds if L1(X1, θ)/L1(X1, θ
∗) is constant (determin-

istic), which is only possible if L1(x, θ)/L1(x, θ∗) is a constant function. That
is,

L1(X1, θ) = cL1(X1, θ
∗),∀x ∈ E.

However, both are proper densities, so c = 1. Then

L1(x, θ) = L1(x, θ∗),∀x ∈ E
⇔ fθ(x) = fθ(x),∀x ∈ E
⇔ fθ = fθ∗

⇔ Pθ = Pθ∗ .

In the theorem for the MLE, we required that θ be identified. Here, we see that
this condition allows us to argue that θ∗ is the unique minimizer.

15.3 M-estimators for robust statistics

Example 15.5

Suppose we wanted to know a population’s average monthly salary. But
people are, after all, human! We may ask for monthly salaries in a survey,
and someone’s bound to put a weekly or annual salary—but we don’t know!
They could just be real rich or real poor.

In general, suppose X1, . . . , Xn
i.i.d.∼ fθ(· −m), where

• f is an unknown, positive, even function (e.g. Cauchy)
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• m is a location parameter (real number of interest)

how would we estimate m?

We could use M-estimators for empirical mean and median and compare their
risks or asymptotic variances. The empirical median is quite robust, especially
in the case of corrupted monthly salaries.

x

15.4 Parametric hypothesis testing

“I’ll tell you about hypothesis testing before you leave for spring
break so you don’t think you came for nothing. Everyone’s heard
of hypothesis testing, but you’ve been here for two months and I’ve
told you nothing about hypothesis testing.”—veb

Let’s start with some examples to gain intuition.

Example 15.6

We run a medical lab that tests patients for HIV. People with HIV have
extra antibodies, so we sample some blood and check the concentration of
antibodies.

We should dilute out many samples, where each sample

Xi ∼ N (ξ, σ2)

and we check if ξ > ξ0, our threshold.

There are tow types of errors we could make:

• False negative: The patient is sick and we send them home. This is
VERY dangerous! The patient will die.

• False positive: The patient is fine and we treat the patient, which isn’t
great, but not fatal.

Example 15.7

We toss a coin 80 times and obtain 54 heads. Can we conclude that the
coin is significantly unfair?
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Formally, for n = 80, X1, . . . , Xn
i.i.d.∼ Bernoulli(p), and Xn = 56/80 = 0.58.

If it were true that p = 0.5, then

√
n
Xn − 0.5√
Xn(Xn)

≈ N (0, 1).

Of course, this is very handwavy, so we are NOT allowed to write this on the
test. Here,

√
n
Xn − 0.5√
Xn(Xn)

≈ 3.45,

so it seems pretty reasonable to reject the hypothesis p = 0.5.

Here,
√
n
Xn − 0.5√
Xn(Xn)

≈ 0.77,

it seems impossible to reject significantly the hypothesis p = 0.5.

The only things we can do are invalidate, or say we cannot invalidate. We
cannot validate.
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16 April 3, 2018

Recall from the first class that we will discuss three ways of statistical inference.

1. Estimation produces an approximate value.

2. Confidence intervals find a range.

3. Hypothesis tests answer a question. For example, “is it true that θ1 and
θ2 are significantly different?”

Our next chapter, we focus on the last point.

16.1 Hypothesis testing

Consider a sample X1, . . . , Xn of i.i.d. random variables and a statistical model
(E, {Pθ}θ∈Θ).

Let Θ0 and Θ1 be two disjoint subsets of Θ. Consider the two hypotheses,{
H0 θ ∈ Θ0

H1 θ ∈ Θ1

where H0 is known as the null hypothesis and H1 is the alternative hypoth-
esis. We will always be able to invalidate the null hypothesis H0 or conclude
that we cannot invalidate it. In this class we do not care about H1.

Example 16.1

Suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(p). We would like to test if p = 1/2.

The hypotheses are

H0 : p = 1/2 H1 : p 6= 1/2

and the parameter sets are

Θ0 : {1/2} Θ1 : (0, 1) \ {1/2} .

Example

Now suppose we want to know if the coin leans either way. The professor
wins if the coin is p ≥ 1/2.

The hypotheses are

H0 : p ≥ 1/2 H1 : p < 1/2

and the parameter sets are

Θ0 : [1/2, 1) Θ1 : (0, 1/2).
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Example

Suppose now that our professor is a smart opponent, and he would never
play with a coin for which p < 1/2.

More reasonable hypotheses are

H0 : p = 1/2 H1 : p < 1/2

and the parameter sets are

Θ0 : {1/2} Θ1 : (0, 1/2)

which do not cover the whole parameter space, but that’s fine.

Example 16.2 (HIV testing)

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, σ2) where µ represents the concentration of

antibodies.

The hypotheses are

H0 : µ ≥ µ0 H1 : µ < µ0

and the parameter sets are

Θ0 : [µ0,∞)× (0,∞) Θ1 : (−∞, µ0)× (0,∞).

Don’t forget to include σ2 in the parameter space.

There is inherent asymmetry between H0 and H1. So how do we assign H0

and H1? Recall our discussion about false positives and false negatives.

In the case that H0 is true, it is very dangerous or costly to reject H0. For
example, false negatives are very dangerous for HIV testing since sick patients
are sent home. Therefore, the null hypothesis should be “the patient is sick.” We
do not want to reject this, but it’s okay to reject that “the patient is healthy.”

Question 16.3. What’s the use of defining H1 if we know nothing about it?
Short answer: no use in this class. Long answer: it would still be ideal to
control false positives (patient is healthy and we treat them) since there may be
nontrivial costs. However, false negatives are much more dangerous, so we focus
on them in this class.

Definition 16.4. A test is a statistic δ ∈ {0, 1} such that

• if δ = 0, H0 is not rejected

• if δ = 1, H0 is rejected.

As a memorization tool (not entirely proper math), Hδ is the hypothesis
that we keep. We still cannot conclude that it is true.

Example

Recall the fair coin example, where H0 : p = 1/2, H1 : p 6= 1/2.
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By the central limit theorem, combined with Slutsky’s theorem,

√
n

Xn − p√
Xn(1−Xn)

d−→
n→∞

N (0, 1).

If H0 is true, then we can say that

√
n

Xn − 1/2√
Xn(1−Xn)

d−→
n→∞

N (0, 1).

The left hand side is a statistic we can compute. When H0 is true, then it is
very likely that this quantity will fall between (−2, 2) since the 0.975 quantile is
1.96.

The test is
δ = 1

∣∣∣√n(xn−0.5)/
√
xn(1−xn)

∣∣∣>c
for some c > 0. If we set c = 1.96, then we reject H0 when this statistic is larger,
and it is unlikely that it comes from the standard normal.

Alternatively, if H0 is true, then we can say that

√
n

Xn − 1/2√
1/2(1− 1/2)

d−→
n→∞

N (0, 1)

and we can define another test

δ′ = 1|2√n(xn−0.5)|>1.96.

Note that δ is a function on X1, . . . , Xn that produces a binary statistic.

Definition 16.5. The rejection region of a test δ is defined as

Rδ = {x ∈ En : δ(x) = 1}

where x = (x1, . . . , xn) and E is the sample space.

That is, the rejection region is the set of all possible outcomes that leads to
rejection. For example, in the Bernoulli case,

Rδ =

(x1, . . . , xn) ∈ {0, 1}n :

∣∣∣∣∣∣√n Xn − 1/2√
Xn(1−Xn)

∣∣∣∣∣∣ > 1.96

 .

16.2 Type 1 and type 2 errors

Definition 16.6. A type 1 error of a test δ rejects H0 when it is actually
true.

αδ : Θ0 → R
θ 7→ Pθ[δ = 1]

Definition 16.7. A type 2 error of a test δ does not reject H0 when H1 is
actually true.

βδ : Θ1 → R
θ 7→ Pθ[δ = 0]
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Colloquially, we may say that type 1 errors are false negatives and type 2
errors are false positives.

Example 16.8

Suppose X1, . . . , Xn
i.i.d.∼ N (µ, 1), where µ is unknown. How do we test if

µ = 0 or if µ 6= 0?

We know that √
n(Xn − µ) ∼ N (0, 1)

is always true (since the Xi are Gaussian and Xn is a linear combination of
Gaussian random variables). If H0 were true, then we could replace µ with 0,

√
n ·Xn ∼ N (0, 1).

Let
δ = 1|√n·Xn|>t

for some t > 0. The type 1 error of δ is

αδ : {0} → R
µ 7→ Pr

µ
{δ = 1} = Pr

θ

{∣∣√n ·Xn

∣∣ > t
}
.

Our Θ0 is a singleton, so ∀µ ∈ {0}, µ = 0, and

Pr
θ

{∣∣√n ·Xn

∣∣ > t
}

= 2− 2φ(t).

Then we choose t = q1−α/2, where q is a quantile of the standard normal, so
αδ(0) = α.

Example

Suppose instead we wanted to test if µ ≥ 0 or µ < 0.

It is still true that √
n(Xn − µ) ∼ N (0, 1).

If H0 is true, √
n ·Xn ≥

√
n(Xn − µ)

since µ would be non-negative. So we reject when
√
n ·Xn is too small,

δ = 1√n·Xn<−t

where t > 0.

For all µ > 0 that satisfy H0,

αδ(µ) = Pr
µ
{δ = 1}

= Pr
µ

{√
n ·Xn < −t

}
≤ Pr

µ

{√
n(Xn − µ) < −t

}
= φ(−t) = 1− φ(t).

We take t = q1−α so αδ(µ) ≤ α,∀µ ≥ 0. We achieve equality when µ = 0.

We care the most about the type 1 error, so we define the level of a test via
the type 1 error. However, we would also like the “1 - type 2 error” to be as
large as possible.
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Remark. After today we will never see the type 2 error again in this class. This
is just “for our culture.”

Definition 16.9. The power of a test δ is defined as

πθ = inf
θ∈Θ1

(1− βδ(θ)).

In this class, the definition is just plopped here for completeness and will
not be tested on.

Definition 16.10. A test has level α if

αδ(θ) ≤ α,∀θ ∈ Θ0.

A test has asymptotic level α if

lim
n→∞

αδ(θ) ≤ α,∀θ ∈ Θ0.

Remark. If a test has level 5%, then it trivially has level 10% as well. The
converse is not true.

In general, a test takes the form

δ = 1Tn>c

for some test statistic Tn and threshold c ∈ R. The corresponding rejection
region is Rδ = {Tn > c}.

Example

We’re flipping coins again. We’re also flipping the hypotheses.

H0 : p ≤ 1/2 H1 : p > 1/2

As always,
√
n

Xn − p√
p(1− p)

d−→
n→∞

N (0, 1).

No matter what p is, we can apply Slutsky’s theorem to obtain

√
n

Xn − p√
Xn(1−Xn)

d−→
n→∞

N (0, 1).

If H0 is true, then

√
n

Xn − 1/2√
Xn(1−Xn)

≤
√
n

Xn − p√
Xn(1−Xn)

.

The left hand side should not be too large, so we reject when this quantity is
large,

δ = 1√
n

Xn−1/2√
Xn(1−Xn)

>t
.

We find t as an exercise left to the reader.
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17.1 Recitation 8

Let X1, . . . , Xn
i.i.d.∼ Poisson(λ) for some λ > 0 and let λ0 be a fixed (known)

positive number.

1. Consider the following hypotheses:

H0 : λ = λ0 H1 : λ 6= λ0

By the central limit theorem,

√
n
Xn − λ√

λ

d−→
n→∞

N (0, 1)

and by Slutsky’s theorem,

√
n
Xn − λ√

Xn

d−→
n→∞

N (0, 1).

Let

Sn =
√
n
Xn − λ√

Xn

Tn =
√
n(Xn − λ0)/(

√
Xn).

If H0 is true, then Tn
d−→

n→∞
N (0, 1). We know that |Tn| > 1.96 is very

unlikely if H0 is true. A test with asymptotic level 5% is

δ = 1|Tn|>1.96.

2. Consider the following hypotheses:

H0 : λ ≤ λ0 H1 : λ > λ0

If H0 is true, then we would expect Tn < Sn and

Pr {Tn > 1.65} ≤ Pr {Sn > 1.65} .

A test with asymptotic level 5% is

δ = 1Tn>1.65.

3. Consider the following hypotheses:

H0 : λ ≥ λ0 H1 : λ < λ0

If H0 is true, then we would expect Tn > Sn. A test with asymptotic level
5% is

δ = 1Tn<−1.65.
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4. Consider the following hypotheses:

H0 : |λ− 2| ≤ 1 H1 : |λ− 2| > 1

Equivalently, H0 : 1 ≤ λ ≤ 3. Let

Rn =
√
n(Xn − 1)/(

√
Xn)

Ln =
√
n(Xn − 3)/(

√
Xn).

If H0 is true, Ln ≤ Sn ≤ Rn and

Pr {Ln > 1.96 ∨Rn < −1.96} = Pr {Sn > 1.96 ∨ Sn < −1.96} = 0.95.

A test with asymptotic level 5% is

δ = 1Ln>1.96∨Rn<−1.96.

