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1 February 7, 2017

1.1 Administrivia

• Lectures in 26-100, Mondays and Wednesdays at 11. Recitations on
Fridays, based on registrar.

• Prerequisites: 6.006 and 6.042 (or proof experience).

• Two in-class quizzes (March 14, April 13), plus a final exam. 25% of grade,
and final is worth 40%.

• There are 10 problem sets, with 10 grace days. Lowest two problem sets
are half-weighted, to “reduce the variance in problem sets.”

• Lectures are recorded, but attend class, or the professors will be sad.

1.2 Introduction

In 6.006, we learned about basic algorithms. This class is about the art and
craft of algorithms. And if you really like the “art” side of this, take 6.854.

1.3 Time complexity

There are categories of time complexity, the simplest of which is linear time, an
example of which is graph connectivity. The next is O(n log n) time, and then
there’s quadratic, polynomial time.

Definition 1.1. Problems in Class P are problems that can be solved in
polynomial time.

Example 1.2

All-pairs-shortest-paths can be solved in polynomial time. However, not all
problems fall into this class.

Definition 1.3. Problems in Class NP can be verified in polynomial time,
but we are unsure if we can solve them in polynomial time.

Example 1.4

We can check if a graph has a Eulerian or Hamiltonian cycle in polynomial
time (visiting every edge or vertex). We would like to know the relationship
between P and NP, so the million dollar question is, P=NP?

Definition 1.5. If a problem is NP-complete, then it is as hard as any NP
problem, and if that problem is in P, then P=NP.

Very similar-sounding problems can have very different complexities, so it’s
a fallacy to think “this problem sounds similar, it must be similar.”

1
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1.4 Interval scheduling

Imagine that you are the registrar, scheduling classes.

Problem 1.6 (Basic interval scheduling)

We have a list of requests ri, for 1 ≤ i ≤ n, with starting times ai and
ending times bi. Two requests ri and rj are compatible if ai ≥ bj or bi ≤ aj .
The goal is to schedule the maximal compatible set.

Naive solution: check every single subset! But unfortunately, this takes
exponential time, so on an exam you’d get no points.

Come on, this is MIT. We want a braindead efficient algorithm, like
when you’re doing your pset at 1 or 2 am. —Madry

We begin with a greedy approach: schedule requests by selecting the most-
profitable, remaining request at each step. What rule do we use for “profitabil-
ity”?

1. Select the shortest request (lowest bi − ai).

2. Select request with fewest incompatibles.

3. Select the request that finishes earliest (lowest bi).

Theorem 1.7

The greedy algorithm for interval scheduling with earliest finish time always
returns the optimal answer.

Proof. Let o(R) be the optimal solution, and g(R) be the greedy solution. Let
some ri be the first request that differs in o(ri) and g(ri). Let r′i denote ri for
the greedy solution. We claim that a′i > bi−1, else the requests differ at i− 1.
There are thus two cases.

Case 1. b′i < bi The greedy solution would have chosen ri.

Case 2. b′i ≥ bi The optimal solution is not optimal.

So the greedy and optimal solutions are equivalent. The runtime is O(n log n).
Sort requests by lowest bi in O(n log n) and take top m that are compatible in
O(n).

Now imagine instead that we want to accommodate the most students, rather
than scheduling the most classes.

Problem 1.8 (Weighted interval scheduling)

We have samples ri = (ai, bi, wi), where we want to maximize o(R) =
∑
wj

for scheduled rj ∈ R.

2
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Solution. We will use dynamic programming. Our subproblem is to accept or
reject ri, given the optimal solution for the rest.

Case 1. ri ∈ R so o(R) = wi + o(R− incompatibles)

Case 2. ri 6∈ R so o(R) = o(R− ri)

So

o(R) = max

{
o(R) = wi + o(R− incompatibles)

o(R− ri)

Note that the set of incompatibles for ri forms a prefix. Thus we have a
subproblem for every suffix rj , rj+1, . . . , rn. It will take O(n) time to find the
right suffix, so this will take a total of O(n2) time. This time can be reduced to
O(n log n) with binary search.

3
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2.1 Divide and conquer

Lecture cancelled due to snow. Notes were taken from professor’s recording.

We have an input of size n, which we divide into a pieces, recursively apply
our algorithm, and combine the results. Let the runtime be T (n) = aT (na )+f(n)

Problem 2.1 (Median finding)

Given a set S of n numbers, we define x ∈ S, rank(x) as # of elements
∈ S ≤ x. The upper median is rank(x) =

⌈
m
2

⌉
, and lower median is

rank(x) =
⌊
m
2

⌋
. Given S, we want to find x subject to rank(x) = i.

Naive solution: we sort the list in O(n log n) and take the middle. This isn’t
bad, but can we do better? Yes. Algorithm designed in 1973 to do this.

1 Pick some x ∈ S.
2 Let L = {y ∈ S|y < x}, and G = {y ∈ S|y > x}. Then rank(x) = |L|+ 1.

3 rank(x) =


= i we are done

> i want rank i, recurse on L

< i want rank i− rank(x), recurse on G

How do we cleverly choose x? In the worst case, we always choose the minimum
x, but then the runtime becomes O(n2). We would like to choose an x with
middle-ish rank, so L and G and about the same size. x needs to be c-balanced,
so |L| and |G| are within cn, for c < 1.

T (n) = T (cn) +O(n) (2.1)

Since c < 1, the size decreases exponentially, so the algorithm runs in linear
time.

1 Partition S into n
5 groups of size 5 each (O(n)).

2 Find a median of each group (O(n)).
3 Take x to be the median of medians, using the same algorithm.

Key observation: x is 3
4 -balanced. x is in the middle of the medians, so it is also

smaller than all the “larger-than-larger-median” numbers and larger than all
the “smaller-than-small-median” numbers.

“At this point, I’d ask, ‘are there any questions,’ but well, are there
any questions? I thought so.”—madry (this is a video recording due
to snow).

We didn’t take into account the time to find x, which brings us to

T (n) = T (3n/4) +O(n) + T (n/5) (2.2)

Proof left as an exercise to the reader that this is indeed O(n).

4
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Problem 2.2 (Integer multiplication)

Given two numbers a and b of n bits, compute ab.

Grade school multiplication takes O(n2). Can we do better?

Let a = x · 2n/2 + y, so x and y are the left and right parts. b = w · 2w/2 + z.
So this gives us

ab = (wx) · wn + (xz + yw) · wm/2 + yz (2.3)

Unfortunately, this is still O(n2).

But we can use Karatsuba’s algorithm. First compute xw and yz. Do not
multiple out xz or yw. Instead, compute (x+ y)(z + w).

Key idea: (x+ y)(z + w) = (xz + yw) + xw + yz

So now, runtime is

T (n) = 3T (
n

2
) +O(n). (2.4)

By Master Theorem, T (n) = Θ(nlog2 3). By repeatedly applying this, Schönage
& Strassen gives O(n log n log log n), so we are approaching “linear” time.

5
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3.1 Proof writing

Hi Devin.5 Call him “young $.” This class loves proofs. Proofs should be clear,
concise, and rigorous.

Lemma 3.1

Use lemmas for clarity.

Here is a sample proof of merge sort (algorithm given below).

1. If a has length 1, return.

2. Split a in half into l and r.

3. Recursively both l and r.

4. Merge l and r by comparing their first element, and appending the smaller
to the output.

5. Return when l and r are empty.

Proof. We prove its correctness by strong induction.

Lemma 3.2

Merge sort is correct on arrays of length 1.

This is a trivial base case. Merge sort returns on the first step for n = 1 and a
list of length 1 is sorted. This is the base case.

Now assume that merge sort is correct on arrays from length 1 to n− 1. So
the halves l and r will be correctly sorted. In the ith iteration of step 4, the ith

smallest element in both arrays is appended to the output. Since this is true for
all i, the output is correctly sorted.

3.2 Asymptotic notation

The variations of O:

• f(n) ∈ O(g(n)) if ∃c > 0, n0 subject to ∀n > n0, f(n) < cg(n). (similar
to ≤)

• f(n) ∈ o(g(n)) if ∀c > 0,∃n0 subject to f(n) < cg(n). (similar to <)

• f(n) ∈ Ω(g(n)) if ∃c > 0, n0 subject to ∀n > n0, cf(n) > g(n). (similar to
≥)

• f(n) ∈ Θ(g(n)) if ∃a > 0, b > 0, n0 such that ∀n > n0, af(n) < g(n) and
g(n) < bf(n). (similar to =)

So f(n) = O(g(n)) is equivalent to saying g(n) = Ω(f(n)). And f(n) =
o(g(n)) is equivalent to g(n) = ω(f(n)).

5devneal@mit.edu

6
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3.3 Determining runtime

3.3.1 Master theorem

Let T (n) = aT (nb ) + f(n).

Case 1 f(n) = O(nlogb a−ε), for ε > 0, has solution T (n) = Θ(nlogb a).

Case 2 f(n) = Θ(nlogb a logk n), for k ≥ 0, has solution T (n) = Θ(nlogb a logk+1 n).

Case 3 f(n) = Ω(nlogb a+ε) for ε > 0, and af(nb ) ≤ kf(n) for k < 1 and
sufficiently large n, has solution T (n) = Θ(f(n)).

3.3.2 Guess and check (induction)

Sometimes we can work from a known runtime, and guess and check.

Example 3.3 (T (n) = 2T (n4 ) + n)

We know that the runtime of merge sort is 2T (n4 ) + n, which is O(n log n).
We can just guess T (m) ≤ cm,∀m < n. Then we derive that c ≥ 2.

Example 3.4 (T (n) = 2T (n2 ) + 1)

Guess T (m) ≤ cm.

T (n) ≤ 2(c
n

2
) + 1

≤ cn+ 1

≤ cn

This is not true! There’s a constant term, so let’s try one too.

Now we guess T (m) ≤ cm− α. This is derived to work!

3.3.3 Recursion tree

Draw up the tree, count up the work, this is nice and visual. Not tikz-ing this.

7
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4.1 Polynomials

A polynomial is a function that can be expressed as a sum of monomials.

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

=

n−1∑
k=0

akx
k ⇔ (a0, a1, . . . , an−1) (4.1)

The degree of A is n− 1.

Operations on polynomials:

1. Evaluation: given A(x) and x0, evaluate A(x0). Naively, this can be done in
O(n2) time, but using Homer’s rule, A(x0) = a0+x0(a1+x0(· · ·+an−1x0)),
so we can reduce it to O(n) time.

2. Addition: given A(x) and B(x), compute C(x) = A(x) +B(x). This takes
O(n).

ck = ak + bk

3. Multiplication: given A(x) and B(x), find C(x) = A(x)B(x). This results
in a polynomial of degree 2(n− 1). Naively, this takes O(n2).

ck =

k∑
j=0

ajbk−j

However, this is a convolution, so using FFT, we can reduce this to
O(n log n)!

“You should be ashamed if something is O(n2). There are lives at
stake.”—madry

How can we represent polynomials?

• List of coefficients (above).

• List of roots and scale. A(x) = c(x− r0)(x− r1) . . . (x− rn−1).

• Set of points on a curve. yj = A(xj). Need 2(n− 1) points to multiply.

Let us examine the costs of each operation, for the different representations.