We are interested in comparing the proportion of people in their 20s who smoke
from the US and France.

Suppose we sample n people in both countries, and let NUS , NF be the
number of people who smoke in the US and France, respectively. Let pUS , pF
be the corresponding proportion of people and let

Xi =

{
1 person i from US smokes,

0 otherwise.
Yi =

{
1 person i from France smokes,

0 otherwise.

Equivalently, NUS =
∑
iXi and NF =

∑
i Yi. Xi and Yi are independent

Bernoulli random variables. The CLT tells us that

(NUS −NF )− n(pUS − pF )√
n

d−→
n→∞

N (0,VarX1 − Y1)

√
n(NUS −NF − (pUS − pF ))

d−→
n→∞

N (0, pUS(1− pUS) + pF (1− pF )).

By Slutsky’s theorem,

Tn =
NUS −NF − n(pUS − pF )

√
n
√

NUS
n

(
1− NUS

n

)
+ NF

n

(
1− NF

n

) d−→
n→∞

N (0, 1).

Let
H0 : pUS = pF H1pUS 6= pF .

Our test is
1|Tn|>q1−α/2

where α is the level of our test.
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18 April 5, 2018

This chapter doesn’t introduce any new ideas mathematically. Rather, it wraps
concepts in new words and vocabulary, so this chapter should be easy—that is,
we just need to memorize the definitions.

Here are some remarks about tests in general.

1. Tests should not depend on the true parameter θ.

For example, when we have a hypothesis like

H0 : θ = θ0 H1 : θ 6= θ0

we can include θ0 because it is a given, but we cannot use θ, which is an
unknown parameter.

2. Generally, we can only achieve asymptotic levels α, since we often use the
central limit theorem. In practice, this is quite a limitation because we
may only have a few data points, say n = 10, which is not enough to apply
results for n→∞.

3. Rejecting H0 does not imply accepting H1.

For example, consider X1, . . . , Xn
i.i.d.∼ Bernoulli(0, 1). If our hypotheses

are p = 1/2 and p > 1/2, they do not cover the whole space, and p 6=
1/2 6⇒ p > 1/2.

18.1 Hypothesis testing, ctd.

Since the 70s, everyone’s agreed to take α = 0.05 for some reason.

Example 18.1

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p) for some unknown p ∈ (0, 1). We want to

test
H0 : p = 1/2 H1 : p 6= 1/2

with asymptotic level α ∈ (0, 1).

By the central limit theorem, we know that

√
n

Xn − p√
p(1− p)

d−→
n→∞

N (0, 1).

If H0 is true, then
√
n

Xn − 1/2√
1/2(1− 1/2)

d−→
n→∞

N (0, 1).

Let Tn =
∣∣∣√n(p̂n − 1/2)/

√
1/2(1− 1/2)

∣∣∣, where p̂n is the MLE and our test is

δα = 1Tn>q1−α/2 .

Now let’s sanity check this. The asymptotic level of δα is

Pr
1/2
{δα = 1} = Pr

1/2

{
|Tn| > q1−α/2

}
→ α.
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Suppose instead that we considered

Sn =

∣∣∣∣∣∣√n Xn − 0.5√
Xn(1−Xn)

∣∣∣∣∣∣
with corresponding test

δ′α = 1Sn>q1−α/2 .

This test has the same asymptotic level as δα! A minor note though: δ′α has a
better power.

Finally, we can even consider

Un =
√
n

Xn − 1/2√
1/2(1− 1/2)

which is Tn without the absolute value. The corresponding test is

δ′′a = 1Un>q1−α .

This test also has asymptotic level α! However, this test has the worst type 2
error. We can rewrite Un as

Un =
√
n

Xn − p√
Xn(1−Xn)

+
√
n

p− 1/2√
Xn(1−Xn)

.

If p is small, the second term is very small (negative), and Un will be super
small, so we will not reject.

We conclude with a quick recipe for designing tests.

1. Suppose that H0 is true.

2. Find a test statistic such that if H0 is true, we can say something about
its (asymptotic) distribution.

3. Reject H0 if the value of the test statistic is not in the typical range of
the distribution.

4. Define such a typical range according to the (asymptotic) level that we
want to achieve.

18.2 P-values

The professor begins by declaring that none of us know what a p-value is. In
fact, most of his professors didn’t know what a p-value was.

Let’s recall the previous coin examples from the first lecture on hypothesis
testing.

Example

A coin is tossed 80 times, and heads are obtained 54 times. Can we conclude
that the coin is significantly unfair?
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We reject when ∣∣∣∣∣∣√n Xn − 1/2√
Xn(1−Xn)

∣∣∣∣∣∣ > q1−α/2.

We may compute that Xn = 54/80 = 0.68, and the above quantity is 3.45. It
seems quite reasonable to reject the hypothesis p = 0.5.

If we take α = 0.1 or α = 0.2, we reject even more values. However, if we
take α = 0.01, we reject fewer values, and in this case, we no longer reject!

If we choose a small α, then the probability of mistakenly rejecting is small,
so we want to be very careful about rejecting.

In the extreme cases, if α = 1, we always reject (the 0.5 quantile is 0, the
median). If we take α = 0, we never reject (the 1 quantile is infinite).

α0 1

never reject always reject
×

p-value

δα = 0 δα = 1

Definition 18.2. The (asymptotic) p-value of a test δα is the smallest (asymp-
totic) level α at which δα rejects H0.

The p-value is the smallest value of α at which the indicator becomes 1:

Tn = q1−α/2 ⇔ φ(Tn) = 1− α/2⇔ α = 2− 2φ(Tn).

So the p-value is a statistic and a random variable!

In summary:

p-value ≤ α⇔ H0 is rejected by δα at (asymptotic) level α.

The smaller the p-value, the more confidently one can reject H0.

Consider a test of the form

δα = 1Tn>tα

where Tn is a test statistic and tα is a threshold that ensures (asymptotic) level
α. As a sanity check, tα →∞ as α→ 0 and tα should decrease as α increases.
The p-value is the value of α such that Tn = tα.

Example

What is the p-value of δ′′α from before?

We know that Un = q1−α ⇔ φ(Un) = 1− α. So the p-value is 1− φ(Un).

54



Rachel Wu 18 April 5, 2018

18.3 Neyman-Pearson’s paradigm

For given hypotheses, among all tests of (asymptotic) level α, is is possible to
find the one with maximal power?

Above, we found three tests with equivalent level, but δ′′α had terrible power
and δ′α had the highest power. Furthermore, the trivial test δ = 0 has perfect
level but no power.

According to Neyman-Pearson, it is possible to find the most powerful test
with a given level, but in this class, we will only study a few specific cases.

18.4 Chi-squared distributions

Definition 18.3. For a positive integer d, the χ2 distribution with d degrees
of freedom is the law of the random variable

Z2
1 + Z2

2 + · · ·+ Z2
d

where Z1, . . . , Zd
i.i.d.∼ N (0, 1).

Here are some nice properties.

• If Z ∼ Nd(0, Id), then |Z|2 ∼ χ2
d. This is because each dimension is

independent of every other.

• Cochran’s theorem states that for X1, . . . , Xn
i.i.d.∼ N (µ, σ2), if Sn is the

sample variance, then nSn/σ
2 ∼ χ2

n−1.

• χ2
2 = ε(1/2).
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We have a test next week! *sadface*

Here are some tips from the professor.

• Tests often have multiple answers, so don’t stress over matching the exact
answer (to solutions).

For example, suppose X1, . . . , Xn
i.i.d.∼ Bernoulli(p). Consider the hypothe-

ses
H0 : p = 1/3 H1 : p 6= 1/3.

Let

Tn =
√
n(Xn − 1/3)/

√
1/3(1− 1/3)

Sn =
√
n(Xn − 1/3)/

√
Xn(1−Xn).

For Tn we invoke CLT and for Sn we invoke CLT + Slutsky’s. Potential
tests include the following.

δ = 1|Tn|>q1−α/2 δ = 1|Sn|>q1−α/2
δ = 1Tn>q1−α δ = 1Sn>q1−α

δ = 1Tn<−q1−α δ = 1Sn<−q1−α

There are infinitely many tests!

We can even give the trivial test 0, and the professor says he’d give us full
credit, except he’ll say “using the previous parts, come up with a test” so
this won’t work!

• The homework will be due the week after, but it will be released today.

• Problem sets are available from his office.

19.1 Wald’s test

Consider an i.i.d. sample X1, . . . , Xn with statistical model (E, {Prθ}θ∈Θ),

where Θ ⊆ Rd, d ≥ 1 and let θ0 ∈ Θ be fixed and given.

Consider the following hypotheses,

H0 : θ = θ0 H1 : θ 6= θ0.

Let θ̂MLE be the MLE and assume its technical conditions are satisfied (open
parameter set, etc.). We know that

√
n(θ̂ − θ) d−→

n→∞
N (0, I(θ)−1).

If H0 is true, then we can substitute θ ← θ0 and

√
n(θ̂ − θ0)

d−→
n→∞

N (0, I(θ0)−1).

We will use this fact to show an elegant result—but first, a proposition.
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Proposition 19.1

I(θ) is positive semi-definite.a

a That is, it is symmetric and has non-negative eigenvalues.

Proof. I(θ) is the covariance matrix (symmetric) of the gradient of log-likelihood.
It is also a Hessian, which is necessarily symmetric.

Let Σ be a covariance matrix of a random vector Y ∈ Rd and let λ be an
eigenvalue of Σ. That is, ∃u ∈ Rd 6= 0 such that Σµ = λµ. Then uTΣu =
λuTu = λ |u|2. However, we recognize that uTΣu = VaruTY , which is non-
negative, so λ ≥ 0.

Since Σ is real and symmetric, we can diagonalize it as Σ = PDP−1, where
D is a diagonal matrix with eigenvalues on the diagonal.

Now let

Σ1/2 = P

 √λ1

↘ √
λd

P−1

such that (Σ1/2)2 = PDP−1 = Σ.

Let’s return to our original claim. For any A ∈ Rd×d,
√
n(θ̂ − θ0)

d−→
n→∞

N (0, I(θ0)−1)

√
nA(θ̂ − θ0)

d−→
n→∞

N (0, AI(θ0)−1AT )

Suppose we take A = I(θ0)1/2. Then

√
nI(θ0)1/2(θ̂ − θ0)

d−→
n→∞

z, z ∼ N (0, I).

The squared norm is a continuous function, so∣∣∣√nI(θ0)1/2(θ̂ − θ0)
∣∣∣2 d−→

n→∞
|z|2

where |z|2 ∼ χ2
d.

“Did I say something cool was going to happen? Because it hasn’t
happened yet.”—veb

Recall that |u| = uTu,∀u ∈ Rd. So the disgusting norm becomes

n(θ̂ − θ0)T (I(θ0)1/2)T I(θ0)1/2(θ̂ − θ0) = n(θ̂ − θ0)T I(θ0)(θ̂ − θ0).

Theorem 19.2 (Wald’s test)

Let
Tn = n(θ̂ − θ0)T I(θ̂)(θ̂ − θ0).

Wald’s test with asymptotic level α ∈ (0, 1) is

δ = 1Tn>q1−α

where q1−α is the (1− α) quantile of χ2
d (use tables).
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We can replace θ0 with θ̂ via Slutsky’s theorem when substituting A← I(θ
1/2
0 .

• If H1 is of the form θ 6= θ0, Wald’s test is the most powerful.

• If H1 is of the form θ > θ0 it is not the most powerful.

Visually, we can think of our desired “range” as a ball with radius
√
q1−α, but

this visualization is less convenient since we do not want to compute I(θ)1/2.

19.2 Likelihood ratio test

Consider an i.i.d. sample X1, . . . , Xn with statistical model (E, {Prθ}θ∈Θ),

where Θ ⊆ Rd, d ≥ 1 and let θ0 ∈ Θ be fixed and given.

Suppose the null hypothesis has form

H0 : (θr+1, . . . , θd) = (θ
(0)
r+1, . . . , θ

(0)
d )

where we only test some parameters.

Let θ̂n = arg maxθ∈Θ `n(θ) be the MLE and let θ̂cn = arg maxθ∈Θ0
`n(θ) be

the constrained MLE, where Θ0 is the set of parameters we want to test.

Example 19.3

Consider a sample X1, . . . , Xn
i.i.d.∼ N (µ, σ2), where µ, σ2 are unknown.

Consider the following hypotheses,

H0 : σ2 = 1 H1 : σ2 6= 1.

Here, d = 2, r = 1 since our θ is two-dimensional.

Example 19.4

Consider a sample X1, . . . , Xn
i.i.d.∼ N (µ, σ2), where µ, σ2 are unknown.

Consider the following hypotheses,

H0 : µ = 0 H1 : µ 6= 0.

The setup is the same. The MLE is simply θ̂ = (µ̂, σ̂2) = (Xn, X2
n −X

2

n).
The constrained MLE can be calculated when we set µ = 0,

logLn(X1, . . . , Xn, µ, σ
2) = −n

2
log(2πσ2)− 1

2σ2

∑
i

(Xi − µ)2

logLn(X1, . . . , Xn, 0, σ
2) = −n

2
log(2πσ2)− 1

2σ2

∑
i

X2
i

so the constrained MLE for σ2 is (σ̂2)c = X2
n.