Evaluation Addition Multiplication
coef O(n) O(n) O(n2)
roots O(n) no solution d > 4 O(n)
points O(n2) interpolation O(n) O(n)

8
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4.2 Fast Fourier transform

What is an efficient way of switching between representations, so that we have
good runtime for every task? This motivates the fast Fourier transform, which
is one of the most important algorithms of the 20th century. It applies to signal
processing, polynomial multiplication, and integer multiplication.

The entire polynomial multiplication using FFT looks like this.

1. Compute Ã and B̃ in O(n log n).

2. Compute C̃ = B̃ · Ã in O(n).

3. Compute C from C̃ in O(n log n).

FFT is a divide and conquer approach.

1. Divide coefficients into evens and odds.

Aeven =

dn2−1e∑
k=0

a2kx
k = (a0, a2, a4, . . . ) (4.2)

Aodd =

bn2−1c∑
k=0

a2k+1x
k = (a1, a3, a5, . . . ) (4.3)

2. Compute Aeven(z) and Aodd(z),∀z ∈ X2 =
{
x2|x ∈ X

}
. We choose z to

be the nth roots of unity, such that X is collapsible, which means that

(a) |X| = 1, or

(b) |X| = |X|
2 and X2 is collapsible too.

3. Combine step.

A(x) = Aeven(x2) + xAodd(x2),∀x ∈ X (4.4)

Let’s analyze the running time.

T (n, |X|) = 2T (
n

2
,
∣∣X2

∣∣) +O(n+ |X|) (4.5)

That is equivalent to O(n log n) with zn. Everything works out! There is also
the matrix view: 

1 x0 . . . xn−1
0

1 x1 . . . xn−1
1

...
...

1 xn−1 . . . xn−1
n−1

 A = y

V A = y

(4.6)

This is a full-rank matrix, so it has an inverse.

A = V −1y (4.7)

This is a hard problem, but we compute at nice x, so

(V ∗) ¯(V ∗) = nI (4.8)

And this is faster!

9
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5.1 Amortization

Definition 5.1. An operation has an amortized cost of T (n) if any sequence
of k operations (including worst case) has a cost ≤ kT (n).

We will discuss amortized analysis in three ways:

1. aggregate method: total divided by number of operations

2. accounting method: discussed in book and recitation

3. potential method: quantifies a sort of karma (?) to prepay credit for future
costs (later in lecture)

5.2 Union-find

Union-find is a data structure for maintaining disjoint sets. We want the
following operations:

• Make-set(x): add set {x} to collection.

• Find-set(x): find the set with representative element x.

• Union(x, y): replace sets with x and y with their union, and appoint a
new arbitrary representative.

5.2.1 Linked list representation

Let us represent the data structure as a collection of linked lists.

Problem 5.2

Suppose we have sets {3, 5, 9} , {4} , {6, 8}, with representative elements 3,
4, and 8.

3 5 9

4

6 8

Make-set would take O(1), but Find-set would take O(n) and Union
would also take O(n), since we need to traverse the lists.

So we try candidate improvement: we maintain head and tail pointers,
for a doubly linked list.

10
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u1 u2 u3

h

t

Then, we could have O(1) for Find-set. But in the worst case, Make-set
is still O(n). The adversary would Make-set(i), for i ∈ {0, 1, . . . , n− 1}, then
Union(i,0) for i ∈ {1, 2, . . . , n− 1}. Then the operations would take

O(n+

n−1∑
i=1

i) = O(n2). (5.1)

We could always concatenate small lists onto large lists, but then the adversary
would make balanced lists. . . Worst case doesn’t improve?

But this is not a common situation! Let n be the total number of elements
(by Make-set), and let m be the total number of operations (m ≥ n).6 We
claim that the cost of all unions is O(n log n), and the total cost is O(m+n log n).

Proof. We track a single element u. When it is created, |S(u)| = 1. When it is
Unioned with another set S(v), either

Case 1 If |S(v)| ≥ |S(u)|, u’s head pointer must be updated, and |S(u)| at
least doubles.

Case 2 Otherwise, the head pointer is not updated, and |S(u)| at least increases.

The head pointer to u is updated ≤ log n times, since it is only updated when

|S(u)| doubles.7 Per operation, the amortized cost is O(m+n logn)
m , so each

operation is an amortized O(log n).

5.2.2 Forest representation

Now let us represent Union-find as a forest of trees.

Example 5.3

Suppose we have set u with representative element u1.

u1

u2 u3

u4 u5 u6

Make-set would take O(1), just drop down a node. Find-set(x) would
take O(height of S(x)), where you just traverse down. and Union(u,v)
would take O(height of S(u) + height of S(v)). This is worst case O(n2)!

6 Because we need to add all elements first.
7 We only update head pointers of smaller sets.

11



Rachel Wu 5 February 16, 2017

First idea: let’s merge shorter trees into taller trees. We would need to
maintain the height of the tree.

Union(u,v)

1 ū← Find-set(u), v̄ ← Find-set(v)
2 if rank(ū) = rank(ū)
3 rank(u)← rank(ū) + 1, v̄.parent ← ū.
4 else if rank(ū) > rank(v̄)
5 v̄.parent ← ū
6 else ū.parent ← v̄.

Proof left as exercise to reader, but we want to show by induction that rank
of tree is always O(log n), so worst case of each operation of O(log n).

Second idea: path compression, flatten the tree. Each Find-set traverses
a path anyway, so we can just redirect parental pointer of each node visited to
the root. We claim that the amortized cost of m operations, n of which are
Make-set, is O(log n) each.

Proof. Let us define φ : tree→ #. Then∑
i

make-believe-cost(ĉi) ≡
∑
i

true-cost(ĉi) +
∑
i

∆φ (5.2)

And ĉ = c+ φfinal − φinitial. Read the lecture notes.

Let φ(data structure) =
∑
u log u size.

• Make-set: ĉ = 1 + 0

• Union: cost of 2 Find-set + link. ĉlink ≤ log rep(S(u)).size+ rep(S(v)).size−
log rep(s(u)).size ≤ O(log n)

• Read the notes.

Each idea produces an algorithm of O(m log n). What if we combined them?
Well we find that any m operations, with nMake-sets, has a worst-case running
time of O(mα(n)), where α is the inverse-Ackerman function, which grows really
slowly!
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6.1 FFT review

We are given

A(x) = a0 + a1x+ . . . an−1x
n−1 (6.1)

B(x) = b0 + b1x+ . . . bn−1x
n−1. (6.2)

How quickly can we compute C(x) = A(x)B(x)? Naively, O(n2), but using
FFT, O(n log n). We choose to evaluate A(x) and B(x) at the 2n roots of unity.

To multiple A(x) and B(x), for a degree of n:

1. find Aeven and Aodd.

2. recursively evaluate Aeven and Aodd at the square of the nth roots of unity.

3. recursively multiply the n points

4. interpolate into C(x)

Again in matrix form,

1 1 . . . 1

1 ωn ω2
n

...
... ω2

n ω4
n

...

1
...

...
...

1 ωn−1
n ω

2(n−1)
n




a0

a1

...
an−1

 = y. (6.3)

We can compute this by divide and conquer in O(n log n).

Problem 6.1 (Minkowski sum)

Let X and Y be sets of integers. The Minkowski sum X + Y is set
{x+ y|(x, y) ∈ X × Y }. (Also known as Cartesian sum).

How quickly can we compute the Minkowski sum, given two sets of size n?
Let f(x) =

∑
i∈X x

i and g(x) =
∑
j∈Y x

j . Then the Minkowski sum contains
the exponents of f(x)g(x). We can find that with FFT in O(w logw), where w
is max(max(x),max(y)), so numbers could be arbitrarily high.
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7.1 Competitive analysis

We will compare our algorithm against theoretical lower bounds. An online
algorithm is one in which we receive a sequence of inputs, where we must
decide on the best possible outcome for the current input, before seeing more.
Conversely, an offline algorithm is one in which we can see the entire input
before deciding.

Example 7.1 (Tetris)

An online version would be seeing tetronimoes, one by one. An offline
version would be to see all the blocks at the same time. We can’t do that
much better in the offline version.

Definition 7.2 (Competitive analysis). An online algorithm A is α-competitive
if there exists a constant k, such that for any sequence s of operations,

CA(s) ≤ αCbest(s) + k, (7.1)

where Cbest is the cost of the best offline algorithm.

7.1.1 Self-organizing lists

We will compare an online algorithm to the best possible offline version.

Problem 7.3 (Self-organizing lists)

Given a list L containing n elements, we have one operation, Access(x),
where x is a key to some element. Return the element with the given key.

R W T X Z

0 1 2 3 . . . n

The caveat is that we may permute the list after each Access, and it
takes O(1) to transpose adjacent elements. The goal is to choose transposi-
tions to minimize the cost of the algorithm, given an input sequence, for
all sequences (CA(s)).

Imagine that we are the adversary. Worst-case analysis: we always select
the last element. In this case, CA(s) = Ω(|S|n).

Now consider the average case. Imagine that an element x is accessed with
Pr {x}. Then

E [CA(s)] = |s|
∑
x∈L

Pr {x} rank(x). (7.2)

This doesn’t help the worst case, but we can improve the average case.

“In research, you can look at this and say, ’I’ll just pick another
problem!’ ”—tidor
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“If the best algorithm isn’t very good, then maybe a braindead
algorithm won’t be much worse!”—tidor

We could just swap every element to the front, after every access. (LRU
cache!) P Q R S X, access X. We transpose to X P Q R S in rank(x) − 1
transposes. The “move-to-front” or MTF heuristic performs “well.” The total
cost of an access is 2 · rank(x)− 1.

We show that MTF is 4-competitive for self-organizing lists.

Proof. Let Li and L∗i be the list after ith access using MTF and the optimal
algorithm, respectively. Let ci and c∗i be the respective costs.

ci = 2rank(xi)Li−1
− 1 (7.3)

c∗i = rank(xi)Li−1
+ ti, (7.4)

where ti is the number of transpositions. We perform amortized analysis with a
potential function. Let

φ = 2× the number of inversions between Li and L∗i

= 2
∣∣{(x, y) : (x <Li y and y <L∗i x

}∣∣ ,
where the weird notation means rank(x)Li < rank(y)Li .

Note that φ(L0) = 0 since we start at the same list, and φ(Li) ≥ 0 since the
minimum number of inversions is 0.

At each step, we could represent the two lists with a heat map.

After accessing element i, we cross out ith column and row. There there are
4 sets.

1. A is third quadrant,

2. Draw this diagram from notes later

Each move by opt creates at most one inversion, so

φ(Li)− φ(Li−1) ≤ 2(|A| − |B|+ ti) (7.5)

The amortized cost of a single access is

ĉi = ci + φ(Li)− φ(Li−1)

≤ (2r − 1) + 2(|A|+ |B|+ ti)

= 2r − 1 + 4 |A| − 2r + 2 + 2ti

≤ 4(r∗ + ti) = 4c∗i

Now consider the total cost of |s| operations. I’ll type it up later.

There are several things we should note.

1. There’s no need to find the actual optimal algorithm.

2. If L0 6= L∗0, then the cost to make them the same could be Θ(n2), but we
treat n as a constant; the size we care about is s.
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7.2 How to learn in this class?

Take stuff apart, ask it questions! Figure out how things actually work!

8 February 24, 2017

8.1 Amortized analysis

A data structure has amortized cost T (n) if any sequence of k operations
(including worst case) takes at most kT (n) time. We will focus on two examples.