Our test statistic is

Tn = 2
(
`n(θ̂n)− `n(θ̂cn)

)
.
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Theorem 19.5

Assume H0 is true and the MLE technical conditions are satisfied. Then

Tn
d−→

n→∞
χ2
d−r

with respect to Prθ.

The likelihood ratio test with asymptotic level α ∈ (0, 1) is

1Tn>q1−α

where q1−α is the (1− α) quantile of the χ2
d−r (again, look this up in a table).

The asymptotic p-value of this test is 1 − Fd−r(Tn), where Fd−r is the cdf of
χ2
d−r. The same holds for Wald’s test.
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20.1 Recitation 9

Let X1, . . . , Xn
i.i.d.∼ N (µ, σ2) for unknown µ, σ2.

1. We want to test whether the Xi are standard Gaussians, with asymptotic
level α ∈ (0, 1).

(a) The hypotheses that test this fact are

H0 : (µ, σ2) = (0, 1) H1 : (µ, σ2) 6= (0, 1).

(b) Let

Tn = nθ̂T I(µ̂, σ̂2)θ

where θ =
(
µ σ2

)T
. The corresponding Wald’s test is δ =

1Tn>q1−α .

(c)

`n(µ, σ2) = −n
2

log 2πσ2 − 1

2σ2

∑
i

(Xi − µ)2

`n(µ̂, σ̂2) = −n
2

log 2πσ̂2 − n

2

`n(0, 1) = −n
2

log 2π − n

2
X2
n

Let
Sn = 2

(
`n(θ̂n)− `n(θ̂cn)

)
and the likelihood ratio test is δ′ = 1Sn>q1−α .

(d) Assume n = 100 and the empirical mean of the sample is 0.18 and
the empirical variance is 1.12.

The p-value of δ is

1− Fχ2
2
(Tn) ≈ 1− Fχ2

2
(3.47) ≈ 0.2

and the p-value of δ′ is

1− Fχ2
2
(Sn) ≈ 1− Fχ2

2
(3.91) ≈ 0.1.

2. If we only wanted to test whether σ2 = 1, we could use the likelihood ratio
test. The constrained MLE is where we set σ2 ← 1, so µ̂c = µ̂.

The test statistic is
Zn =

merp i have
a headache
lol so ima
go home
and sleep
:D took a
picture

merp i have
a headache
lol so ima
go home
and sleep
:D took a
picture

3. Now we just want to test if µ = 0. Literally the same thing.
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Note 21.1. A note about the previous lecture: we can apply the likelihood ratio
test wherever we can apply Wald’s test, since “all parameters” is a specific case
of “some parameters.” We simply set r = 0.

21.1 Testing implicit hypotheses

Let X1, . . . , Xn be i.i.d. random variables and let θ ∈ Rd be a parameter
associated with the distribution of X1 (e.g. a moment, parameter, etc.).

Let g : Rd → Rk be continuously differentiable, with k < d (else the system of
equations is over-specified and may not have a solution). Consider the following
hypotheses

H0 : g(θ) = 0 H1 : g(θ) 6= 0.

Example 21.2

The function g can be multidimensional and test a variety of conditions.

• g(θ) = θ1 − θ2 is a one-dimensional function testing whether θ1 = θ2.

• g(θ) = (θ1, θ2) provides a test about the first two coordinates.

• g(θ) = (θ1, θ3 − θ2) tests whether θ1 = 0 and θ2 = θ3.

Where else have we seen functions like g? The Delta method!

Suppose an asymptotically normal estimator θ̂n is available:

√
n
(
θ̂n − θ

)
d−→

n→∞
Nd(0,Σ(θ)).

By the Delta method,

√
n
(
g(θ̂n)− g(θ)

)
d−→

n→∞
Nk(0,Γ(θ))11

where Γ(θ) = ∇g(θ)TΣ(θ)∇g(θ) ∈ Rk×k.

Suppose Σ(θ) is invertible (all eigenvalues strictly positive) and ∇g(θ) has
rank k.12 Recall that Γ is diagonalizable and Γ−1/2 takes the square root of the
eigenvalues. Thus, Γ(θ) is invertible and

√
n
(
g(θ̂n)− g(θ)

)
d−→

n→∞
Nk(0,Γ(θ))

√
nΓ(θ)−1/2

(
g(θ̂n)− g(θ)

)
d−→

n→∞
Nk
(

0,Γ(θ)−1/2Γ(θ)(Γ(θ)−1/2)T
)

√
nΓ(θ)−1/2

(
g(θ̂n)− g(θ)

)
d−→

n→∞
Nk(0, Ik).

Honestly linear algebra should be a prerequisite for this class. Notice that this
is almost what we want. However, we don’t know Γ(θ), so we apply Slutsky’s

11 The matrices are k × d, d× d, d× k, so the product is k × k.
12Only Σ is a square matrix, so we can only guarantee that g has full rank.

61



Rachel Wu 21 April 12, 2018

theorem and replace it with Γ(θ̂),

√
nΓ(θ̂)−1/2

(
g(θ̂n)− g(θ)

)
=
√
nΓ(θ̂)−1/2Γ(θ)1/2︸ ︷︷ ︸

P−→
n→∞

Ik

Γ(θ)−1/2
(
g(θ̂n)− g(θ)

)
︸ ︷︷ ︸

d−→
n→∞

N (0,Ik)

.

Now we have a quantity that only depends on our data,

√
nΓ(θ̂)−1/2

(
g(θ̂n)− g(θ)

)
d−→

n→∞
Nk(0, Ik).

However, we don’t want to compute square roots; instead, we’ll take the squared
norm, which converges to a χ2

k distribution. If H0 is true (that is, g(θ) = 0),

ng(θ̂n)TΓ−1(θ̂n)g(θ̂n)︸ ︷︷ ︸
Tn

d−→
n→∞

χ2
k.

As usual, the p-value of this test is 1− Fk(Tn), where Fk is the cdf of χ2
k.

“If you don’t like tests—and I don’t like tests—you’ll be bored for
the next 40 minutes. But if you like tests, if you like multiplying
matrices. . . and I mean some people do?”—veb

21.2 Multinomial chi-squared test

“The remaining of the chapter is going to be very boring, but it’s
only 8 more slides!”—veb

Let E = {a1, . . . , aK} be a finite space and (Prp)p∈∆k
be the family of all

probability distributions on E,

∆k =

p = (p1, . . . , pk) ∈ (0, 1)K :

K∑
j=1

pj = 1

 .

Since the space is discrete, the pmf suffices to characterize the entire distribution.
For p ∈ ∆k and X ∼ Prp,

Pr
p
{X = aj} = pj , j = 1, . . . ,K.

Remark 21.3. The Bernoulli distribution is a special case of the multinomial,
where K = 2.

Let X1, . . . , Xn
i.i.d.∼ Prp, for some unknown p ∈ ∆k, and let p0 ∈ ∆k be

fixed. We want to test

H0 : p = p0 H1 : p 6= p0

with asymptotic level α ∈ (0, 1).

Example 21.4

If we let p0 = (1/K, 1/K, . . . , 1/K), then we are testing whether Prp is the
uniform distribution on E.
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The likelihood of the model is

Ln(X1, . . . , Xn, p) = pN1
1 pN2

2 . . . pNKK

where Nj = # {i = 1, . . . , n : Xi = aj}. The MLE p̂ is equal to

p̂j =
Nj
n

=
# {i = 1, . . . , n : Xi = aj}

n

subject to the constraint that
∑
j pj = 1, which is a sample average of 1Xi=aj .

We might consider using the central limit theorem

√
n(p̂− p) d−→

n→∞
Nk(0,Σ(p))

but we find that Σ(p) is not invertible! So unfortunately, we cannot apply
Wald’s test, which relies on the fact that the covariance matrix is invertible.
As an exercise to the reader, it is possible to find a matrix such that once we
multiply both sides, we can obtain almost the identity:

√
nA(p)(p̂− p) d−→

n→∞
Nk

0,


1 0
↘

1
0 0


 .

If we take the squared norm, it converges to the χ2
K−1 distribution!

Theorem 21.5

n

k∑
j=1

(
p̂j − p0

j

)2
p0
j︸ ︷︷ ︸

Tn

d−→
n→∞

χ2
K−1.

This equation should go on your equation sheet since it’s important but not
very intuitive. However, Wald’s test is quite intuitive, so you should know it.

The χ2 test with asymptotic level α is

δα = 1Tn>q1−α

where q1−α is the 1−α quantile of χ2
K−1. The corresponding asymptotic p-value

of this test is 1− FK−1(Tn), where FK−1 is the cdf of χ2
K−1.

21.3 Student’s distributions

“I want you to understand that the next 4 slides are really really
useless.”—veb

Remark 21.6. “Student” is not a researcher, but rather how they signed the paper.
An intern was working with confidential data, so he published anonymously
under “student.”
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Definition 21.7. For d ∈ N, the Student’s distribution with d degrees of
freedom (denoted by td) is the law of the random variable

U√
V/d

where U ∼ N (0, 1), V ∼ χ2
d, and U ⊥⊥ V .

Theorem 21.8 (Cochran’s theorem)

For X1, . . . , Xn
i.i.d.∼ N (µ, σ2), if Sn is the sample variance, then

√
n− 1

Xn − µ√
Sn

∼ tn−1.

• This is really weird! It suggests that µ̂ ⊥⊥ σ̂2 if the Xi are Gaussian. That
is definitely not true in general (Poisson, Bernoulli, etc.).

• We can rescale for nSn/σ
2 ∼ χ2

n−1.

• We know by the CLT that
√
n(Xn − µ)/σ ∼ N (0, 1), so with Cochran’s

theorem,
√
n
Xn − µ

σ
⊥⊥ nσ̂2

σ2
.

Furthermore,

√
nXn−µσ√
nσ̂2/σ2

n−1

=
√
n− 1 · Xn − µ√

σ̂2
∼ tn−1.

Example 21.9

Let X1, . . . , Xn
i.i.d.∼ N (µ, σ2). Consider the hypotheses

H0 : µ = µ0 H1 : µ 6= µ0.

We could solve this two weeks ago, with the central limit theorem or now,
with the likelihood ratio test. But what if we wanted a non-asymptotic test?

No matter what, however, if H0 is true, then

Tn =
√
n− 1

Xn − µ0√
σ̂2

∼ tn−1

even when n is small! This does not “converge in distribution” to a student’s
distribution; it is tn−1 random variable.

Using this test statistic, we can create a test

δ = 1Tn>q1−α

where q1−α is the 1− α quantile of tn−1.

So why is this useless? It assumes that the sample is perfectly Gaussian.
Cochran’s theorem is wrong even if the sample is only slightly not Gaussian. In
practice, you’ll never get perfect random variables.

64



Rachel Wu 22 March 18, 2018

22 March 18, 2018

There’s a test tomorrow! *doom*

22.1 Recitation 10

1. Assume I is a confidence interval for a parameter θ ∈ R with asymptotic
level α. Then 1θ0 6∈I is a test of asymptotic level α for H0 : θ = θ0 where
θ0 ∈ R is fixed.

True. By definition, Pr {θ 6∈ I} → α. If H0 is true, then θ = θ0, so
Pr {θ0 6∈ I} → α.

2. Wald’s test is always valid when H0 is of the form θ = θ0 where θ0 is a
fixed value in the parameter space.

False. We still require the conditions of the theorem for the MLE.

3. Let X1, . . . , Xn
i.i.d.∼ Poisson(λ), λ > 0. Which of the following have

asymptotic level 5%?

(a) 1—No this is always true.

(b) 1Tn>1.65—Sure.

(c) 1|Tn|>1.96—Sure.

(d) 0—Sure this is the trivial test.

Recall that the test should be true less than 5% of the time.

Let X1, . . . , Xn be i.i.d. uniform random variables in [0, θ] where θ > 0 is
unknown. Consider the hypotheses

H0 : θ ≥ 1 H1 : θ > 1.

1. (a) The likelihood function is

Ln : Rn × (0,∞)→ R

(x1, . . . , xn, θ) 7→
1

θn
1maxi xi<θ.

(b) The parameter θ is identified since ∀θ′ 6= θ, [0, θ] 6= [0, θ′].

(c) The MLE θ̂ must be greater than the largest Xi, and the likelihood

is a strictly decreasing function, so θ̂ = maxiXi.

(d) We want to show that

Sn =
n(θ − θ̂)

θ

d−→
n→∞

ε(1).

Recall that convergence in distribution implies that the cdfs converge
at all values. That is, ∀t > 0,

Pr

{∣∣∣∣∣n(θ − θ̂)
θ

∣∣∣∣∣ ≤ t
}
→ 1− e−t.
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We know that θ > θ̂, so we simply rearrange terms on the left and
find that

Pr

{
θ̂ ≥ θ

(
1− t

n

)}
= 1−

(
1− t

n

)n
→ 1− e−t,

as desired. The last limit is good to remember.