Example 8.1 (Queue)

Imagine a data structure, a queue from 2 stacks.

• Enqueue: we push onto S1.

• Dequeue: if S2 is not empty, pop from S2. If it is empty, pop all
elements from S1 to S2, and pop from S2.

Example 8.2 (Binary counter)

We maintain a binary counter, [0, 0, . . . , 0]. We have one operation, Incre-
ment: starting form the right, flip all 1s to 0s, upon finding a 0. Flip that
to 1, and return.

8.1.1 Aggregate analysis

Definition 8.3 (Aggregate analysis). Add up total work for n operations, and
divide that total by n.

For the queue from 2 stacks, focus on a single element x0 during a sequence
of operations. The most that x0 contributes to is

1. a push onto S1,

2. a pop from S1, push onto S2,

3. and a pop from S2.

x0 only contributes O(1) work over O(n) operations, so all n elements contribute
at most O(n) total work.

For the binary counter, consider a sequence of n calls to Increment. The
first bit is flipped once for each call, so n bit flips. The second bit is flipped
once every other call, so n/2 bit flips. The third bit is flipped once every four
calls, etc.

total = n

log2 n∑
k=0

1

2k
≤ 2n = O(n) (8.1)
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8.1.2 Accounting method

Definition 8.4 (Accounting method). Operations can deposit “coins” in a
“bank” so later operations can draw from the bank.8

For the queue with two stacks, Enqueue does 1 work pushing x, deposits 3
“coins” into the bank (4 coin cost). Dequeue uses 1 coin if S2 not empty. If S2

is empty, we cover the pop and push with 2 coins. The last pop costs the last
coin. So total cost is for n coins is 4n, which is O(n).

For the binary counter, deposit one coin when flipping a bit 0→ 1 (This is
because expensive operations are when we have to scan a bunch of 1s and flip a
0.) When we Increment, assume there are k 1s before the first 0. This means
there are at least k coins in the bank. Therefore, the cost of Increment is only
the cost to flip the final 0→ 1. So there is O(1) amortized cost.

8.1.3 Potential method

Definition 8.5 (Potential method). Define a potential function φ which maps
the state of the data structure to a number. The amortized cost of any operation
is then ĉi = ci + ∆φ = ci + φi − φi−1.9

“Coming up with a φ is black magic”—devneal

For the queue, let us define φ = 2
∣∣Si1∣∣. Enqueue, ĉi = 1 + 2(

∣∣Si1∣∣− ∣∣Si−1
1

∣∣).
Dequeue,

ĉi = 2
∣∣Si−1

1

∣∣+ 1 + 2(
∣∣Si1∣∣− ∣∣Si−1

1

∣∣)
= 2

∣∣Si−1
1

∣∣+ 1 + 2(0−
∣∣Si−1

1

∣∣) = 1 or

= 1 for unexpensive.

For the binary counter, Increment is expensive when we flip a lot of 1s, so
let us define φ = # of 1s. Assume there are k 1s on the right and Increment
is called.

ĉi = k + 1 + ∆φ = k + 1 + (−k + 1) = 2 = O(1) (8.2)

“this pset is making up for the easy last pset, so the amortized
hardness of the pset is traditional”–devneal

8 If there are cheap operations, each contributing a little credit, the little operations will
be fine.

9 φ should decrease a lot during an expensive operation.
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9.1 Minimum spanning trees

Definition 9.1 (Spanning tree). A tree is a connective graph with no cycles,
and a spanning tree is a subset of the graph that spans all vertices.

We pose the following problem.

Problem 9.2 (Minimum spanning tree)

Given a weighted graph G = (V,E), find a spanning tree of minimum
weight, w(T ) =

∑
e∈T w(e).

For example, we could be trying to lay power cables through the city and
want to find the minimum cost. There are also applications in many AI fields
like computer vision and NLP.

Example 9.3

Supposed we have the following graph, with edges in the MST bolded.
Here, we see that we would add the a→ b edge to complete the MST.

a

b c d

e f g

h

3 10
15

7

8

14
5 9

6 12

Theorem 9.4 (MST property)

Given connected weighted graph G = (V,E), let U ⊂ V,U 6= ∅. If (u, v) is
a light edge (lowest cost) with the property that u ∈ U and v ∈ V − U ,
then there exists a MST with the edge (u, v) in it.

Proof by cut and paste. Assume for contradiction that (u, v) is not in any MST.
Then ∃(u′, v′) connecting U and V − U in T . Now say we replace (u′, v′) with
(u, v) in T ′. So w(T ′) > w(T ) by assumption, which contradicts w(T ′) ≤ w(T )
from the fact that T is a MST. Therefore, (u, v) must be in some MST.

We realize that this is a cut in the graph. If edges do not cross the cut, then
the cut respects that edge set.

Proposition 9.5

If (u, v) is a unique-weight light edge crossing the cut, then it is in every
MST.
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9.2 Kruskal’s algorithm

Algorithm 9.6 (Kruskal’s algorithm)

Initialize T = (V, ∅). Examine edges by increasing weight. For each edge,
we add if it joins previously unconnected components, otherwise reject.
The algorithm terminates when all components are connected or all edges
have been examined (and there is no spanning tree).

Proof of correctness. The loop invariant is that prior to each iteration, T ⊆
MST . At initialization, T is empty so this is trivially true. Each edge added to
T is a light edge crossing a cut of V . By the MST property, it is in a MST. At
termination, we’ve added all edges that belong in a MST, so we must “have” a
MST.

For distinct edge weights, the MST is unique, so “a MST” = “the MST.”
For non-distinct edge weights, there may be multiple MSTs.

Question 9.7. How do we ensure that there’s always a cut? We only add edges
between disconnected subsets.

Question 9.8. How do we deal with identical weights? Break ties arbitrarily.

9.2.1 Implementation

We can implement this with the Union-find data structure.

1 Initialize T ← ∅. // Θ(1)
2 for v ∈ V , Make-set(v). // Θ(|V |)
3 Sort E by weight. // Θ(|E| log |E|)
4 for e = (u, v) ∈ E // Θ(Tfindset + Tunion)
5 if Find-set(u) 6= Find-set(v) // not in same tree
6 add e to T , Union(u, v).

We analyze the total running time.

T = O(E logE) +O(V ) +O(Eα(V ))

= O(E log V ) (9.1)
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10.1 Administreview

Quiz 1 is coming! Unfortunately it’s on π-day, from 7:30-9:30p, for lectures 1-9.
There are two review sessions on March 10 (meta-review) and 11.

10.2 Maximum flow

Yay more graph theory—makes me happy.

A flow network is a directed graph G = (V,E), a source s and sink t, edge
capacities c : E → R+. G can also be represented as a complete graph, with
some capacities 0 (for edges that “didn’t” exist. We define gross flow

g : E → R+, (10.1)

feasibility as
g(u, v) ≤ c(u, v),∀(u, v) ∈ E, (10.2)

and flow conservation as

∀v 6=s,t
∑
u

g(u, v)−
∑
u

g(v, u) = 0. (10.3)

Gross flow is hard, so we have the notion of net flow, f : V ×V → R, where
positive flow is along the arrow, and negative flow is against. This satisfies the
properties that

• ∀(u,v), f(u, v) ≤ c(u, v)

•
∑
u f(u, v) = 0

• ∀(u,v), f(u, v) = −f(v, u) (flow symmetry)

• f(u, u) = 0

Example 10.1

We have a sample graph and its flows.

s

a

b

c

d

t

2/2

1/3

1/2
3/3

1/1

1/1

2/2

1/3

1/2

2/3

Problem 10.2 (Maximum flow problem)

Given G = (V,E, s, t, c), find a flow of max value |f | =
∑
v f(s, v)

There is always the trivial empty flow. There are also simple flows: flow
cycles (|f | = 0) and paths from s→ t (|f | > 0).
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Proposition 10.3 (Flow decomposition)

Any flow f can be decomposed into a union of flow cycles and flow s→ t
paths.

Sketch of proof. We can decompose G into a subgraph (support graph) with
edges f(u, v) > 0. Let e = (u, v) ∈ S(G) and v 6= s, t. Then there exists at least
one u′, such that (v, u′) ∈ S(G), since for each flow in, there must be a flow out.
At some point, we eventually either find t, or we find a cycle. If P is a s→ t
path or cycle, we can reduce f on P by the bottleneck capacity, mine∈P f(e).
Now at least one edge is no longer in S(G), since its flow was reduced to 0. We
can induct on this.

10.3 Minimum cut

A dual relationship between s→ t paths and s→ t cuts motivates minimum
cuts. Let f∗ be a maximum flow, and F ∗ = |f∗|. How do we determine if there
even exists a flow? If there is a path from s→ t with edges of positive capacity,
there is a flow.

Now the contrapositive: if F ∗ = 0, how could we verify it? Suppose for
contradiction that there’s a non-zero flow. Then the flow always decomposes
from a union of flow cycles and s → flow paths, but there aren’t any s → t
paths, so there are only flow cycles, which push 0 flow.

Definition 10.4 (s → t cut). An s → t cut is a cut (S, V − S) such
that s ∈ S and t ∈ V − S. Then the capacity of S is defined as c(S) =∑
u∈S

∑
v∈V−S c(u, v).

F ∗ = 0 if and only if 6 ∃s→ t path ∈ S(G), or c(S∗) = 0, where

S∗ = arg min c(S), (10.4)

the minimum s → t cut. This property shows that s → t paths are dual to
s→ t cuts.

For a given s→ t path S, we define flow

f(S) =
∑
u∈S

∑
v∈V−S

f(u, v). (10.5)

Claim 10.5. For any flow f and any s→ t cuts S and S′,

f(S) = f(S′). (10.6)

Proof. For any s→ t cut, F ∗ = |f∗| = f({. . .}) = f(S∗) ≤ c(S∗).

So we have shown weak duality of max flow and min cut.

Definition 10.6 (Residual graph). The residual graph Gf given G and
current flow f , has capacities cf (u, v)← c(u, v)− f(u, v).
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11.1 Minimum spanning trees (continued)

Given G = (V,E,w) where w : E → R, the MST of G is a set of edges T ⊆ E
that is a tree connecting all v ∈ V and has minimum weight

∑
e∈T w(e).

Definition 11.1. A safe edge is an edge, which when added to a set T ′ of
edges of some MST, produces another set of edges which are a subset of some
MST.

Algorithm 11.2

We have the following algorithm.

Generic-MST(V,E,w):

1 T ← ∅
2 while T is not spanning
3 find safe edge e for T
4 T ← T ∪ {e}
5 return T

We can find safe edges with the greedy-choice property: for any cut S, V −S,
for S, V −S 6= ∅, any least-weight edge (u, v) with u ∈ S, v ∈ V −S must belong
to some MST.

Sketch of proof. Consider a cut (S, V − S) with minimum crossing edge e, and
an MST T with e 6∈ T . we can create a new spanning tree by replacing the edge
e′ ∈ T which crosses S, V − S with e.

Contraction of an edge e = {u, v} produces a graph G − e where u and v
are merged into a single vertex. Edge e is destroyed, and all edges incident to u
or v are instead incident to the merged vertex.

Example 11.3 (Edge contraction)

For example, we merge u and v into w.

a u v b

a w b

Proposition 11.4 (Optimal substructure property)

If an edge e belongs to some MST T of G, and T ′ is some MST of G′ = G−e,
then T = T ′ ∪ {e} is an MST of G.

Proof. T is spanning because it connects the components split by contracting e.
T is minimum because

w(T ) = w(T ′) + w(e) ≤ w(T ∗ − e) + w(e) = w(T ∗). (11.1)
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11.2 Prim’s algorithm

Algorithm 11.5 (Prim’s algorithm)

Select a vertex to start. For each iteration, find the lightest edge connecting
T to an isolate vertex.

We analyze the running time. Naively, O(|V |+ |E| |V |), which is cubic in
|V |, but we can do better.

Algorithm 11.6

Dijkstra similar modification. . .

Now the runtime depends on the data structure, O(|E| · relax + |V | · extract).
but using Fibonacci heaps, we can have O(|E| + |V | log |V |). We can have a
similar running time as Dijkstra’s if we start from the same vertex.

For the residual graph, if we currently have flow at capacity, we can reverse
the edge. It’s a matter of how much deltas we can add to the current graph. If
there’s a path in the residual, then we can push more flow through.

Ford-Fulkerson continually finds augmenting paths, looping until done.
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12 March 7, 2017

12.1 Ford-Fulkerson algorithm

The professor admits that we went over stuff too quickly near the end, last class.

Example 12.1

During sad times (1956), the USSR wanted to send the max-flow worth of
supplies between cities. On the other hand, the US wanted to figure out
which supply lines to interrupt to disconnect the graph. Together, this was
essentially max-flow-min-cut.

Algorithm 12.2 (Ford-Fulkerson algorithm)

We can keep finding augmenting paths to find the max-flow.

1 f(u, v) = 0,∀u, v ∈ V
2 while an augmenting path exists in Gf with DFS
3 push Gf (p) units of flow
4 return f

“At other institutions, they only care if it’s fast, but we’re at MIT
so we have to show that it’s correct first!”—madry

Theorem 12.3 (Max-flow-min-cut theorem)

The following statements are equivalent.

1. ∃s→ t cut S with |f | = c(S).

2. f is a max flow (i.e. |f | = F ∗).

3. f admits no augmenting paths.

Statements 1 and 2 imply strong duality, F ∗ = c(S∗). Statements 2 and 3
prove that the Ford-Fulkerson algorithm is correct.

Proof. We will show that 1 =⇒ 2, 2 =⇒ 3, and 3 =⇒ 1.

1. By weak duality, |f | ≤ F ∗ ≤ c(S∗). However, c(S∗) ≤ c(S) since that’s
the minimum cut, and c(S) = |f |, so c(S∗) = |f |.

2. If there is an augmenting path, then we are not done since we can push
even more flow.

3. The set of vertices reachable from s does not contain t, so this forms a
s→ t cut. The the flow across the cut is 0 on the residual graph, so each
of the edges is fully saturated, so the net flow is equal to the capacity of
the cut.
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“Now we continue from where other schools start and ask ‘how fast
does it run?’ ”—madry

Each iteration takes O(m) time, where m is the number of edges (since the
graph is connected). Assume that ∀c, c ∈ Z and c ∈ [0, C]. Each iteration, the
capacity increases by at least 1 (augmenting path), since the residual graph also
has all integral capacities. Therefore, the number of iterations is bounded by
F ∗ ≤ nC, since there are at most n edges leading from the source.

So the total runtime is O(mnC), which is pseudo-polynomial since the value
of C is exponential in its size.

We can show that for Q, the running time is still pseudo-polynomial. However,
if capacities are R, then the algorithm could never terminate.

Lemma 12.4 (Flow-integrality lemma)

If c ∈ Z, then ∃f∗ such that f∗ is a max flow of integral value.

12.2 Maximum bottleneck algorithm

We don’t like that Ford-Fulkerson is exponential in size of C. We can greedily
choose any path that maximizes increase in cf (p).

Claim 12.5. We can find the maximum bottleneck path in O(m log n) time.

We can use that to show that the running time is O(m2 log n log nC), which
is actually polynomial.

12.3 Edmonds-Karp algorithm

Choose an augmenting path with minimum number of edges. This runs in
O(m2n), which is strongly polynomial.

Applications include the stable marriage problem.
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13.1 Linear programming

Linear programming is a very common and versatile tool.

Example 13.1 (Elections)

Imagine that there are three possible policies: build roads, gun control,
farm subsidies, and gas tax. There are also three demographics: urban,
suburban, and rural. The votes gained matrix is the following.

A =


−2 5 3
8 2 −5
0 0 10
10 0 0

 (13.1)

“Suburban guys don’t care. They drive a lot, but also have a
lot of money.”—madry

We have the constraint that the populations are (100, 200, 30) and we
require at least (50, 100, 25), a majority in each voting district. How can
we achieve these with minimal cost?

Solution. Let y = (y1, y2, y3, y4) be the amount spent per policy, c =
(1, 1, 1, 1), and b = (50, 100, 25). We want to

maximize z = cT y
subject to Ay ≥ b,

y ≥ 0.

From our professor’s notes,

y∗ =
1

111
(2050000, 425000, 625000) ≈ (18468, 3829, 5631).

But how do we get this answer? A linear program is some linear optimiza-
tion problem subject to linear constraints.

Definition 13.2 (Standard form). Let x ∈ Rn, c ∈ Rn, b =∈ Rm, and A ∈ Rmn.

maximize z = cTx
subject to Ax ≤ b,

x ≥ 0.

Question 13.3. Why is the standard form universal? Just stick in factors of 1
and -1, or flip around ≥ and ≤ for equality. For equality, just copy each equation
and introduce the other version. If x ∈ R, then introduce x+

i and x−
i ≥ 0, and

transform xi → x+
i − x−

i . 18.200 has a great table.
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13.1.1 Geometric intuition

Let c be the direction of optimization, and each entry in Ax ≤ b forms a half-
space bounded by some hyperplane. All the constraints specify a polytope,
which is a subspace of Rn, where each face corresponds to some hyperplane
constraint. In 2D, we would have lines and an enclosed polygon.

“A polytope.” “A poly—what?” “A polytope. p-o-l-y-t-o-p-e.”

TODO draw in the graphs, since I think they’re interesting.

13.2 LP algorithms

13.2.1 Simplex algorithm

Start at one of the vertices. Does moving to a neighbor vertex improve the
objective? If so, move. Keep pivoting. This works since polytopes are convex.
Running time very practical, but worst case can be exponential.

13.2.2 Ellipsoid method

Invariant maintains that optimum is within an ellipsoid. After some number
of iterations, space is small enough to just find the solution. Polynomial time
worst case, but not practical. There are large constant factors.

13.2.3 Interior point method

Start at the middle of the polytope and keep moving vaguely towards c and will
eventually converge. This method is both polynomial time and practical. Most
packages switch between simplex and interior point method.

13.3 Duality

We have the primal and dual linear programs.

primal dual
maximize z = cTx
subject to Ax ≤ b,

x ≥ 0.

minimize w = bT y
subject to AT y ≥ c,

y ≥ 0.

(13.2)

Theorem 13.4 (Weak duality)

If x is feasible for the primal and y is feasible for the dual, then cTx ≤ bT y.

Proof. Let x and y be feasible solutions for the primal and dual. Then by
multiplying both sides by y,∑

i

yi
∑
j

Ai,jxj ≤
∑
i

yibi

yAx ≤ bT y
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We do the same for the primal.∑
j

xj
∑
i

Ai,jxj ≤
∑
j

xjbj

xAT y ≥ cTx

We see that yAx = xAT y, so cTx ≤ bT y.
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“Do we want them to stare at the pies for the next 2 hours?”—madry

Fall 2014, Quiz 1, Problem 2.

1. Prove that an edge is not in any MST. If an edge is the heaviest edge in
any cycle, then it is not in any MST.

2. Prove that an edge is in every MST. The edge in question is the minimum
edge in the tree. Kruskal’s will always add this edge.

3. Suppose we have an MST and add an edge. The new edge introduces
a cycle, so we delete the heaviest edge. Prove this is still an MST. Let
G′ = (V,E ∪ e). Then all edges originally deleted are still deleted, and all
the edges not in the cycle are still in the MST. The heaviest edge in the
cycle is replaced with e.

4. Now we have a new vertex v′ and edges connecting it E′. Find the MST
of G′ = (V ∪ V ′, E ∪ E′). Iteratively apply part b.
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15 March 11, 2017 (Review 2)

Today was the second review session, which went over relevant content for quiz
1. These notes were derived from chalkboard photos by the amazing Tracy
Cheng.10 The topics include:

1. asymptotics + recurrences

2. divide and conquer: median find-
ing and FFT (polynomial multi-
plication)

3. amortized analysis: Union-find,
competitive analysis

4. minimum spanning trees

5. max-flow (Ford-Fulkerson, bipar-
tite matching)

6. linear programming

15.1 Median finding

The algorithm for median finding is the following.

1. split array into n/5 groups of size 5

2. sort each group in O(1) time, since they are small

3. recursively find the median of medians

4. use the median of medians as pivot p

The key takeaway is that the pivots are approximately balanced (in the middle),
so the recursion is

T (n) = O(n) + T (
n

5
) + T (

7n

10
) = O(n).

15.2 FFT

Let A(x) = a0 + a1x+ · · ·+ an−1x
n−1. The coefficient representation is a vector

(a0, a1, . . . , an−1), and the point-value representation contains d points evaluated
by the polynomial. If we were to multiply A(x) and B(x), defined similarly with
constants bi, we would get C(x) = A(x)B(x), which is a polynomial of max
degree 2n− 2.

c0 = a0b0

c1 = a0b1 + a1b0

. . .

ck =
∑
i+j=k

aibj =

k∑
i=0

aibk−i,

which is the convolution of ai and bj . We can use FFT to find this quickly.

1. evaluate A and B at 2n− 1 points.

2. multiply the points in O(n).

10tcheng17@mit.edu
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3. interpolate to reconstruct C, through DFT.

FFT runs in O(n log n) because at each step, we evaluate 2 polynomials of
degree n/2 at n/2 points (since roots of unity are collapsible).

15.3 Union-find

Union-find is a data structure that maintains disjoint sets. It has three opera-
tions:

1. Make-set adds {x} to the data structure.

2. Find-set finds the set (representative element) containing x

3. Union combines two sets

We can achieve amortized O(log n) cost.
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16.1 Game theory

Example 16.1 (Prisoner’s dilemma)

Two people are caught. if neither tells, they’re okay. If one tells, the other
is screwed. If both tell, both are kinda screwed.

The maximum-welfare solution is silence, but the stable solution is that both
tell. A game is a thought experiment to reason about what rational agents do in
situations of conflict. However, these do not account for factors like a criminal’s
gang might punish him if he tells, or two players could never face each other
again if the other tells (on a game show).

“If you want someone to be selfish, just tell them to be rational.”—
madry

Problem 16.2 (Two-person zero-sum game)

Let A be the utility matrix of player a and B be the utility matrix of player
b. Element ai,j is the gain for player a when he plays i and b plays j.a In
addition,

ai,j = −bi,j ,∀i, j
a Sometimes player a is known as the row player and player b is the column player.

Example 16.3 (Rock-paper-scissors)

Let the rows and columns be in order of R-P-S. 0 −1 1
1 0 −1
−1 1 0



There is no stable single outcome, but the stable distribution is (1/3, 1/3, 1/3),
randomized for both.