(e) We know that θ̂
P−→

n→∞
θ, so by Slutsky’s theorem,

Tn =
n(θ − θ̂)

θ̂

d−→
n→∞

ε(1).

If H0 is true, then Tn ≤ Sn. That means that Tn should not be large.
For all θ ≥ 1,

Pr {δα = 1} = Pr
θ
{Tn ≥ q1−α} .

A test for the hypotheses with asymptotic level α ∈ (0, 1) is

1Tn≥q1−α

where q1−α is the 1− α quantile of the standard normal.

2. Now we find a test with non-asymptotic level α.

(a) The cdf of Sn is

F (t) = Pr {Tn ≤ t}

= 1−
(

1− t

n

)n
if t < n or 1 if t ≥ n.

(b) Let Rn = n(1− θ̂). If H0 is true, how does Rn compare to Sn?

If θ > 1, then Sn ≥ Rn. So we know that Rn should not be very
large.

(c) Now we find a non-asymptotic test. Let

δ′α = 1Rn≥c.

where c is the 1−α quantile of Sn. We have the cdf so we solve for c
where

α = 1−
(

1− c

n

)n
.

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs of random variables where Xi ∼
Bernoulli(p), Yi ∼ Bernoulli(q) for unknown p, q ∈ (0, 1).

1. We are not going to compute this, but

p̂ = Xn

q̂ = Y n.
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2. We see that p̂, q̂ are both sample averages themselves:(
p̂
q̂

)
=

1

n

∑
i

(
X̂i

Ŷi

)
P−→

n→∞

(
p
q

)
.

We can use the CLT out of the box, where the variance is

Σ =

(
p(1− p) cov (X1, Y1)

cov (X1, Y1) q(1− q)

)

3. Now assume that X1, Y1 are independent.13

(a) The covariance matrix is(
p(1− p) 0

0 q(1− q)

)
.

(b) Consider the hypotheses

H0 : p ≥ q H1p < q.

Based on p̂, q̂, we find a test with asymptotic level α. By the delta
method,

√
n ((p̂− q̂)− (p− q)) d−→

n→∞
N (0, p(1− p)q(1− q)).

By Slutsky’s,

√
n

(p̂− q̂)− (p− q)√
p̂(1− p̂)q̂(1− q̂)

d−→
n→∞

N (0, 1).

So on a practical note—how do we come up with this parameter
p− q? We can think of p ≥ q as p− q ≥ 0.

13 Note that this is different from the pairs being independent. For example, if we take
Y = 2X, then the pairs are still independent, but X and Y are not.
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People did well on the exam—yay! Solutions will be posted later in the week,
but the professor suggests that you review your own exam and figure out the
mistakes first.

Whenever we encounter a problem in this class, it usually starts with a

preamble along the lines of “let X1, . . . , Xn
i.i.d.∼ some distribution.” But what

if the variables aren’t exactly that distribution? This chapter will introduce how
we determine whether our model actually fits the data well.

23.1 Chi-squared test of independence—discrete case

Suppose we have a sample (X1, Y1), . . . , (Xn, Yn) i.i.d. pairs14 on a finite space
{a1, . . . , aK} × {b1, . . . , bL}. Consider the two hypotheses

H0 : X1 ⊥⊥ Yi X1 6⊥⊥ Yi.

For (k, l) ∈ {1, . . . ,K} × {1, . . . , L}, let

• pk,l = Pr {X1 = ak, Y1 = bl},

• pk,· = Pr {X1 = ak}, and

• p·,l = Pr {Y1 = bl}.

By the law of total probability, pk,· =
∑L
l=1 pk,l, and likewise for p·,l.

Now we can rewrite the hypotheses in terms of p.

X1 ⊥⊥ Y1 ⇔ Pr {X1 = ak, Y1 = bl} = Pr {X1 = ak}Pr {Y1 = bl} ,∀k, l.

In other words, we may say that

H0 : pk,l = pk,· × p·,l,∀k, l H1 : pk,l 6= pk,· × p·,l.

We may estimate these quantities with empirical frequencies:

p̂k,l =
Nk,l
n p̂k,· =

Nk,·
n p̂·,l =

N·,l
n .

Note that each (X1, Y1) is a multinomial random variable, so these are actually
the MLE estimates (we found this in recitation).

If H0 is true, then p̂k,l ≈ p̂k,·p̂·,l,∀k, l. So let

Tn = n

K∑
k=1

L∑
l=1

(p̂k,l − p̂k,·p̂·,l)2

p̂k,·p̂·,l
.

Thus if H0 is true, then

Tn
d−→

n→∞
χ2

(K−1)(L−1).

So the test of independence with asymptotic level α is

δα = 1Tn>q1−α

where q1−α is the 1− α quantile of χ2
(K−1)(L−1). The corresponding p-value is

1− F(K−1)(L−1)(Tn).

Remark 23.1. This is very similar to the multinomial χ2 test.
14Note that Xi, Yi need not be independent of each other.
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23.2 Chi-squared goodness-of-fit test—discrete case

Let X1, . . . , Xn be i.i.d. random variables on a finite space E = {a0, . . . , aK−1}
with some probability measure Pr. Let (Prθ)θ∈Θ be a parametric family of
probability distributions on E.

For j = 1, . . . ,K and θ ∈ Θ, set

pj(θ) = Pr
θ
{Y = aj}

where Y ∼ Prθ and pj = Pr {X1 = aj}.

Example 23.2

Suppose we have a set of random variables {X1, . . . , Xn} on sample space
E = {1, . . . ,K − 1}. Are the Xi’s distributed as Binomial(K − 1, θ) for
some θ ∈ (0, 1)?

Let p̂k = 1
n

∑
i 1Xi=k for k = 0, . . . ,K − 1. This is a natural estimator

of pk = Pr {X1 = k} (it is also the MLE for multinomial random variables).
Furthermore, let

pk(θ) =

(
K − 1

k

)
θk(1− θ)K−1

be the pmf of the binomial distribution with the given parameters. Now, we
can write our hypothesis as

H0 : pk = pk(θ),∀k = 0, . . . ,K − 1

for some θ ∈ (0, 1).

Suppose we wanted to test if θ = θ0. We would use the χ2 distribution from
the previous lecture, where

Tn = n

K−1∑
k=0

(p̂k − pk(θ0))
2

pk(θ0)
.

However, this doesn’t tell us if the random variables are actually binomial.
Instead, let’s use our best guess for θ and leverage the MLE:

Tn = n

K−1∑
k=0

(
p̂k − pk(θ̂)

)2

pk(θ̂)
.

Here, the MLE θ̂ is the value of θ we would have computed if H0 is true; that
is, if the data do follow the given distribution.

In the general case, consider the hypotheses

H0 : Pr ∈ (Prθ)θ∈Θ H1 : Pr 6∈ (Prθ)θ∈Θ.

H0 is equivalent to

“the statistical model (E, (Prθ)θ∈Θ) fits the data.”
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Under some technical assumptions, if H0 is true, then

Tn
d−→

n→∞
χ2
K−d−1

where d is the size of the parameter θ and d < K − 1. The test with asymptotic
level α is

δα = 1Tn>11−α

where q1−α is the 1− α quantile of χ2
K−d−1.

23.3 Chi-squared goodness-of-fit test—infinite case

“In the two to three months we’ve been together, we’ve never talked
about binomial distributions, and I’ve just told you that this test is
very useful for binomial distributions!”—veb

Instead, suppose the sample space is infinite (e.g. E = N, E = R, etc.) We
cannot have a infinite χ2 distribution, but we can partition E into K disjoint
bins:

E = A1 ∪ · · · ∪Ak.

For example, we can partition N into

N = {0} ∪ {1} ∪ {2} ∪ (N \ {0, 1, 2}).

Now everything is exactly the same as before. For θ ∈ Θ, j = 1, . . . ,K:

• pj(θ) = Prθ {Y ∈ Aj} for Y ∼ Prθ,

• pj = Pr {X1 ∈ Aj},

• p̂j = 1
n

∑n
i=1 1Xi∈Aj , and

• θ̂ is the same as before.

Example 23.3

The professor hates soccer but apparently his hometown’s team is doing
okay. Suppose the scores are

2, 3, 0, 0, 1, 5, 2, 4, 4, . . .

Are the data Poisson-distributed?

Let’s take partitions

0 1 2 3
• • • • • • •

. . . K − 2K − 1

So our estimates would be

p̂j(θ̂) =
e−θ̂ · θ̂d

d!

for j = 1, . . . ,K − 2 and 1 −
∑K−2
j=1 pj(θ̂) for j = K − 1. Finally, how do we

choose K?
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“I can see that half the room already has the wrong answer”—veb

You can’t choose K by looking at the data! You cannot say K = maxXi

because K is not a random variable.

If we take K to be too small, the power of the test will suffer, and if we take
K to be too large, the level (?) of the test will suffer.
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24.1 Recitation 11

Let X,Y be two Bernoulli random variables and denote by p = Pr {X = 1} , q =
Pr {Y = 1}, and r = Pr {X = 1, Y = 1}.

1. X and Y are independent iff r = pq.

Proof. By definition, if X and Y are independent, then r = pq.

Conversely, if r = pq, then there are four cases to check.

(a) Pr {X = 1, Y = 1} = r = pq.

(b) Pr {X = 1, Y = 0} = Pr {X = 1} − Pr {X = 1, Y = 1} = p(1− q).
(c) Pr {X = 0, Y = 1} = Pr {Y = 1} − Pr {X = 1, Y = 1} = (1− p)q.
(d) Pr {X = 0, Y = 0} = 1−Pr {11}−Pr {01}−Pr {10} = (1−p)(1−q).

Ta da! X and Y are independent.

“Why am I going through every step here? This is not obvious.”
—pfeffer

2. (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. copies of (X,Y ). Let

Tn = n

K∑
k=1

L∑
l=1

(p̂k,l − p̂k,·p̂·,l)2

p̂k,·p̂·,l

where the various p are as defined in lecture. The χ2 test of independence
with asymptotic level α is

δα = 1Tn>q1−α

where q1−α is the 1− α quantile of χ2
1.

3. (a) Let p̂ = Xn, q̂ = Y n, r = XY n. By the LLN, these are consistent as
sample means of 1X=1, etc.

(b) The vector (p̂, q̂, r̂) is asymptotically normal by the CLT with asymp-
totic variance

Σ =

 VarX1 cov (X1, Y1) cov (X1, X1Y1)
cov (X1, Y1) VarY1 cov (Y1, X1Y1)

cov (X1, X1Y1) cov (Y1, X1)Y1 VarX1Y1

 =

 p(1− p) r − pq r(1− p)
r − pq q(1− q) r(1− q)
r(1− p) r(1− q) r(1− r)


verify every
cell from
photo

verify every
cell from
photo

(c) Let g : R3 → R be the function (x, y, z) 7→ z − xy. By the delta
method,

n (r̂ − p̂q̂ − (r − pq)) d−→
n→∞

N (0, V )

where V = ∇gTΣ∇g.

If H0 is true, the the r−pq terms become 0 and our covariance matrix
becomes a slight bit nicer to compute.
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(d) By Slutsky’s theorem,

Sn =
√
n
r̂ − p̂q̂√

V

d−→
n→∞

N (0, 1).

So our test is
δ′α = 1|Sn| > q1−α/2.

(e) We show that δα = δ′α.

This is just because Xi = 1Xi=1.
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“Hello everybody! Happy drop date! Today a piano is going to get
dropped. I’m really looking forward to it.”—veb

“I know everyone wants an A but not everyone’s going to get an A
because this is life.”—veb

25.1 Chi-squared degrees of freedom

Recall that we encountered three test statistics from last lecture. Can we build
some intuition about what these statistics converge to? Let’s see. . .

n

K∑
k=1

(p̂k − p0
k)2

p0
k

∼ χ2
K−1

n

K∑
k=1

L∑
l=1

(p̂kl − p̂k,·p̂·,l)2

p̂k,·p̂·,l
∼ χ2

(K−1)(L−1)

n

K∑
k=1

(p̂k − pk(θ̂))2

pk(θ̂)
∼ χ2

K−1−d

The degrees of freedom can be thought of as

true number of parameters − number of parameters if H0 is true.

• In the first, the true number of parameters in a multinomial distribution
is not K, but rather K − 1: the last parameter is redundant as

pK = 1− (p1 + · · ·+ pK−1).

Since we know p0
k, we don’t have to estimate any parameters, so we have

K − 1 degrees of freedom.

• For the second, our parameters are {1, 2, . . . ,K}× {1, 2, . . . , L}. However,
the last parameter is redundant again, and we have KL− 1 parameters.

We must estimate (K − 1) + (L − 1) parameters, one for each row and
column, so we have

KL− 1− (K + L− 2) = (K − 1)(L− 1)

degrees of freedom.

25.2 Cumulative distribution function

Let X1, . . . , Xn be real random variables. Recall that the cdf of X1 is defined as

F (t) = Pr {X1 ≤ t} ,∀t ∈ R

and it completely characterizes the distribution of X1.
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Example 25.1

The cdf of X is F (t) = 1− e−4t,∀t ≥ 0. What is the distribution of X?