Definition 16.4. A Nash equilibrium is a pair of strategies such that no player
can improve his/her expected utility by deviating.

These strategies are stable even as common knowledge.

Proposition 16.5

Every game with a finite umber of players ad finite number of actions has
a Nash equilibrium.

Theorem 16.6 (Min-max)

For any matrixA and x, y probability distributions, let VR = minx maxy xAy
and VC = maxy minx xAy. Then VC = VR.
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We observer that VC ≥ VR since R has an advantage.11 This theorem
proves the existence of a Nash equilibrium for a two-person zero-sum game.
Let x∗ = arg maxx miny xAy and y∗ = arg miny maxx xAy. Then (x∗, y∗) is the
Nash equilibrium.

“Most people have thinking caps but I have a thinking T-shirt.”
*takes off jacket* “Algorithmic powers activate!” *class cheers* “You
can borrow it for quizzes at a fee!”

Proof of min-max. We express VR and VC as dual linear programs.

primal dual
maximize z
subject to

∑
i,j Ai,jxi − z ≥ 0,∑

i xi = 1
x ≥ 0.

minimize u
subject to

∑
i,j Ai,jyj − u ≤ 0,∑

j yj = 1

y ≥ 0.

(16.1)

Let VR and VC be the optimums for the primal and dual, respectively. By
strong duality, VR = VC .

16.2 How to get rich

“If that’s your goal, I think you chose the wrong university. Let me
know if you want to transfer.”—madry

We can model the stock market as a simple random walk, where you go up
or down. Let Xt be the market index at the end of day t. Each day, you gain a
million if you guess right and lose a million if you guess wrong.

There are m advisors who each supply their own prediction. We want to
minimize regret,

# of our mis-predictions - # of mistakes by best expert.

A naive approach is to choose the majority vote of the experts. This is bad,
because everyone except for one is always telling you the wrong answer.

Now assume that the best expert is perfect.

Algorithm 16.7 (Halving algorithm)

Maintain a set S of trustworthy experts. Initially, S = {1, 2, . . . ,m}. At
day t, we take the majority of experts in S. At the end of each day, remove
everyone who predicted wrong.

Claim 16.8. Using the halving algorithm, regret ≤ log2m.

Whenever we make a mistake, size of S halves (majority wrong). We assumed
that one expert is perfect, so we won’t get rid of everyone. If S ever becomes
empty, re-initialize and continue. We can show that the regret ≤ m∗ log2m,
where m∗ is the optimum.

11 R and C denote row and column.
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However, replenishing S loses data. So instead of categorizing experts in a
binary fashion, we maintain a weighted trustworthiness for each expert. At day
t, we predict by a weighted majority. At the end of each day, ∀i that made a
mistake, wi ← 1

2wi. We can show that for this, regret ≤ 1.4m∗ + 2.4 log2m.
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17.1 Zero-sum games

We are given players R,C, where R has a set of m possible strategies and C
has a set of n possible strategies. There is a payoff matrix A which is a m by n
matrix, where ai,j is the payoff to player R for taking actions i and j. There
are pure strategies (exact) and mixed strategies (probability distribution).

Given strategies p∗, q∗ respectively, neither R nor C can gain by unilaterally
switching strategies. The min-max theorem says that every zero-sum game
has at least one Nash equilibrium, and we can find a Nash equilibrium of the
game when both players seek to maximize their worst-case payoff.

Let player R play p = (p1, p2, . . . , pm). For fixed p, player C will respond
with

q = arg min
q

∑
i,j

piqjAi,j .

So player R will optimize to play the

p∗ = max
p

min
q

∑
i,j

piqjAi,j . (17.1)

The same applies for player S, who plays the

q∗ = −max
q

min
p

∑
i,j

piqjAi,j . (17.2)

We claim that there is strong duality, and p∗ = q∗. Refer to equation 16.1 for
the linear program.

17.2 Learning from expert advice

We have a set of n experts, who each provide a 0-1 decision on each time t. We
vote based on these experts to minimize the number of mistakes. We compare
the number of mistakes we make to the number of mistakes made by the best
expert.

Algorithm 17.1 (Randomized halving)

Maintain a pool of trustworthy experts S. In each round, randomly select
one expert and follow his/her prediction. Remove all experts who were
wrong from S.

We can show that the expected number of mistakes for this algorithm is
bounded by O(n), under the strong assumption that at least one expert is always
right. Let Ft be the fraction of experts who were wrong on round t, who are
still in S. Then the expected number of mistakes is

E [m] =
∑
t

Ft.

Let Pt be the fraction of experts who are still in S. Then

Pt = Πt(1− Ft) ≥
1

n
,
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and linearizing, ∑
t

1− Ft ≥ − log n,

and
E [m] =

∑
t

Ft ≤ log n. (17.3)

Algorithm 17.2 (Randomized weighted majority)

Initialize every expert to have equal weight 1. At each round t, choose a
random expert with probability proportional to weight. Decrease

wi ← wi − ε

of all experts who were wrong.

We will prove that

E [m] ≤ (1 + ε)m∗ +
log n

ε
.

Let Ft now be the weighted fraction of all experts. WT ≤ Πt≤T 1 − εFt) =
nΠ(1−ε)Ft If w∗i,j is the weight of the best expert at time t, then w∗i,j ≥ (q−ε)m∗ ,
related to the number of total number of mistakes by the best expert. At every
time step, w∗i,j ≤Wt, which implies that

log 1− εm∗ ≤ log n+
∑

log 1− εFt ≤ −εFt. (17.4)

Using Taylor expansions again,

εE [m] ≤ log n−m∗ log 1− ε ≤ log n+m∗(1 + ε)ε.

We divide by ε and we are done.

We see that there is a tradeoff between best experts and how much we down
weight.
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18.1 Randomized algorithms

A randomized algorithm uses coin flips to make decisions! There are three
flavors of randomized algorithms. Monte Carlo algorithms run fast and produce
the correct output with high probability. Las Vegas algorithms run fast with
high probability, but correct output. Atlantic City algorithms run slow and
may produce wrong results, but people use them sometimes for primality testing
(we won’t use these).

“We get UUUUUGEEE speedups!”—debayan

18.2 Monte Carlo algorithms

These run fast and produce correct output with high probability.

Problem 18.1 (Matrix product verification)

Given two matrices A,B,C ∈ Pn×n2 , we want to verify if C = AB.

“I don’t remember what I did in high school. I do remember buying
Age of Empires.”—debayan

Naively, this takes O(n3). Strassens and other methods reduce the 3 slightly.

“There are many disgusting methods. I recommend you look at
some of these late at night if watching scary movies isn’t enough.”—
debayan

Note that we only count multiplications here, since additions take much less
time, so it’s essentially free. We are looking for a O(n2) algorithm. If AB = C,
then Pr {yes} = 1. However, if AB 6= C, then Pr {yes} ≤ 1/2 (false positive).

Algorithm 18.2 (Frievalds’ algorithm)

Select a random binary vector r ∈ Pn2 . If A(Br) = Cr, output yes.
Otherwise, output no.

Proof of correctness. True positives are trivially correct. Now let D = AB−C 6=
0. Non-zero terms are witnesses. For Dr, there exists a “good” r for every “bad”
r, i.e. there exists a bijection from bad to good witnesses.

Question 18.3. What are good and bad witnesses? Good witnesses preserve
the non-zero values, and bad witnesses report 0s (when they should report 1s).

Now given a different v ∈ Pn2 , we can construct a good witness r′ = r + v
such that r′ preserves all errors. Therefore, there is a 1:1 between right and
wrong.

Recall our median finding algorithm for finding ranks.
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Algorithm 18.4 (Randomized select)

Given a list A and target rank i, find rank i. Select x ∈ A as a pivot.
Partition A into L and R at x, and x has rank k. If i = k, we are done.
Otherwise, recurse on L or R.

In the worst case, we always pick the max or min, and this takes O(n2)
time. However, if our guesses were simply 9/10-good, then our recursion tree
has depth log10/9 n. We can show that the expected length works. This is a Las
Vegas algorithm.

Algorithm 18.5 (Quicksort)

Select a pivot x ∈ A. Partition around x. Sort L and R.

People use quicksort because it works. It’s very fast in practice, though it’s
a Las Vegas algorithm.

18.3 Tail inequalities

“Markov’s inequality was invented by his teacher Chebyshev, and
Chebyshev’s inequality was invented by some French guy”—debayan

Theorem 18.6 (Markov’s inequality)

If X is a non-negative random variable with a positive expected value, then
for c > 0,

Pr {X ≥ cE [X]} ≤ 1/c.

Theorem 18.7 (Chernoff bounds)

Let Y be a sum of n a random Bernoulli variables. Then for r ≥ ε,

Pr {Y ≥ E [Y ] + ε} ≤ e−2ε/n
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19.1 Random walks in graphs

Given a graph G = (V,E), we start at some vertex s and at each time step, we
randomly select an edge to traverse. We define P tv as the probability at step t
of being at vertex v. For t = 0, we see that

P 0
v =

{
1 v = s

0 otherwise.
(19.1)

For an arbitrary time t and vertex v,

P tv =
∑

(u,v)∈E

P tu
d(u)

(19.2)

We let pt = (ptu),∀u ∈ V . We can also have a lazy random walk, such that

P̂ t+1
v = PlazyP̂

t
v + (1− Plazy)

∑
(u,v)∈E

P̂ tu
d(u)

(19.3)

Conceptually, we are introducing self-loops. Now we introduce pretty notation.
Let A be an adjacency matrix where

Au,v =

{
1 (v, u) ∈ E
0 otherwise,

and let D be a degree matrix where

Du,v =

{
d(u) u = v

0 otherwise.

Then we can define a walk matrix W = AD−1, where

Wu,v =

{
1

d(v) (v, u) ∈ E
0 otherwise.

(19.4)

This is the transition matrix of the Markov chain representing this graph.12

Therefore, we can say that

pt+1 = Wpt = W t+1p0 (19.5)

For the lazy walk case, we can modify W as

Ŵ = PlazyI + (1− Plazy)W. (19.6)

A random walk has a stationary distribution if Wπ = π. For an undirected
graph,

πv =
d(v)∑
u∈V d(u)

. (19.7)

12 Note that we assume a uniform distribution on the transition probabilities to each edge,
and that the graph is undirected.
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Proposition 19.1

An undirected graph has a unique, stationary distribution if

1. the graph is connected, and

2. the graph is non-bipartite.

For directed graphs,

1. the graph is strongly-connected (irreducible), and

2. the graph is aperiodic.

Example 19.2 (Diffusion)

We have a drop of dye in water.

1 2 3 4 5

Depending on where the drop starts, the droplet will spread out, but
eventually it will reach a stationary uniform distribution.

Example 19.3 (Cards)

We can shuffle a deck of cards in one of two ways: riffle shuffling (interleave
half and half) or top-to-insert cards. For riffle shuffling, it takes 8-10
iterations to approach the stationary distribution, but for top-to-insert, it
takes around 200. This is derived from eigen-decomposition.

Example 19.4 (Page rank)

In the past, search was a huge issue. How do we increase the relevancy of
search results?

Google ignored the semantics and focused on the web graph.

1. CountRank =
∑
v∈V Au,v is the in-degree of v, or A · 1, where 1 is a

vector of 1s.