Exponential with parameter 4. Easy. Professor is pleased we included the
parameter.

Lemma 25.2

If F is continuous, then F (X) ∼ U([0, 1]).

Proof. Let X be any continuous random variable with cdf F .

Assume that the cdf is strictly increasing15, so F is bijective from R→ (0, 1).
By definition, the cdf of F (X) is

Pr {F (X) ≤ t} = Pr
{
X ≤ F−1(t)

}
= F (F−1(t)) = t.

So the cdf is the function for which F (t) = t on t ∈ (0, 1), so F (X) ∼ U([0, 1]).

Remark 25.3. How can we sample from arbitrary probability distributions?
Suppose we have a robust random number generator for u ∼ U([0, 1]). Then we
can compute F−1(u) where F is our desired distribution.

We can rewrite the cdf as

F (t) = Pr {X1 ≤ t} = E [1X1≤t]

where the indicator is a Bernoulli random variable.

Definition 25.4. The empirical cdf of sample X1, . . . , Xn is defined as

F̂n(t) =
1

n

n∑
i=1

1Xi≤t =
#i = 1, . . . , n : Xi ≤ t

n
,∀t ∈ R.

Let Z be a random variable chosen uniformly at random among X1, . . . , Xn.
That is, Z = Xl, l ∼ U([n]) and l ⊥⊥ (X1, . . . , Xn). Then F̂n is the conditional
cdf of Z | (X1, . . . , Xn) and F is the cdf of Z (this should be obvious).

By the law of large numbers, ∀t ∈ R,

F̂n(t)
a.s.−→
n→∞

F (t).

In fact, we can do better.

Theorem 25.5 (Glivenko-Cantelli theorem, Fundamental theorem of statistics)

sup
t∈R

∣∣∣F̂n(t)− F (t)
∣∣∣ a.s.−→
n→∞

0.

15In general, only non-decreasing holds.
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A similar result exists for convergence in distribution. By the CLT, ∀t ∈ R,

√
n
(
F̂n(t)− F (t)

)
d−→

n→∞
N (0, F (t)(1− F (t))) .

This bound is impractical in practice since it depends on F . Again, we have a
better result to use.

Theorem 25.6 (Donsker’s theorem)

If F is continuous, then

√
n sup
t∈R

∣∣∣F̂n(t)− F (t)
∣∣∣ d−→
n→∞

sup
0≤t≤1

|B(t)|

where B is a Brownian bridge on [0, 1].

In the context of this class, we do not care about what a Brownian bridge
is, but we should note that the left hand side always converges to the same
distribution, independent of F .

Remark. We don’t need to know these theorems for the final exam.

25.3 Kolmogorov-Smirnov test

Let X1, . . . , Xn be i.i.d. random variables with unknown cdf F and let F0 be a
continuous cdf. Consider the hypotheses

H0 : F = F0 H1 : F 6= F0.

Let F̂n be the empirical cdf of the sample X1, . . . , Xn. If H0 is true, then
F̂n(t) ≈ F0(t) uniformly in t ∈ [0, 1].

Let
Tn = sup

t∈R

√
n
∣∣∣F̂n(t)− F0(t)

∣∣∣ .
By Donsker’s theorem, Tn

d−→
n→∞

z, where Z is known (supremum of Brownian

bridge, use a table).16

Then the Kolmogorov-Smirnov test with asymptotic level α is

δKSα = 1Tn>q1−α

where q1−α is the 1− α quantile of Z. The corresponding p-value is 1−H(Tn)
where H is the cdf of Z.

Remark 25.7. We reiterate that this test only holds when F0 is continuous!

However, we run into some practical issues. How do we compute Tn for all
values t? We could evaluate it on a lattice, but maybe the supremum falls in
between. Instead, we evaluate this value on all samples.

The empirical cdf looks like the following. We observe that F0 is non-
decreasing and F̂n is piecewise constant, with jumps at ti = Xi, i = 1, . . . , n.

16The supremum is the smallest upper bound.
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X(0) X(1) X(n)

Now let us zoom in around X(i).

X(i−1)

X(i)

X(i+1)

For each vertical jump, consider the maximum difference before and after
the “jumps” (highlighted in red) and compute

max
1≤i≤n

max

{∣∣∣∣F0(X(i))−
i− 1

n

∣∣∣∣ , ∣∣∣∣F0(X(i))−
i

n

∣∣∣∣}
so our estimate for Tn is

Tn =
√
n max

1≤i≤n
max

{∣∣∣∣F0(X(i))−
i− 1

n

∣∣∣∣ , ∣∣∣∣F0(X(i))−
i

n

∣∣∣∣}
Tn is known as a pivotal statistic. If H0 is true, then the distribution of

Xi does not depend on the distribution of the Xi’s and it is easy to reproduce
in simulations.

When t ranges in R, F−1
0 (s) also ranges in R when s ranges in (0, 1) (by

definition of a cdf). So we may rewrite our test statistic as

Tn =
√
n sup
s∈(0,1)

∣∣∣F̂n(F−1
0 (s))− F0(F−1

0 (s))
∣∣∣

=
√
n sup
s∈(0,1)

∣∣∣∣∣ 1n
n∑
i=1

1Xi≤F−1
0 (s) − s

∣∣∣∣∣
=
√
n sup
s∈(0,1)

∣∣∣∣∣ 1n
n∑
i=1

1F0(Xi)≤s − s

∣∣∣∣∣
However, recall from lemma 25.2 that F0(X) ∼ U([0, 1]). So let Ui = F0(Xi), i =
1, . . . , n. Then

Tn =
√
n sup
s∈(0,1)

∣∣∣∣∣ 1n
n∑
i=1

1Ui≤s − s

∣∣∣∣∣ = C(U1, . . . , Un)

where C is some complicated function that might not appear on tables.
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In other words, if H0 is true and U1, . . . , Un
i.i.d.∼ U([0, 1]),

Tn = sup
x∈[0,1]

√
n
∣∣∣Ĝn(x)− x

∣∣∣
where Ĝn is the empirical cdf of U1, . . . , Un.

Algorithmically, we can leverage this fact to provide a test with approximate
(but non-asymptotic level) α.

1. Sample Ui,1, . . . , Ui,n
i.i.d.∼ U([0, 1]).

2. Let Ĝi,n be their empirical cdf.

3. Let Ti,n = supx∈[0,1]

√
n
∣∣∣Ĝi,n(x)− x

∣∣∣.
If H0 is true, then T1,n, . . . , TM,n

i.i.d.∼ Tn. We can estimate the 1− α quantile
of Tn by taking the sample 1− α quantile of T1,n, . . . , TM,n. So our test is

δα = 1
Tn>q̂

(M,n)
1−α

with approximate p-value

# {i = 1, . . . ,M : Ti,n > Tn}
M

.
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26.1 Bayesian statistics

So far, we’ve been studying frequentist statistics—that is, we assume that there is
a statistical model with one true parameter. The data were generated randomly
by some method, but all based on the hidden parameter.

In contrast, the Bayesian school of thought believes that the data is absolute.
We have a prior belief about our parameters, and after seeing the data, we
develop a posterior belief.

Example 26.1

Laplace wanted to estimate the probability that a newborn would be a boy
or girl, since his impression was that there were more women than men.
He was quite sure that the probability p = Pr {woman} was very close
to 0.5, but he believed that p > 0.5 with 55% confidence. So he went to
the hospital, looked at 100 newborns, and he did not update p. Rather,
he updated his belief about p. Now, he believed that p > 0.5 with 60%
confidence.

start making
this a cohe-
sive story
starting here

start making
this a cohe-
sive story
starting here

Let’s formalize this story. Let p be the proportion of women in the population.
We sample n people randomly selected from the population and denote their
gender as X1, . . . , Xn.

As Bayesian statisticians, we could be 90% sure that p ∈ (0.4, 0.6) and 95%
sure that p ∈ (0.3, 0.8).

If we fix that the area under the curve sums to 1, then this is a probability
density.

Definition 26.2. The Beta distribution B(a, b) for a, b > 0 is a continuous
distribution on (0, 1) with density

fa,b(x) = cxa−1(1− x)b−1,∀x ∈ (0, 1)

where c =
(∫ 1

0
xa−1(1− x)b−1

)−1

is the normalizing constant.

a = b = 5

a = b = 100

a = b = 1

p

If we take a = b = 1, then we have the uniform distribution on [0, 1].

We can model our prior belief using a distribution for p, as if p were random—
which is not true. However, we model our belief as if it were. So we may
say
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“X1, . . . , Xn are assumed to be i.i.d. Bernoulli random variables
with parameter p, conditionally on p.”

Suppose our prior on p is p ∼ B(a, a). We may say X1 ∼ Bernoulli(E [X1]),
but we know that E [X1] = E [E [X1 | p]] = E [p]. According to our prior,
E [p] = 1/2.

Example 26.3

Suppose we were at a casino and we would bet on the outcomes of two
independent coins. We observe that the first coin is heads. Do we change
our bet for the second coin?

Of course not. The two coins are independent.

Example 26.4

Suppose instead that one coin had p = 0.99 and the other coin had p = 0.01.
We randomly select one coin and toss it twice independently. We observe
that the first coin is heads. Do we change our bet for the second toss?

Yes; it is more likely that we have the p = 0.99 coin. Given p, the two tosses
are independent, but the two tosses are not independent.

Definition 26.5. Probability distribution function is a probability density
function in the continuous case and a probability mass function in the discrete
case.

Consider a probability distribution on parameter space Θ with some pdf π(·)
as the prior distribution. Let X1, . . . , Xn be a sample of n random variables
and let Ln(· | ϑ) be the joint pdf of X1, . . . , Xn conditionally on ϑ where ϑ ∼ π.

Remark 26.6. Ln(X1, . . . , Xn | ϑ) is the likelihood in the frequentist approach.

The conditional distribution of ϑ given X1, . . . , Xn is called the posterior
distribution with pdf π(· | X1, . . . , Xn).

Theorem 26.7 (Bayes’ formula)

We know from Bayes’ formula that

π(θ | X1, . . . , Xn) ∝ π(θ)Ln(X1, . . . , Xn | θ),∀ ∈ Θ.

In practice, we often omit the normalizing constant since it does not depend
on θ.

insert pho-
tos.
insert pho-
tos.Suppose our prior was very bad. As n becomes large, however, the prior

terms fall away and our new expectation is centered around Xn! This has two
implications:

• if we start with a bad prior, enough points will shift the prior towards the
correct value, but

• if we don’t have many points, then we’re still screwed.

Thus, the posterior is a tradeoff between our data and the prior belief.
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27.1 Recitation 12

Consider n random variables X1, . . . , Xn. Let p ∼ U([0, 1]) and assume that

conditional on p, X1, . . . , Xn
i.i.d.∼ Bernoulli(p).

1. The distribution of X1 is Bernoulli(E [X1]) = Bernoulli(1/2).

2. X1, . . . , Xn are not i.i.d. since

E [X1X2] = E [E [X1X2 | p]]
= E [E [X1 | p]E [X2 | p]]
= E [p · p] = 1/3

is not equal to p2 = 1/4. The value of E
[
p2
]

= 1/3 by second moments.

Now we write probability distribution functions up to multiplicative constants.
Determine the corresponding distributions.

1. π(x) ∝ 1, x ∈ [−1, 1]. Uniform on [−1, 1].

2. π(x) ∝ e−4x, x ≥ 0. This is the exponential distribution ε(4).

3. π(x) ∝ e−4x, x ≥ 4. This is the shifted exponential f(x) = 4e4(x−4).

4. π(x) ∝ θx/x!, n ∈ N, θ > 0. This is Poisson(θ).

5. π(x) ∝ θx, x = {1, 2, . . .} , θ ∈ (0, 1). This is geometric with parameter θ.

6. π(x) ∝ e−ax2+bx, x ∈ R, a > 0, b ∈ R. This is N (b/2a, 1/2a). We can find
the mean and variance by completing the square.

7. π(x) ∝ x(1− x)2, x ∈ (0, 1). This is Beta(2, 3).

Finally let’s compute posteriors. We are given priors and conditional distri-
butions. Hint: recall that the Gamma distribution with parameters q > 0, λ > 0
is the continuous distribution on R>0 whose density is given by

f(x) =
λqxq−1e−λx

Γ(q)

where Γ is the Euler Gamma function and its mean is q/λ.

1. π(λ) = 1,∀λ > 0 and conditional on λ, we know that X1, . . . , Xn
i.i.d.∼ ε(λ).

That is, our prior is uniform (improper distribution) and our data is
exponential.

π(λ | X1, . . . , Xn) ∝ π(X1, . . . , Xn | λ) · π(λ)

= λne−λ
∑
iXi · 1

Oh look, the hint helps! This is Gamma(n+ 1,
∑
iXi). The conditional

expectation is

E [λ | X1, . . . , Xn] =
n+ 1

n
· 1

Xn

.
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2. π(λ) = 1/λ, ∀λ > 0 and conditional on λ, we know that X1, . . . , Xn
i.i.d.∼

Poisson(λ).