2. WeightRank =
∑
v∈V Au,v ·

1
d(v) , weighted by out-degree, or W ·1, where

1 is a vector of 1s.

3. RecRank(u) =
∑
v∈V Au,v ·

1
d(v)RecRank(v), which is the stationary

distribution of W .

4. PageRank = (1 − α)WRecRank + α( 1
n1), where n = |V |. We either

RecRank or with some probability, jump to a random page. This step
ensures a stationary distribution.

Google originally simulated this on a smaller toy graph, and used that (since
the network graph is enormous).
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“Just go to a VC and scream ‘blockchain’ at them until they give
you money”—debayan

20.1 Universal Hashing

Constant expected time is different from constant time with high probability.
Today, we are dealing with the former. Consider an abstract data type, the
dictionary problem.

Problem 20.1 (Dictionary problem)

There are three operations:

1. Insert(item) inserts a key-value pair, like a word and its definition.

2. Delete(key) deletes a key from the dictionary.

3. Search(key) finds a key and its value.

These can be done in expected O(1) time, with O(n) space.

We have a universe u of all possible keys of size m, n of which are present
in the dictionary. We also have a hashing function h : u → k. For a given
dictionary, the load factor is 1 + α = 1 + n/m.

Definition 20.2 (Simple uniform hashing assumption). For any two distinct
keys k, k′, Pr {h(k) = h(k′)} = 1

m

Algorithm 20.3 (Universal hashing)

Instead of assuming that the input is random, we can hash randomly.
Choose a random h from H, a universal hash function family. In particular,

Pr {h(k) = h(k′)}h∈H ≤
1

m
,∀k 6= k′

Then there are no assumptions of randomness for the keys.

Theorem 20.4

For n arbitrary keys and a random h ∈ H,

E [# keys in slot] ≤ 1 +
n

m
.

Proof. Let Ih(ki)=h(kj) be an indicator variable. Then

E [# keys in slot] = E

 n∑
j=1

Ii,j

 .
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By linearity of expectation, this equals

E [Ii,i] +
∑
i6=j

E [Ii,j ] ≤ 1 +
n

m

But do such families exist? Yes! A trivial example is the set of all hash
functions. But that’s quite useless in practice.

20.1.1 Dot product hash family

Let m be prime, and u = mr, for r ∈ Z. We have key k = 〈k0, k1, . . . , kr−1〉,
with digits in base m, and a hash specification key a = 〈a0, a1, . . . , ar−1〉. Then

ha(k) = a · k mod m.

We assume this may be computed in constant time, since we treat r as a
constant.13

“How many computer programmers does it take to change a light-
bulb? None; it’s a hardware problem.”—debayan

Proof of universality. Without loss of generality, if k 6= k′, then kd 6= k′d for
some d.

Pr {h(k) = h(k′)}a

= Pr

{
r−1∑
i=0

aiki =

r−1∑
i=0

aik
′
i

}
= Pr

{∑
i 6= dai(ki − k′i) + ad(kd − k′d) = 0

}
= Pr {ad(kd − k′d)} · −

∑
i 6=d

ai(ki − k′i) mod m

So we can multiply through by inverses and the above is equal to

Pr {ad = f(k, k′, a6=d) mod m.}

20.2 Perfect hashing

We can have polynomial build time, O(1) worst case search time, and O(n)
space. Note that this is a static dictionary. Instead of using a linked list for the
buckets, we can just use another hash table.

1. Pick h1 from H. This is the initial function to hash into large slots. Recall
that m is prime and m = Θ(n). For each slot j ∈ {0, 1, . . . ,m− 1}, lj is
the number of items in j (we know this in advance).

13 Another (textbook) universal hashing function is (ak + b) mod p mod m, but we’re not
going over it.
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2. If
∑
l2j > cn, that is, if some slots are too big, redo the previous step.

3. For h2, reserve l2j slots. There are so many slots that the probability of

collision is at most 1/2.14

4. If there’s a collision in the second layer table, redo.

Using the union bound, we see that

Pr {h2,j(ki) = h2,j(ki′)}

≤
∑
i 6=i′

Pr {h2,j(ki) = h2,j(ki′)}

≤
(
lj
2

)
1

l2j
≤ 1

2

We can use Chernoff to show that none of the tables will be bigger than
log n. The expected number of redo operations is 2. With high probability, we
will redo log n times, so creating the table should take around O(n log2 n).

14 This is similar to the birthday paradox!
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21.1 Streaming

So far, we have not considered the space required for algorithms. Sometimes,
we cannot fit the entire data on a disk. There may only be log n space, or even
constant space.

Note, these are different from online algorithms, which need to produce
partial output, and there are no space restrictions. In contrast, streaming
algorithms have access to the entire input, but space is limited. Both algorithms
may relax correctness.

Example 21.1 (Mean value)

We have a stream of inputs and want to find the mean. We can just keep a
running total, which requires 2 log n space, one register for the sum, and
one for the number of elements seen.

Example 21.2 (Majority element)

There is a single element that is the majority. We keep a counter and an
item. If counter is 0, we stick in the current element and increment the
counter. If we see the same element, we increment the counter. If we see a
different element, we decrement the counter.

“Thank you for that laugh. That is kindness, my friends.”—debayan

21.2 Reservoir sampling

Suppose we have a stream, and we want a random sample of the stream.

Problem 21.3

We are given a stream X = {x1, x2, . . . , xn}. We want to export a single
xi with probability 1/n.

While seeing the inputs, we don’t know n. For the first k elements, our
probabilities for each element update as follows.

k = 1 1
k = 2 1/2 1/2
k = 3 1/3 1/3 1/3

...
k = k 1/k 1/k . . . 1/k

We realize that to go from 1/2 to 1/3, we want to keep the 1/2 with
probability 2/3. We can induct on this idea.
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Problem 21.4 (k-sample)

Instead of exporting one element, we export k elements.

We keep the first k elements. For each element beyond k, keep the i+ 1th

element with probability k/(i+ 1) and discard a random element of the k.

21.3 Frequency moments

We have a stream of x’s, xi ∈ {1, 2, . . . ,m}. Let fi be the number of times i
appears.

Definition 21.5 (Frequency moment). The pth frequency moment

Fp =

m∑
i=1

fpi .

Assuming that 00 = 0, then F0 is the number of distinct elements, F1 = n,
and F2 =

∑
f2
i . Calculating an exact F0 is very hard, so given positive ε, δ, we

will make a bounded guess

(1− ε)F0 ≤ F̂0 ≤ (1 + ε)F0

within 1− δ of the true value.

Definition 21.6 (Pairwise-independent hash family). Given h ∈ H : X → Y ,
then ∀x1, x2 ∈ X, y1, y2 ∈ Y ,

Pr {h(x1) = y1 ∧ h(x2) = y2} =
1

|Y |2
.

Algorithm 21.7

Initialize z = 0. For each item j, if the number of trailing zeroes in the
binary form of h(j) is > z, then z ← zeroes(h(j)). Return 2z.
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Midterm 2 is coming up, next Thursday!

22.1 Tail inequalities

A tail inequality for a random variable bounds the probability that the variable
will be far from its expectation. We apply tail inequalities to hash tables.

We have a hash table with n keys and n bins. Hash keys are assigned
independently.

E [#keys in bin] = 1

However, this tells us nothing about the worst case. We would like the bound
the spread. Let Xb ∈ {1, 2, . . . , n} be the number of balls that land in bin i.

22.1.1 Markov’s inequality

We first use Markov’s inequality. Recall that

Pr {X ≥ a} ≤ E [x]→ 1

a
≤ 1

a
.

The union bound gives that

Pr

{
max
b
Xb ≥ a

}
≤

n∑
b=1

Pr {Xb ≥ a} =
n

a
.

This is unhelpful. If all balls were in one bin, then the expectation would still
be 1.

22.1.2 Chebyshev’s inequality

We will now move onto Chebyshev’s inequality. If X is a discrete random
variable with expected value E [X] and variance Varx, then

Pr {|X − E [X]| ≥ a} ≤ VarX

a2
.

Let Xbi be an indicator variable for whether ball b falls into bin i. These are
distributed as Bernoulli random variables with probability 1/n, so

VarXb = Var
∑

Xbi =
∑

VarXbi .

Applied to our problem, VarXb = 1− 1/n ≤ 1. Therefore,

Pr {|X − 1| ≥ a} ≤ 1

a2
.

With the union bound,

Pr

{
max
b
Xb ≥ a+ 1

}
≤ n

a2
.

We set a = c
√
n,

Pr

{
max
b
Xb ≥ a+ 1

}
≤ n

nc2
=

1

c2

so with high probability, the most balls in each bin is O(
√
n).
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22.1.3 Chernoff bound

Let X1, . . . , Xn be mutually independent random variables, and let Xi be a
Bernoulli random variable. Let µ = E [

∑
iXi]. Then

Pr {
∑
iXi > (1 + β)µ} < e−β

2µ/3 if 0 < β < 1

Pr {
∑
iXi > (1 + β)µ} < e−βµ/3 if β > 1

Pr {
∑
iXi < (1− β)µ} < e−β

2µ/2 if 0 < β < 1

We apply this bound to hash tables.

Pr {Xb > (1 + β)E [Xb]} ≤ e−βµ/3

Pr {Xb > 1 + 3c log n} ≤ e−3c logn/3 ≤ 1

n2

Pr

{
max
b
Xb > 1 + 3c log n

}
≤ 1

n

We set β = 3c log n.

22.2 Streaming algorithms (graphs)

Let G = (V,E), and set n = |V |. We generally always need O(n) space. The
stream is E. We define a spanner as the subgraph H = (V,EH) such that
EH ⊂ E and

dG(u, v) ≤ dH(u, v) ≤ αdG(u, v),

where dG(u, v) is the shortest distance between u and v in G.

Spanner

1 initialize EH ← ∅
2 for (u, v) ∈ E
3 if dH(u, v) > α
4 add (u, v) to EH
5 return EH

Proof of correctness. We can decompose any path u v into

Pu,v = {(u, p1), (p1, p2), . . . , (pn−1, v)} .

In H, we then have

dH(u, v) ≤
∑

(l,h)∈P

dH(l, h).

If (l, h) ∈ EH , then dH(l, h) = 1, but if (l, h) 6∈ EH , then dH(l, h) ≤ α. Thus,

dH(u, v) ≤
∑

(l,h)∈P

α = kα ≤ αdG(u, v).

This takes O(n) memory for the vertices and O(|EH |) for the edges. By
combinatorial fun,

|EH | ≤ 1 + n1+ 2
α+1 .

By setting α > 2, we can have o(n2) edges.
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22.2.1 Sparsifier

We would like to preserve capacity across every cut. We blackbox a non-
streaming algorithm that constructs a 1 + ε sparsifier (capacity within) with
ε2n edges in O(E) memory.

Claim 22.1. If we find a sparsifier H1, H2 for G1, G2, then H1 ∪H2 is also a
sparsifier for G1 ∪G2.

Claim 22.2. If H2 is a α-sparsifier of H1 and H1 is a β-sparsifier of G, then
H2 is a αβ-sparsifier of G.

We are given a dense graph, for which we create t = O(n) chunks of O(n)
edges for E. We create a sparsifier for each of the t chunks. Since we cannot
union all of them together, we can pairwise sparsify each of the Hi, divide and
conquer style.

That results in a εlogn-sparsifier for G. If we set γ = 2 log t, then we have a
1 + γ-sparsifier that uses ε2n log2 n edges and memory.
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23.1 Continuous optimization

Today we begin a 2-lecture series about continuous optimization.

Given objective function f : Rn → R, find x∗ = arg min f(x) and f(x∗) =
min f(x). If we need to find the maximum instead, we can minimize −f . To
include constraints, we minimize the augmented function g(x) = f(x) + ψ(x),
where ψ →∞ as x approaches the constraints.

We assume that f is continuous and infinitely differentiable. Gradient descent
is a locally greedy approach that can guarantee that the f(xi+1) ≤ f(xi).

This lecture bored me...a lot, so I left.

24 April 20, 2017

24.1 Gradient descent

Gradient descent is unconstrained minimization, given objective function ρ :
Rn → R. We want to find x∗ = arg minx∈Rn ρ(x), if x∗ exists. The update step
is

x(j+1) = x(j) − η~∇f(x(i)).

We make a locally linear approximation for change in objective function,

ρ(x+ δ) = f(x) + ~∇f(x)T δ +
1

2
δT ~∇2f(x)δ + . . .

where higher order terms vanish. There are two outcomes. We either converge
to critical points x̂ or diverge to ∞. From basic calculus, x̂ may either be a
minima, maxima, or saddle point. However, if f is convex, that is

∀x,y,λ∈Rf(λx+ (1− λ)) ≤ 2f(x) + (1− λ)f(y),

then our lives are easier.

Claim 24.1. If f is convex, then every critical point is a global minimum.

Definition 24.2. f is β-smooth iff

∀x,δδT ~∇2f(x)δ ≤ β |δ|2 .

That is, the largest eigenvalue of the Hessian H is ≤ β.

Definition 24.3. f is α-strongly convex iff

∀x,δδT ~∇2f(x)δ ≥ α |δ|2 , α > 0.

That is, the smallest eigenvalue of the H is ≥ α. This means that we can
upper and lower bound f with parabolas. If hx̃ = f(x̃) + ~∇f(x̃)T δ+α |δ|2, then
hx̃ ≤ f(x),∀x, x̃.
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Theorem 24.4

If f is β-smooth and α-strongly convex, then

T = Ω

(
β

α
log

f(x0)− f(x∗)

ε

)
and f(x(i))− f(x∗) ≤ ε.

Example 24.5

Let f(x) = 1
2αx

2
1 + 1

2x
2
2. How does it converge?

The gradient is ~∇f(x) = (a, 1) and the Hessian is

~∇2f(x) =

(
a 0
0 1

)
.

When α = 1, we have level curves.

x2

x1

When α� 1, we have smushed ellipses.

x2

x1

24.2 Linear regression

Given points x(1) . . . x(m) ∈ Rn and labels y(1) . . . y(m) ∈ R, we want to find for
ω ∈ Rn,

hω(x(j)) =
∑
i

ωix
(j)
i = ωTx(j) = y(i).

To find the best fit, we can use mean squared error,

L(ω) =
1

n

n∑
j=1

Ej(ω)2

MSE has a very nice gradient, which we can gradient descend on.

“Clearly I have expensive tastes when it comes to blackboards. I
want all of them”—madry

If H is positive semidefinite, then L(ω) is convex. In fact, if for m ≥ n,
x(i) . . . x(n) are linearly independent, then H is positive definite, and L is α-
strongly convex.

At w∗, ~∇L(w∗) = 0 (normal equations for L), so (XTX)w∗ = XT y and we
can find

w∗ = (XTX)−1XT y.

Analytically, this is beautiful! But in practice, finding inverses is O(n3), so it’s
better to gradient descend and find an approximation.
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Example 24.6

Find Ax∗ = b.

In linear algebra, they tell you to find inverses. In practice, that’s awful.
We want to find fA(x) = 1

2x
TAx − bx, since ~∇fA(s) = Ax − b When we set

~∇fA = 0, we recover the original linear system.
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25.1 Gradient descent

Today, we review gradient descent—yet again! We’re reviewing the lecture I
walked out of.

Recall that the Hessian H is
∂f2(x)
∂x2

1
. . . ∂f2(x)

∂x1∂xn
...

...
∂f2(x)
∂xn∂x1

. . . ∂f2(x)
∂xn∂xn


At the bare minimum, f(x) must be convex. There are a few definitions of

convexity.

• ∀x, y ∈ Rn, 0 ≤ λ ≤ 1, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). That is, if
we draw a line between two points, the function always lies below.

• ∀x, δ ∈ Rn, f(λ+ δ) ≤ f(x) + ~∇f(x)T δ

• Finally, ~∇2f(x) = H is positive semidefinite, ∀~x ∈ Rn.

Convex functions can always be upper bounded by some parabola. Let
δT ~∇2f(x)δ ≤ β |δ|2. Then we can pick the stereotypically beautiful step size of

η =
1

β
.

If f(x) is strongly convex, then it will converge within a log bound.
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26.1 Dynamic programming

Missed a lecture since I was sad and tired. Will fill in once the video’s out. We
continue dynamic programming.

1. Define subproblems. Think recursively.

2. Guess part of the answer, with relation to the problem. If there is only
one step, then this is a greedy algorithm.

3. Combine optimal solutions to subproblems into the optimal solution for
the current problem.

4. Recurse and memoize.

5. Solve the original problem.

Now consider the complexities for these problems. Prefix problems are x[: i],
suffix problems are x[i :], both of which are O(n). Substring problems are x[i : j],
which is O(n2), which is still polynomial.

Problem 26.1 (Edit distance)

Edit distance is a common problem, with applications from auto-correct to
CRISPR. We are given two strings, x, y, and three operations:

• Insert(c) inserts a character into a certain location,

• Delete(c) deletes a character, and

• Replace(c, c′) replaces c with c′.

We are also provided with a list of costs per operation.

The subproblems here are suffixes, where

c(i, j) = Edit-dist(x[i :], y[j :]).

At any given time, the possible options are:

Insert(y[j]) Delete(x[i]) Replace(x[i], y[j])

Given these operations, the running time is

c(i, j) = min


c(Delete(x[i]) + c(i+ 1, j))

c(Insert(y[j]) + c(i, j + 1))

c(Replace(x[i], y[j]) + c(i+ 1, j + 1))

We can view these subproblems graphically.
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i

j0

|x|

|y|

As we see, this is a DAG towards the upper left corner.

Problem 26.2 (Knapsack)

We have a set of items, each with size si and value vi. We are limited to
a total size S. The goals is to choose a subset V as to maximize

∑
i∈V vi

subject to
∑
i∈V si ≤ S. This is actually NP-complete.

Let X represent the current size of the selected items.

DP ([i,X) = max

{
DP [i+ 1, X − si] + vi

DP [i+ 1, X]

There are S · n possible subproblems, since there are S possible values for
X and n items. This is O(nS). However, the size of the input is O(n logS +
n log V + logS), so the running time is exponential in terms of the input size.

26.2 Variations on polynomial time

Definition 26.3. If a problem’s running time depends on the values of the
input, then the problem is pseudo-polynomial.

Definition 26.4. If a problem has a running time like 2O(logn)c , then the
running time will depend on c, and the problem is quasi-polynomial.

These generally occur when we are dealing with smaller versions of NP-
complete or NP-hard problems. An example of quasi-polynomial is the Steiner
tree.

Problem 26.5 (Steiner tree)

We are given an undirected graph G = (V,E) with edge weights. Given a
subset A ⊂ T ⊂ V , find a minimal tree spanning A.
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27.1 Intractability

Today we’ll start talking about intractability!

Example 27.1

• Shortest path in weighted graph has been beaten to death in poly-time.
Longest path is NP-complete.

• Minimum spanning tree is fine. Traveling salesman is sad.

• Linear programming is okay. Integer programming is sad.

• 2d stable marriage is fine. 3d matching is sad.

If students haven’t caught on, seemingly little changes in the problem cause
seemingly drastic changes in tractability. There are generally two questions we
ask of problems.

1. Are there poly-time algorithms for NP-hard problems?

2. Given a problem, can we tell if it’s NP-hard?

Consider the MST problem.

• The MST-optimization problem exports either the minimum spanning
tree or a statement that the graph is not connected.

• The MST-search problem is to find a spanning tree of weight ≤ k. The
output should be a tree, or k is too low, or the graph is not connected.

• The MST-decision problem is to determine whether such a tree exists.

If we can solve MST-search, then we can solve MST-decision, and if we can
solve MST-optimization, then we can solve MST-search. If there is no poly-time
solution to MST-decision, then there is no poly-time solution to MST-search or
MST-optimization.

The solution of a poly-time search problem can lead to a poly-time optimiza-
tion problem by binary search. If there is no such poly-time solution to search,
then we’re screwed for optimization too.

27.2 P vs. NP

Definition 27.2. A decision problem π is solvable in polynomial time if there
exists a poly-time algorithm A such that ∀x, x is a “yes” or “no” to π implies
that A(x) outputs “yes” or “no,” and vice-versa.

Definition 27.3. Formally, every “yes” instance exists a certificate of poly-
nomial length that can be verified in polynomial time that it is indeed a “yes”
instance.

There are three common misconceptions about P and NP.
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1. NP doesn’t stand for non-polynomial. Everyone thinks it does.

2. P and NP are not disjoint. Everyone thinks they are. P ⊆ NP, since P
problems can be verified in poly-time.

3. P ⊆ NP ⊆ all problems. NP isn’t everything.

P NP everything

We can say π1 ≤P π2 if π2 is at least as hard as π1.

Definition 27.4. A problem π is NP-hard if ∀π′ ∈ NP, π′ ≤P π.

Definition 27.5. A problem π is NP-complete if π is NP-hard and π ∈ NP .

People joke that NP-completeness was the greatest export from computer
science to normal people engineering.

Theorem 27.6 (Cook’s theorem)

Imagine a circuit with three types of logic gates, AND, OR, and NOT. The
circuit has binary inputs {x1, x2, . . .}. cSAT is NP-complete.

First we show that cSAT is in NP. Given an assignment, we can plug in and
check the circuit, taking O(n) time total, O(1) for each gate.

Now we show that cSAT is NP-hard. If we pick any problem π ∈ NP, then
π ≤p cSAT, so we reduce from a generic π to cSAT.

1. Let x be an input to π.

2. The reduction builds a circuit cx that is satisfiable if and only if π(x) =
“yes.” So cx(y) is an implementation of

No more notes for today. I’m bored af.
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Final exam will be comprehensive but focus on the last third of material.

28.1 Reductions

We can reduce π1 from π2 if there is a special case of π1 that is equivalent to π2

(so formally, π1 ≤P π2). Last time, we learned that circuit SAT is NP-complete.
Subsequently, Karp also reduced lots of stuff from cSAT, including SAT.

Problem 28.1 (SAT)

Given a boolean formula, is it satisfiable? There are n boolean variables
and m boolean connections (∨,∧,¬). Parentheses are taken into account.

Reducing SAT from cSAT initially poses some difficulties, since the circuit may
have large fan-outs. Therefore, we require that each gate correctly evaluates its
inputs. We show this reduction by example.

Example 28.2 (SAT from cSAT)

Consider the following circuit, for which the output x8 = 1.

x2

x1

x0 x4

x6

x5

x7

x8

For this circuit to be satisfied, the following boolean expression must
be satisfied.