π(λ | X1, . . . , Xn) ∝ π(X1, . . . , Xn | λ) · π(λ)

∝ e−λnλ
∑
iXi · 1

λ

The hint helps again! This is Gamma(
∑
iXi, n). The conditional expec-

tation is Xn.

3. θ ∼ N (0, 1) and conditional on λ, X1, . . . , Xn
i.i.d.∼ N (θ, 1). Now for a

quite proper prior.

π(θ | X1, . . . , Xn) ∝ exxx
∑
i(Xi−θ)

2

= λne−λ
∑
iXi · 1

The posterior is another Gaussian. −θ2/2− nθ2/2 + θ
∑
iX

2
i . The condi-

tional expectation is

E [λ | X1, . . . , Xn] =
n+ 1

n
· 1

Xn

.
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28.1 Non-informative priors

Sometimes, we might have a lot of information about the parameter—Laplace
was very sure that the ratio of women to men was nearly one to one. At other
times, however, we don’t know much at all, and we want to impose as little
information on the prior as possible. As our professor describes:

“Suppose we were cavemen who lived in caves our whole life, alone.
We know nothing about men or women in the outside world.”

A good candidate is simply the constant pdf on Θ, π(θ) ∝ 1.

• If Θ is bounded, this is simply the uniform distribution.

• If Θ is unbounded, this is not a proper distribution! It does not integrate
to 1, so we cannot normalize it.

Definition 28.1. An improper prior on Θ is a measurable, nonnegative
function π(·) defined on Θ that is not integrable.

Fortunately, we can still use improper priors to obtain a proper posterior.

Example 28.2

If p ∼ Uniform([0, 1]) and conditional on p, X1, . . . , Xn
i.i.d.∼ Bernoulii(p).

The posterior is

π(p | X1, . . . , Xn) ∝ p
∑
iXi(1− p)n−

∑
iXi

which is equivalent to B(1 +
∑
iXi, 1 + n−

∑
iXi).

Example 28.3

Conditioned on θ, we know that X1, . . . , Xn
i.i.d.∼ N (0, 1). We impose a

non-informative prior π(θ) = 1,∀θ ∈ R

Though we have an improper prior, we can still compute the posterior:

π(θ | X1, . . . , Xn) ∝ π(θ)Ln(X1, . . . , Xn | θ)

∝ 1 ·
∏
i

1√
2π
e−(Xi−θ)2/2

∝ exp

(
−1

2

∑
i

(Xi − θ)2

)

∝ exp

(
−n

2
θ2 + θ

∑
i

Xi

)
.

Note that we drop all terms unrelated to θ. We recognize that this expression is
equivalent to N (Xn, 1/n).
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“Sometimes you write a nonsense, and then another nonsense that
is so bad, but then the nonsense cancels out and you get the correct
answer.”—veb

Essentially me trying to do arithmetic. This is why Mathematica exists.

“After that [pset 10] I only meet you four more times! It’s horrible.
Maybe not for you but it’s very sad.”—veb

Definition 28.4. Jeffreys prior is

πJ(θ) ∝
√

det I(θ)

where I(θ) is the Fisher information matrix of the statistic model associated
with X1, . . . , Xn in the frequentists approach (if it exists).

Example 28.5

In the previous examples:

• πJ(p) ∝ 1/
√
p(1− p), p ∈ (0, 1) so the prior is B(1/2, 1/2).

• πJ(p) ∝ 1, θ ∈ R is improper.

Example 28.6

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(e−10λ), λ > 0 What is the Fisher informa-

tion?

This is a question on the first midterm. Many students simply thought,

I(p) =
1

p(1− p)

for Bernoulli, right? But you can’t drop the chain rule when taking the derivative
with respect to λ.

Here comes the magic. Suppose η = g(θ) for some bijection g.

θ η = g(θ)
Fisher information I(θ) J(η)

Jeffreys prior
√
I(θ)

√
J(η)

We can directly take the square root here, no chain rule or other shenanigans.
This is known as invariance under parametrization.

We might be concerned that Jeffreys prior is not uniform, and it puts more
weight on some values than others. However, by assuming a statistical model,
we already assume some values are more likely that others—that is, larger Fisher
informations result in smaller asymptotic variances. Thus, Jeffreys prior is
“non-informative” in the sense that it does not introduce more information than
your choice of model already implies.
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28.2 Bayesian confidence region

Definition 28.7. For α ∈ (0, 1), a Bayesian confidence region with level α
is a random subset R ⊆ Θ which depends on the sample X1, . . . , Xn such that

Pr {θ ∈ R | X1, . . . , Xn} = 1− α.

Note that R depends on the prior π(·).

Example 28.8

Suppose we have a distribution. Our interval is

I =

[
Xn −

q1−α/2√
n

,Xn +
q1−α/2√

n

]
.

Remark 28.9. Note that Bayesian confidence region and confidence interval are
two distinct notions, even if they look exactly the same!

• Bayesian confidence regions have nothing asymptotic about them.

• Here we are concerned with

Pr {θ ∈ I | X1, . . . , Xn} = 1− α.

Previously, we cared about

Pr {I 3 θ} = 1− α.

The former considers θ as random, while the latter considers our confidence
interval as based on random data (and the parameter was never random).

28.3 Bayesian estimation

Why does our professor care about Bayesian statistics if he’s a frequentist? We
can use the Bayesian framework to estimate underlying parameters!

“Belief is for statisticians. Knowledge is for frequentists.”—veb

Suppose X1, . . . , Xn is associated with statistical model (E, (Pθ)θ∈Θ. We
compute the posterior π(· | X1, . . . , Xn) associated with our prior, and we output
the Bayes estimator

ϑ̂(π) =

∫
Θ

θ dπ(θ | X1, . . . , Xn)

also known as the posterior mean.
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29.1 Linear regression

Consider a cloud of i.i.d. random points (Xi, YI), i = 1, . . . , n. We want to fit a
line that “looks good.” How?

0 1 2 3 4 5

0

2

4

6

For Yi ∈ R, Xi ∈ Rd, all lines have the form

YI ≈ a+XT
i b, a ∈ R, b ∈ Rd.

Suppose we wanted to minimize

f(a, b) = E
[
(Y − a− bX)2

]
with respect to a and b. How?

Let’s bash out the math and take gradients.

f(a, b) = E
[
(Y − a− bX)2

]
= E

[
Y 2 + a2 + b2X2 − 2aY − 2bXY + 2abX

]
= E

[
Y 2
]

+ a2 + b2E
[
X2
]
− 2aE [Y ]− 2bE [XY ] + 2abE [X]

by linearity of expectation. We first compute the gradient and set it to zero:

∇f(a, b) =

(
2a− 2E [Y ] + 2bE [X]

2bE
[
X2
]
− 2E [XY ] + 2aE [X]

)
=

(
0
0

)
.

Solving with respect to a and b,

b =
cov (X,Y )

VarX
a = E [Y ]− bE [X]

= E [Y ]− cov (X,Y )

VarX
E [X] .

Now let’s evaluate the Hessian at our (a, b) to ensure that (a, b) is a minimum.
We obtain

∇f(a, b) =

(
2 2E [X]

E [X] 4E
[
X2
] )
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which is positive definition, since diagonal entries are positive and the deter-
minant is positive. So this function is strictly convex and (a, b) is the unique
global minimum.

Now let ε = Y − (a+ bX), so that Y = a+ bX + ε. We know that

cov (ε,X) = cov (Y,X)− bcov (X,X) = 0

by definition of b, and

E [ε] = E [Y ]− a− bE [E] = 0

by definition of a. Now let’s summarize and formalize our arguments.

Definition 29.1. Let X,Y be 2 random variables and assume that Y = α +
βX + η, where α, β ∈ R and η is a random variable such that{

E [η] = 0

cov (X, η) = 0.

Then α+ βX is the theoretical linear regression of Y on X.

Claim 29.2. The linear regression of Y on X is unique.

Proof. The linear regression of Y on X is given by the two numbers a, b that
minimize f(a, b) = E

[
(Y − a− bX)2

]
. We expand this to

f(a, b) = E
[
(α+ βX + η − a− bX)2

]
= E

[
((α− a) + (β − b)X + η)

2
]

= Var
[
((β − b)X + η)

2
]
− E

[
((α− a) + (β − b)X + η)

2
]2

= (β − b)2 VarX + Var η + ((α− a) + (β − b)E [X])
2
.

Here, both terms are non-negative, so f(a, b) ≥ Var η with equality if and only if

(β − b)2 VarX = 0

((α− a) + (β − b)E [X])
2

= 0.

This minimum is achieved at exactly (α, β) = (a, b).

Definition 29.3. The least squared error (LSE) estimator of (a, b) is the
minimizer of the sum of squared errors

n∑
i=1

(Yi − a− bXi)
2.

In fact, (â, b̂) is an M-estimator, and

b̂ =
XY −XY
X2 −X2

â = Y − b̂X.
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29.2 Multivariate linear regression

Suppose
Yi = XT

i β + εi, i = 1, . . . , n

where Xi ∈ Rd is a vector of explanatory variables or covariates and Yi is
a dependent variable. Without loss of generality, we may assume that the
first coordinate of Xi is 1, so that

β = (a, bT )T

where we add the intercept a as the first term of β.

We can summarize these equations in matrix form,

Y = Xβ + ε

where X ∈ Rn×d, Y ∈ Rn, and ε ∈ Rn.17 The LSE β̂ satisfies

β̂ = arg min
t∈Rd
|Y −Xt|2

with respect to t ∈ Rd.
When t ranges in Rd, then Xt ranges in the image of X. If v̂ = Xβ̂, then v̂

must minimize |Y − v̂|2 with respect to the image of X.

Notice that |Y − v̂|2 is the Euclidean distance between Y and v, so the error
Y − v̂ is orthogonal to v,∀v in the image of X. Equivalently, (Xt)T (Y − v̂) =
0,∀t ∈ Rd. We distribute the transpose,

tTXT (Y − v̂) = 0,∀t ∈ Rd.

If this equation holds for all t, then XT (Y − v̂) must be equal to 0. Thus solving,
we obtain that

XTY = XT v̂ = XTXβ̂

and our v̂ is
v̂ = X(XTX)−1XTY

or the orthogonal projection of Y onto the subspace spanned by the columns of
X.

We assume the following.

• X is deterministic and has rank d, so n ≥ d.

• The model is homoscedastic—that is, ε1, . . . , εn are i.i.d.

• The noise vector ε is Gaussian,

ε ∼ Nn(0, σ2In)

for some known or unknown σ2 > 0.

17The machine learning world seems to enjoy the notation XT β instead.
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“Is he giving you another pset? He can’t do that!”—pfeffer

“He’s doing the thing professors all do at the end of the semester:
rush through a bunch of stuff really quickly.”—pfeffer

30.1 Recitation 13

Let (X1, Y1) . . . (Xn, Yn) be i.i.d. pairs where Xi ∈ Rd, Yi ∈ R, d ≥ 1. Further-
more, let Yi = XT

i β + εi where β ∈ Rd and εi is a real-valued random variable
with cov (Xi, εi) = 0.

1. The matrix version is
Y = Xβ + ε

where Y ∈ Rn, X ∈ Rn×d and XT
i are the rows of X.

2. By definition, the LSE minimizes f(t) = |Y −Xt|2 with respect to t ∈ Rd.
We compute the LSE using two methods.

(a) We may take the gradient and set it to zero:

f ′(t) = −2XT (Y −Xt) = 0.

Solving, we find that XTY = XTXt and

t = (XTX)−1XTY.

This only holds because we assume X has rank ≥ d. In class we also
proved that this t is a global minimum since its Hessian is positive
definite.

Remark 30.1. If this is “scary,” the TA’s talking about it isn’t going
to make it less scary, so he might just hurry up and continue. . .

(b) Let v = Xt. Rephrasing our problem, we want to minimize |Y − v|2.
Observe that this value is simply the Euclidean distance between Y
and v, so we are looking for the vector v in the image of X that is
closest to Y . Geometrically, the error Y −Xβ ⊥ v,∀v in the image
of X, so

(Xt)T (Y −Xβ) = 0,∀t ∈ Rd

tTXT (Y −Xβ) = 0,∀t ∈ Rd

XT (Y −Xβ) = 0 if above holds for all t

XTY = XTXβ

β = (XTX)−1XTY,

which is the same as above.

3. Suppose f is the pdf of X1 and assume that εi ∼ N (0, σ2) ⊥⊥ X. Note
that the conditional pdf of (X1, Y1) . . . is g(x, y) = f(x)???
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(a) Since Yi = XT
i β + εi, the conditional distribution of Yi given Xi is

N (XTβ, σ2).

We know that the conditional pdf is a Gaussian,

1√
2πσ2

exp

The likelihood is

Ln : (Rd × R)n × (Rd × (0,∞))→ R(
(x1, y1), . . . , (xn, yn), (µ, σ2)

)
7→
∏
i

f(xi)(2πσ
2)−n/2 exp

(
− 1

2σ2

∑
i

(Yi −XT
i β)2

)
finish w/
photos
finish w/
photos

(2πσ2)−n/2 exp

(
−|Y −Xβ|

2

2σ2

)

(b) Hence the MLE
(
β̂, µ̂

)
maximizes Ln, which does not depend on f .

(c) Finally, σ̂2 maximizes

−n
2

log 2πσ2 − |Y −Xβ|
2

2σ2

and we find that σ̂2 = |Y −Xβ|2 /n.

(d) β̂ = (XTX)−1XT y.

insert imageinsert image

Since εi is normally distributed, independent of Xi. So the conditional
distribution of β given X is

Nd
(
β, σ2AAT

)
where AAT = (XTX)−1XTX(XTX)−1 = (XTX)−1.
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31 May 10, 2018

31.1 Linear regression review

Recall from our previous lecture that linear regression of Y on X takes the form

Y = Xβ + ε

where β ∈ Rd, Y ∈ Rn, X ∈ Rn×d, and ε ∈ Rn. In recitation and the previous
lecture, we found that the LSE is

β̂ = (XTX)−1XTY

via first order conditions and a geometric explanation. Equivalently, we may say

Xβ̂ = PY

where P = X(XTX)−1XT , which is an orthogonal projector (easy to check that
P = PT ).

Now let’s translate some linear algebra into statistics. We assumed that X
has rank d. In statistical terms, this means that the parameter β is identified.
We know that

Xβ = X(β + t)

for all t in the kernel of X. If X has a nontrivial kernel, then β is not unique.

31.2 Linear regression with deterministic design

Example 31.1

We want to investigate if a person’s age has anything to do with the number
of apples he or she’s eaten in a lifetime. How can we sample?

• Maybe we just sample randomly. Okay, then the Xi’s are random.

• Suppose instead that we want 100 people who are 10, 20, 30,. . . ,80.

In the latter case, the Xi’s are deterministic, but the Yi’s are random.

“Hmm. . . how do I do that in the US? Maybe I’ll ask the IRS. . . Wait,
I’ll just ask Facebook!”—veb

Formally, let the design matrix X be deterministic with rank d. Further-
more, we assume that the model is homoscedastic—that is, the ε1, . . . , εn are
i.i.d. and ε ∼ Nn(0, σ2In) for some known or unknown σ2 > 0.

We have Yi = XT
i β + εi where the conditional distribution of εi given Xi is

ε | Xi ∼ Nn(0, σ2In).

Using this information, we find that

E [εi] = E [E [εi | Xi]] = 0.
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and

cov (εi, Xi) = E [εiXi]− E [εi]E [Xi]

= E [E [εiXi | Xi]]− 0

= E [XiE [εi | Xi]] = 0

since given Xi, Xi itself is fixed. Here, the distribution of εi | Xi does not
depend on Xi, so

• the distribution of εi is the same as the conditional,

• and εi is independent of Xi.

Remark 31.2. This model is unrealistic in practice. For example, if someone is
really old, they might have Alzheimer’s, so their answers might have more error
than someone in their prime.

Remark 31.3. Linear regression appears a lot in econometrics. If ε1, . . . , εn are
i.i.d., the model is homoscedastic, and otherwise it is heteroscedastic. Statisti-
cians don’t care as much.

Recall that β̂ = (XTX)−1XTY , where X is deterministic. So Y = Xβ +
ε, εNn(0, σ2I) and

Y ∼ Nn(Xβ, σ2I).

Let A = (XTX)−1XT , so that β̂ = AY . Then

β̂ = AY ∼ Nd(AXβ,Aσ2IAT ) = Nd(β, σ2(XTX)−1).

Notice that β̂ is unbiased!

31.3 Significance tests

“Let’s play with this formula! . . . It’s the end of the semester and
my jokes are getting worse and worse.”—veb

We can calculate the quadratic risk of β̂:

E
[∣∣∣β̂ − β∣∣∣2] =

∑
i

E [(] β̂j − βj)2

=
∑
i

Var β̂j

=
∑
i

σ2γi where γi are the diagonal entries of (XTX)−1

= σ2 Tr(XTX)−1.

Consider the hypotheses

H0 : β = 0 H1 : β 6= 0

and assume that σ2 is known (for now). By the CLT,

1

σ
(XTX)−1/2(β̂ − β) ∼ Nd(0, I).
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If H0 is true, then
1

σ
(XTX)−1/2β̂ ∼ Nd(0, I)

which is a fine test statistic, except that we have d dimensions. So let’s convert
it into a chi-squared test:

1

σ2
β̂TXTXβ̂︸ ︷︷ ︸
Tn

∼ χ2
d.

We reject when Tn is greater than some quantile. We may also write that

Tn =
|Xβ̂|2
σ2 .

Suppose instead that σ2 is not known. Our likelihood is

Ln : Rn × Rd × (0,∞)→ R

(y1, . . . , yn, β, σ
2) 7→

n∏
i=1

1√
2πσ2

exp

(
− (y −XT

i β)2

2σ2

)

Ln(Y1, . . . , Yn, β, σ
2) = (2πσ2)−n/2 exp

(
− 1

2σ2

∑
i

(Yi −XT
i β)2

)
.

Hey look, the right hand side looks a lot like the LSE! So the LSE is actually
just the MLE.

Let ε̂ = Y −Xβ̂ = X(β − β̂) + ε. Plugging in our definition of β̂,

ε̂ = −X(XTX)−1XT ε+ ε = ε− Pε.

Recall that P = X(XTX)−1XT is an orthogonal projector onto the image of
X. Then guess what? ε− Pε is the projection of ε onto the orthogonal space.
Thus we can write ε̂ = Qε and

ε̂ ∼ Nn(0, σ2QQT ) = Nn(0, Q).

Since Q has rank n− d, |ε̂|2 /σ2 ∼ χ2
n−d.
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32.1 Generalized Cochran’s theorem

Let’s start with a bit of linear algebra. Let U = (U1 . . . Un)T ∼ N (0, I), or

equivalently, U1, . . . , Un
i.i.d.∼ N (0, 1). Let P be an orthogonal projector in Rn.18

We denote E as the image of P . Consider the matrix I−P . The vector (I−P )x
is the orthogonal projector onto the kernel of P .

E

(I − P )x

Px

x

Proposition 32.1

PU follows the properties that

• PU ⊥⊥ (I − P )U and

• PU ∼ N (0, P ).

Proposition 32.2

It follows that

• |PU |2 ∼ χ2
k and

• |(I − P )U |2 ∼ χ2
n−k.

Recall that Y = Xβ + ε and the linear regression of Y on X is β̂ =
(XTX)−1XTY . We denote Xβ̂ as the prediction of Y .

Theorem 32.3

β̂ ⊥⊥ σ̂2.

Proof. We previously solved that Xβ̂ = PY , where P = X(XTX)−1XT is the
orthogonal projection of Y onto the image of X.

Consider the quantity

X(β̂ − β) = Xβ̂ −Xβ = PY −Xβ.

By definition, Xβ is in the image of X, and the projection of Xβ into the image
of X is Xβ. Thus,

PY −Xβ = PY − P (Xβ) = P (Y −Xβ) = Pε.

18By definition, P is symmetric and PP = P . For any vector x ∈ Rn, Px is the closest
vector in E to x.
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So we may conclude that
1

σ
X(β̂ − β) = PU

where U = 1
σ ε ∼ Nn(0, I). Now consider (I − P )U . We expand as

(I − P )U = U − PU

=
1

σ

(
ε−X(β̂ − β)

)
=

1

σ

(
Y −Xβ̂

)
.

Since PU ⊥⊥ (I − P )U , we may conclude that

Xβ̂ −Xβ ⊥⊥ Y −Xβ̂.

First, observe that Xβ is deterministic, so Xβ̂ ⊥⊥ Y − Xβ̂. Now note the
following:

(XTX)−1(XTX)β̂ ⊥⊥ Y −Xβ̂

and we may conclude that β̂ ⊥⊥ Y −Xβ̂. We take the squared norm of the right
side,

β̂ ⊥⊥ 1

n

∣∣∣Y −Xβ̂∣∣∣2 = σ̂2

where σ̂2 = 1
n−d |Y −Xβ|

2
= n

n−d σ̂
2
MLE is an unbiased estimator.19

Remark 32.4. Recall that long ago, we mentioned that a corrected sample
variance was

1

n− 1

∑
i

(Xi −Xn)2

instead of our standard 1/n. Finally, we see why.

Corollary 32.5

Multiply by n to obtain

nσ̂2

σ2
= |(I − P )U |2 ∼ χ2

n−d

where d = rank X and σ̂2 is the MLE.

This looks a lot like Cochran’s theorem!

32.2 Significance tests, ctd.

connect with
previous
lecture

connect with
previous
lecture

β̂j = N
(
βj , [σ

2(XTX)−1]j
)

So by the CLT,

β̂j − βj
σ
√
γj
∼ N (0, 1)

19The MLE is biased as E
[
σ̂2
MLE

]
=

σ2(n−d)
n

.
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where γj = [σ2(XTX)−1]j . If σ2 is known, then let

T =
β̂j

σ
√
γj

and our test is δ = 1|T |>q1−α/2 where q1−α/2 is a quantile of the standard
Gaussian.

If σ2 is unknown, then let

T (j) =
β̂j√
σ̂2γJ

where σ̂2 is the unbiased estimator from the previous section. We may expand
T (j) as

T (j) =
β̂√
σ2γJ

· 1√
σ̂2/σ2

=
β̂j√
σ2γj

· 1√
1

n−d
|Y−Xβ̂|2

σ2

If H0 is true, the first term is a standard Gaussian, and
|Y−Xβ̂|2

σ2 ∼ χ2
n−d.

Remember what this looks like? A student random variable!

32.3 Implicit hypotheses (linear)

Let G be a k × d matrix with rank G = k, k ≤ d and λ ∈ Rk. Consider the
hypotheses

H0 : Gβ = λ H1 : Gβ 6= λ.

That is, we only want to test if a linear function on a subset of the coordinates
is true.

Example 32.6

If we wanted to test H0 : β1 = β2, when we could say β1 − β2 − 0, and
Gβ = 0 where G =

(
1 −1 0 . . .

)
∈ R1×p.

Example 32.7

If we wanted to test H0 : β1 = β2 = β3, then we have equations β1 = β2

and β2 = β3. So we may define

G =

(
1 −1 0 . . . 0
1 0 −1 . . . 0

)
.

Recall that β̂ ∼ Nd(β, σ2(XTX)−1) in the previous problem. We easily see
that

Gβ̂ − λ ∼ Nk(Gβ − λ,Gσ2(XTX)−1GT ).
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If H0 is true, then
Gβ̂ − λ ∼ Nk(0, σ2Σ)

where Σ = GT (XTX)−1GT for “the rest of the semester.” We assumed previ-
ously that rank G = k,20 so we may apply our usual simplifications

1

σ
Σ−1/2(Gβ̂ − λ) ∼ Nk(0, I).

Hence,
1

σ2
(Gβ̂ − λ)TΣ−1(Gβ̂ − λ) ∼ χ2

k.

What is σ2 is unknown? Use σ̂2! Let

Sn =
1

σ̂2
(Gβ̂ − λ)TΣ−1(Gβ̂ − λ).

If H0 is true, then Sn ∼ Fk,n−p where F is the Fisher distribution, defined
below.

Definition 32.8. The Fisher distribution with p and q degrees of freedom,

denoted by Fp,q is the distribution of U/p
V/q , where

• U ∼ χ2
p, V ∼ χ2

q, and

• U ⊥⊥ V .

Remark 32.9. Here we cannot use the 1− α/2 quantile for Sn, because it is not
symmetric! The Fisher distribution is strictly positive.

20This makes perfect sense. It means that we don’t have redundant equations.
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33.1 Review

Today we will review the main ideas from this course and then discuss some
further topics in statistics.

33.1.1 Basics

We started with the building blocks of statistics—you must own the law of large
numbers and the central limit theorem.

Remark 33.1. The law of large numbers and the central limit theorem are only
for i.i.d. sample averages.

Example 33.2

Suppose we have X1, . . . , Xn i.i.d. real valued random variables. We would
like to estimate the variance V = VarX1.

Recall that the variance has two equivalent formulas,

VarX1 = E
[
(X1 − E [X1])2

]
= E

[
X2

1

]
− E [X1]

2
.

The sample average V̂ also has two equivalent formulas,

V̂ =
1

n

n∑
i=1

(Xi −Xn)2 = X2
n −X

2

n.

Notice that the first formula is a sample average, but the random variables
(Xi −Xn)2 are not i.i.d. However, the second formula is the sum of two sample
averages (squared), so we can use the LLN and show that the sample variance
is consistent.

To show asymptotic normality, we cannot apply the CLT twice on both terms
of the second formula. The difference of two asymptotically normal random
variables is not guaranteed to be asymptotically normal. Instead, we should use
the Delta method and CLT on the two-dimensional variable

(
Xn X2

n

)
.

Let θ̂ be an estimator of some θ ∈ Rd with

√
n(θ̂ − θ) d−→

n→∞
Nd (0,Σ(θ))

and assume that Σ(θ) is invertible. Then

√
nΣ(θ)1/2(θ̂ − θ) d−→

n→∞
Nd(0, I).

Consider the hypotheses

H0 : θ = θ0 H1 : θ 6= θ0.

If H0 is true, we may write that

√
nΣ(θ0)1/2(θ̂ − θ0)︸ ︷︷ ︸

Tn

d−→
n→∞

z
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where z
d−→

n→∞
Nd(0, I) and Tn is our test statistic. However, it is often more

convenient to compute the squared norm |Tn|2,

|Tn|2 = n(θ̂ − θ0)TΣ(θ0)−1(θ̂ − θ0)
d−→

n→∞
χ2
d.

Finally let’s talk Slutsky’s theorem. Instead of first assuming that H0 is true,
we may write that √

nΣ(θ̂)1/2(θ̂ − θ) d−→
n→∞

Nd(0, I).

which follows from Slutsky’s theorem, where the Σ terms may be expanded as

Σ(θ̂)−1/2Σ(θ)1/2︸ ︷︷ ︸
P−→

n→∞
I

√
nΣ(θ)−1/2(θ̂ − θ)︸ ︷︷ ︸

d−→
n→∞

z

.

“I’m going to write on the left board because it’s the first time I’m
writing on the left board. It feels great!”—veb

Remark 33.3. If you use Slutsky’s theorem, make sure you always know how
the terms decompose.

Example 33.4

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p). By the CLT,

√
n

Xn − p√
p(1− p)

d−→
n→∞

N (0, 1).

It is clearly false that

√
n

Xn −Xn√
Xn(1−Xn)

= 0
d−→

n→∞
N (0, 1).

We can indeed replace the two p’s in the denominator, since we can multiply by
the ration of p’s to Xn’s. However, there is no way we can replace the numerator
p’s. Let’s try:

√
n
Xn −Xn√
p(1− p)

=
√
n

Xn − p√
p(1− p)︸ ︷︷ ︸

d−→
n→∞

N (0,1)

+
√
n

p−Xn√
p(1− p)

.

Sure, p−Xn converges to 0, but
√
n(p−Xn) doesn’t converge to anything!

Example 33.5

The quantity 1/ log n→ 0, but
√
n/ log n→∞.

33.1.2 Parametric estimation

We defined a statistical model as the tuple
(
E, {Prθ}θ∈Θ

)
where E is the sample

space and {Prθ}θ∈Θ is a family of distributions. That is, there exists a function
σ that maps θ 7→ Prθ. If θ is identified, then σ is injective.
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Example 33.6

If Θ = (0,∞) and Prθ = U([θ, 2θ]), then θ is identified as the left boundary
of the support.

33.1.3 Likelihood

The professor reminds us to remember the domain and codomain.

Example 33.7

Let X1, . . . , Xn ∼ fθ with parameter θ.

The likelihood always takes the form

Ln : En ×Θ→ R
(x1, . . . , xn, θ) 7→ fθ(X1, . . . , Xn), evaluated at x1, . . . , xn.

Example 33.8

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. pairs where X1 ∼ f on Rd and condi-
tional on X1, Y1 −XT

1 β ∼ N (0, σ2) for some unknown β ∈ Rd, σ2 > 0.

Equivalently, we may write Y1 = XT
1 β + ε1 where conditional on X1, ε1 ∼

N (0, σ2). The likelihood is

Ln : (Rd × R)n × Rp × (0,∞)→ R(
(x1, y1), . . . , (xn, yn), β, σ2

)
7→

n∏
i=1

fXi(xi)fYi|Xi=xi(yi).

We can use Baye’s formula to find the joint distribution. Conditional on X1,
Y1 ∼ N (XT

1 β, σ
2). So our final likelihood is

Ln(
(
(x1, y1), . . . , (xn, yn), β, σ2

)
=

n∏
i=1

f(xi)
1√

2πσ2
exp

(
− 1

2σ2
(yi − xTi β)T

)
.

Remark 33.9. When we refer to “conditional on X, Y ∼ f”, we may not write
Y | X ∼ f . This notation is wrong. Oops I’m guilty of this. LOL

We move on to Fisher information. Let

ϕ : Rd → R
t 7→ tTAt+ µT t

where A ∈ Rd×d is symmetric and µ ∈ Rd.
Remark 33.10. It’s subtle, but we may write t = (t1, t2, . . . , tn) to refer to a
n-dimensional column vector. OMG this would save me so much time.

The gradient of ϕ is ∇ϕ(t) = 2At+ µ. The Hessian is ∇2ϕ(t) = 2A. If A is
not symmetric, then replace 2A← A+AT .
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34 May 21, 2018

34.1 Final office hours

34.1.1 Slutsky’s theorem

We review question 2 from problem set 10.

Example 34.1

Let X1, . . . , Xn
i.i.d.∼ U([0, θ]) given θ, with some prior on θ.

The Bayesian estimator was

θ̂ =
n− 2

n− 1
max
i
Xi.

Is θ̂ asymptotically normal? We cannot apply the theorem for the MLE, but
this does not imply that θ̂ is not asymptotically normal. Instead, θ̂ is not
asymptotically normal because it is biased, and

√
n(θ̂− θ) ≤ 0. Thus θ̂− θ does

not converge in distribution to anything centered around 0.

Example 34.2

Let X1, . . . , Xn
i.i.d.∼ Bernoulli(p), given p, p ∼ Beta(a, b).

The Bayesian estimator was

p̂(i) =
a+

∑
iXi

a+ b+ n
.

How do we show asymptotic normality? Many people divided the top and
bottom by n, okay:

p̂(i) =
a/n+Xn

(a+ b)/n+ 1
.

Afterwards, people wrote a/n+Xn
(a+b)/n+1 → Xn, which is wrong! The right hand side

cannot depend on n. Instead, we should say

a/n+Xn

(a+ b)/n+ 1

P−→
n→∞

p.

Now onto asymptotic normality.

√
n(p̂(i) − p) =

√
n

(
a/n+Xn

(a+ b)/n+ 1
− p
)

=
√
n

(
a/n+Xn

(a+ b)/n+ 1
−Xn +Xn − p

)
=
√
n

(
a/n+Xn

(a+ b)/n+ 1
−Xn

)
+
√
n
(
Xn − p

)︸ ︷︷ ︸
d−→

n→∞
z,z∼N (0,1)

.
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Remember, whenever we use Slutsky’s theorem, we need to decompose our
quantity of interest into two terms—one that converges to a constant, and one
that converges to something else. The right term converges to z, but the left
term is more complicated.

√
n

(
a/n+Xn

(a+ b)/n+ 1
−Xn

)
=
√
n

(
a/n+Xn − ((a+ b)/n+ 1)Xn

(a+ b)/n+ 1

)
=
√
n

(
a/n− (a+ b)Xn/n

(a+ b)/n+ 1

)
=

1√
n

a− (a+ b)Xn

(a+ b)/n+ 1

P−→
n→∞

0.

How do we arrive at this result? Our quantity of interest is almost just the
sample mean:

√
n(p̂(i) − p) =

√
n(Xn − p)︸ ︷︷ ︸

d−→
n→∞

N (0,p(1−p))

+ correction︸ ︷︷ ︸
P−→

n→∞
0

.

34.1.2 Remarks about laziness

Remark 34.3. Read the exam carefully. Sometimes there will be convergence in
distribution, followed by non-asymptotic tests. Be careful!

“In life, I’m a pretty lazy person, but you’ve never seen me write
something like

∑
iXi, and I’m probably more lazy that 50% of the

people in this room”—veb

Welp I guess I’m guilty of that.

“The extreme level of lazy is
√
n(Xn − p) −→ N (0, p(1− p)).

A little better is
√
n(Xn − p)

(d)−→ N (0, p(1− p)).

Best is √
n(Xn − p)

d−→
n→∞

N (0, p(1− p)).

Don’t be lazy.”—veb

At least I’m not guilty of this!

• Some people will say “approaches.” Please don’t. Use good notation, ya?

• Don’t put an n on the right side of a limit. The n goes to infinity. It’s
gone.

• Don’t drop your
√
n terms.

√
n
(
Xn − a/n− p

)
=
√
n
(
Xn − p

)
+ a/

√
n

where we may apply Slutsky’s theorem, but
√
n
(
Xn − a/ log n− p

)
→∞

diverges due to the
√
n/ log n.
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34.1.3 Notes on chi-squared intuition

Question 34.4. How do we think about χ2 dimensions intuitively?

Consider the following case.

Example 34.5

If U = (u1, u2, . . . , un) ∼ Nn(0, I) and P is an orthogonal projection on a

linear subspace of Rd of dimension d, what is the distribution of |PU |2?

A simple such orthogonal projection takes

(u1, u2, . . . , un)→ (u1, u2, . . . , ud, 0, . . . , 0).

Likewise, if we take I − P , then we are left with d+ 1, d+ 2, . . . , n as nonzero
terms. Hey look, that’s why proposition 32.2 has χ2 degrees of freedom of d and
n− d.

34.1.4 Positive definiteness and unique minimum

Recall that the ridge estimator was defined as

arg min
t∈Rd

f(t) = |Y −Xt|2 + λ |t|2 .

The Hessian is
∇2f(t) = 2(XTX + λI).

A common pitfall is to say

the Hessian is positive definite, so it is strictly convex, so it has a
unique minimum

which is wrong. Consider g(t) = et, t ∈ R. This function is strictly convex but
does not have a minimum at all.

We may show that the Hessian is positive definite if

∀u ∈ Rd \ {0} , uT 2(XTX + λI)u > 0.

Let’s expand:

uT 2(XTX + λI)u = 2(uTXTXu+ λuTu)

= 2
(

(Xu)T (Xu) + λ |u|2
)

= 2
(
|Xu|2 + λ |u|2

)
.

Notice, we don’t know if X is full rank, and we don’t need to. What matters is
that λ is positive and u is non-zero, so the whole quantity is strictly positive.

“You can’t just make a right turn because you want to. You have to
signal and follow the rules. Why do you write lines in math? You
write what you feel like—and you have a car accident! You’re not
respecting the rule so you’re going to jail.”—veb
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“Ask anyone who studies algebraic topology and they’ll tell you
that statistics is not math. Statistics is for mathematicians who
fail.”—veb

I feel the last quote so much omg lol.

34.1.5 Covariance matrices

Covariance matrices are always positive semi-definite!

Suppose Σ is the covariance matrix of X. Then uTΣu is the covariance
matrix of uTX, which is always non-negative. If u 6= 0 and Σ is positive definite,
then we may say that VaruTX > 0 which is a strict inequality.

34.1.6 Cochran’s theorem

“If you have ‘Cochran’s theorem’ and ‘converge’ in the same sentence,
you’re wrong.”—veb

One-dimensional Multi-dimensional

Y1, . . . , Yn
i.i.d.∼ N (µ, σ2). Y1, . . . , Yn independent with Yi ∼

N
(
XTβ, σ2

)
where β ∈ Rd.

µ̂ = Y n β̂ = (XTX)−1XTY

σ̂2 = 1
n

∑n
i=1(Yi − µ̂)2 σ̂2 = 1

n

∣∣∣Y −Xβ̂∣∣∣2 = 1
n

∑n
i=1(Yi −

XT
i β̂)2.

µ̂ ⊥⊥ σ̂2 β̂ ⊥⊥ σ̂2

nσ̂2

σ2 ∼ χ2
n−1

nσ̂2

σ2 ∼ χ2
n−d

In linear regression, the prediction error is

E
[∣∣∣Y −Xβ̂∣∣∣2] = σ2E

[∣∣∣Y −Xβ̂∣∣∣2 /σ2

]
= σ2 E

[
nσ̂2/σ2

]︸ ︷︷ ︸
χ2
n−d

= σ2(n− d)

The professor will not divulge anything about the exam format. There may
be a quiz, there may not, but it’s good to be prepared! How many problems? It
doesn’t matter either! I could give you one big problem. It’s a final exam so it
covers everything. Absolutely everything.
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34.1.7 Wald’s test review

Let X1, . . . , Xn ∼ ε(λ) and suppose we wanted to compute Wald’s test for
hypotheses

H0 : λ = 1 H1 : λ 6= 1.

First, we show that the MLE is asymptotically normal:

√
n(λ̂− λ)

d−→
n→∞

N (0, λ2).

Next, we rescale to a standard distribution:

√
n(λ̂− λ)/λ

d−→
n→∞

N (0, 1).

Finally, we apply Slutsky’s theorem:

√
n
λ̂− λ
λ
· λ
λ̂

d−→
n→∞

N (0, 1).

Our test statistic is

Tn =
√
n
λ̂− 1

λ̂

and one potential test is δ = 1|Tn|>q1−α/2

Usually we might take the squared norm of Tn, but this is not necessary for
one dimension. Wald’s test squares Tn to obtain that

δW = 1T 2
n>q1−α

= 1|Tn|>
√
q1−α

where q1−α correspond to the 1− α quantile of χ2
1. Notice here that the square

root of χ2
1 is simply the standard normal, so we don’t need to square (and in

fact, tables for the standard normal are generally more precise than equivalent
tables for the chi-squared).
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