φ = x8 ∧ (x8 ↔ (x5 ∧ x7)) ∧ (x7 ↔ (x5 ∨ x6)

∧ (x6 ↔ ¬x3) ∧ (x5 ↔ (x4 ∧ x2))

∧ (x4 ↔ ¬x1).

Thus, we can reduce any circuit to its appropriate formula in poly-time. If
the circuit is satisfiable, then the formula is satisfiable, and vice versa.

Problem 28.3 (3-SAT)

Given a formula φ in conjunctive-normal form (CNF),a with 3 literals per
clause, is φ satisfiable?

a CNF is an AND of ORs.

It is easy to show that 3-SAT ≤P SAT, since 3-SAT is a special case of SAT.
However, we want to go the other way, and Karp showed that (refer to CLRS).
So far, we have claimed that cSAT ≤p SAT ≤p 3-SAT.
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Problem 28.4 (Vertex cover (VC))

Given a graph G = (V,E), find a subset S ⊆ V such that |S| ≤ k and every
edge e ∈ E is incident on at least one vertex in S.

Vertex cover is NP—we just take the solution and check off all edges.

Example 28.5

For example, consider the following graph.

0

1

2

3

4

5

A possible vertex cover is {2, 3}.

We claim that VC is NP-complete.

Proof. We reduce vertex cover from 3-SAT by gadget construction. Each variable
xi corresponds to an edge of Pxi and Nxi , from which only one vertex is sufficient
to cover the edge.

Pxi Nxi

Each clause c corresponds to a triangle of Fc, Sc, Tc, or the first, second, and
third variables. Two vertices are required to cover this triangle, and we soon
realize that these two literals need not be satisfied, since only one literals needs
be true for three ORs.

Fc Sc

Tc

Now we relate variables to clauses. If the ith literal of clause c corresponds
to variable xj , then connect Fci and xj . If we find a VC for this graph, then we
have satisfied the equations, and vice versa.

If a clause is satisfied, then at least one of its “relation” incident edges is
covered by a variable. The remaining two incident edges are covered by selecting
clause literal vertices. Covering an incident edge with a variable is equivalent to
selecting that variable.

This construction is clearer by example. [TODO]
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Example 28.6

Let φ = xxx

However, because cSAT is NP-complete,

cSAT ≤P SAT ≤P 3-SAT ≤P VC ≤P cSAT

since cSAT is as hard as any of the other problems. Therefore, they are all
equally hard!
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29.1 Approximation algorithms

For the past 2 lectures, we’ve discussed NP-hard problems, and this semester,
we’ve fallen in love with polynomial time solutions, which are also correct.
Unfortunately, there are no exactly polynomial time algorithms for general NP-
hard problems. Instead, we turn to approximation algorithms. An approximation
algorithm runs in polynomial time and allows suboptimal solutions, but bounds
sub-optimality.

When proving NP-hardness and NP-completeness, we often focused on
decision problems. Does there exist an assignment such that. . . ? Here, we focus
on optimization versions instead.

Definition 29.1 (Approximation algorithm). Say we have an optimization
problem of size n, where c∗ is the cost of the optimal solution and c is the cost
of the approximation. Then we have a ρ(n) approximation algorithm, where
the ratio bound ρ(n) is

max

(
c

c∗
,
c∗

c

)
≤ ρ(n),∀n.15

An approximation scheme takes input ε > 0 and provides a 1 + ε approx-
imation. There are two flavors.

1. A polynomial time approximation scheme (PTAS) is polynomial in n, but
not necessarily in 1/ε. For example, O(n2/ε).

2. A fully polynomial time algorithm (FPTAS), is polynomial in n and ε.
For example, O(n/ε2).

Problem 29.2 (Minimum vertex cover)

A vertex cover takes as input G = (V,E) and outputs S ⊆ V such that
∀e = (u, v), S ∧ e 6= ∅. The objective is to minimize |S|.

The class sugggests heuristics like highest-degree vertices, random vertices.

Algorithm 29.3 (2-approx. of vertex cover)

The professor suggests the following algorithm.

1. Randomly select an edge (u, v) ∈ E and add both of its vertices to S.

2. Remove all edges incident to u or v from E.

3. Repeat until E = ∅.

The running time analysis depends on how we represent the graph in memory,
but it is O(|V |+ |E|) using adjacency lists. This algorithm is non-deterministic;

15 The first term represents minimization and the second represents maximization.
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that is, the output depends on the input order. However, the output S is always
a valid vertex cover, since edges are only removed when they are covered by a
vertex in S. We claim that this is a 2-approximation.

Proof. Let A be the set of edges picked by the algorithm. No edges in A share
an endpoint, since we removed all edges incident to u and v. Then

|SA| = 2 |A| ≤ 2 |S∗|

since the optimal vertex cover S∗ must include at least one endpoint for each
edge in A.

Note that picking only on endpoint is not an improvement. Consider the
following graph.

• •

•
••

•

•
• •

•

•

We could accidentally select all 9 radial nodes, where the optimal is obviously
the single center node. Greedy selection (always pick edge with highest degree)
does not improve the worst-case bound and it further complicates analysis, so
we randomly select. Finally, post-processing also helps in practical settings,
even though it doesn’t affect the worst-case theoretical bounds.

Problem 29.4 (Set cover)

Given a set X of n points and m subsets such that

S1 ∪ S2 ∪ · · · ∪ Sm = X,

find a cover C ⊆ {1, . . . ,m} such that ∪i∈CSi = X.

Example 29.5 (Vaccination)

Professor Tidor likes biology things. We want to cover as many epitopes
(disease flavors) as possible, with a set of viruses, but can’t stick every
single one into the vaccine. Flu vaccines are manufactured far in advance,
so selecting the specific strains of viruses is an important problem. There
are good years and bad years for immunologists.

Algorithm 29.6

We use a greedy approach.

1. Choose a new set Si with maximum number of uncovered points and
add i to the cover C.

2. Mark elements from Si as covered.

3. Repeat until done.
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This is a valid cover since we don’t end until every element has been marked,
and we don’t mark until we add a set that covers each element. However, the
cover may not be optimal. This algorithm takes O(min(n,m)) iterations, since
at least one element and its set is removed per iteration. Each iteration takes
O(mn), so the running time is O(mnmin(m,n)). We show that this is a 1+log n
approximation.

Proof. Let t = |C∗| be the size of the optimal cover. By picking the set with the
most uncovered elements, we will remove at least a large fraction (1/t) elements
each round.

Let Xi be the set of uncovered elements at round i. Then Xi can always be
covered by t or fewer sets, since t sets can cover everything (in theory). For that
to be true, then there exists a set that covers at least |Xi| /t elements. Then

∀i, |Xi+1| ≤ (1− 1

t
) |Xi|

|Xi| ≤ (1− 1

t
)i |X|

= (1− 1

t
)t lognn ≤ e− lognn ≡ 1

That is, the algorithm terminates at step t log nn, so Xi is the trivial case. Since
|C∗| = t and |C| ≤ t log n+ 1, the algorithm is a 1 + log n approximation.

Problem 29.7 (Partition)

Given a sorted list S of n positive numbers, find a partition of indices into
sets A,B such that A,B cover S and max(

∑
i∈A Si,

∑
i∈B si) is minimized.

This is an optimization problem seeking the most balanced partition (equal
sets, or closest to).

Example 29.8

Consider the following set of numbers, {12, 10, 9, 7, 4, 3, 2}. The optimal
partition would be A = {12, 10, 2} and B = {9, 7, 4, 3}.

12 10 9 7 4 3 2

A B A
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30.1 Weakly NP-hard problems

Recall from last lecture that we had 3 goals: solve hard problems, using a fast
(poly-time) algorithm, which find exact answers. For most of this class, we
focused on the latter two goals.

“It’s like activities, academics, and sleep at MIT. You pick two. But
that’s wrong. You don’t need sleep anyways.”—madry

Today, we focus on weakly NP-hard problems, which is polynomial in n,
but depends on the size of inputs. In particular, consider a problem parametrized
by (x, k), for which there exist algorithms that are polynomial in n, but depend
on some unconstrained f(k).

Problem 30.1 (k-vertex cover)

Given a graph G = (V,E), k ≥ 0, is there a set S of at most size ≤ k that
“covers” all edges?

Let k be the parameter and n = |V |+ |E|, where k � n Naively, we could use a
brute-force approach: enumerate all subsets. There are(

|V |
k

)
+

(
|V |
k − 1

)
+ · · ·+ |V |

subsets, which is approximately |V |k. Each step takes O(|E|), so the total

running time takes O(|E| |V |k).

30.2 Fixed-parameter tractability

A problem is fixed-parameter tractable (FPT) if an algorithm can solve it
with running time f(k)nO(1).

Algorithm 30.2 (Bounded search-tree)

We propose the following algorithm for solving k-vertex cover instead.

1. Pick an edge (u, v) ∈ E.

2. Try to add u to S. Delete u and incident edges to u from G. Recurse
with k′ = k − 1.

3. Try v and repeat.

The base case is k = 0. There is a k-vertex cover if E = ∅.

There are 2k nodes and each call takes O(|V |) time. The running time of
this algorithm is 2kO(|V |).
Note 30.3. Why didn’t we define FPT as f(k) + nO(1)? These two definitions
are actually equivalent. For example, 2kn is at most O(4k + n2). The intuition
behind this equivalence is to preprocess the graph into a smaller, but harder
problem.
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30.3 Kernelization

A problem is kernelizable if we have a poly-time algorithm that converts an
input instance (x, k) into a small and equivalent input (x′, k′). Here, we say
“small” means |x′| ≤ f(k), and “equivalent” means that the answer to (x, k) is
equal to the answer to (x′, k′).

Theorem 30.4

A problem is fixed-parameter tractable if and only if there is a kernelization.

Proof. Kernelization trivially leads to a FPT algorithm. Kernelize and solve.

The converse is more interesting. Let A be a hypothetical algorithm that
runs in f(k)nc. If n ≤ f(k), then the instance (x, k) is a kernel and we are done.
Otherwise, if n > f(k), then we can solve the instance using A and the trivial
instance is the kernel.

The real goal is to find a kernel that’s polynomial in k. We show that this is
indeed possible for k-vertex cover.

Algorithm 30.5 (Quadratic kernel for k-vertex cover)

There are several observations.

1. If there is a self loop, then that vertex must be in the cover, so we
add the vertex and delete the loop.

2. If there are many duplicate edge, we collapse them into a single edge.

3. If a vertex has degree > k, then it has to be in the cover. Otherwise,
we’d need all its k neighbors at least.

4. Remove isolated vertices.

If there are over k2 remaining edges, then there is no k-vertex cover. We end
up with a graph that is simple and has all degrees at most k. If G∗ has more
than k2n edges, then G∗ does not have a k-vertex cover, because each vertex
covers at most k edges, and we can cover at most k2n edges.

To reach this kernel, we require a running time of O(|V | |E|) trivially, and
O(|V |+ |E|) with some work. Now, the brute-force solution costs O(|V |+ |E|+
2kk2k+2) time, and the bounded search-tree solution costs O(|V |+ |E|+ 2kk2)
time. As some extra juicy knowledge, there’s even a linear kernel! Currently,
the best parametrized vertex cover is O(kV + (1.274)k).

Theorem 30.6

If we have an efficient poly-time approximation scheme (EPTAS) for a
problem, then it is FPT in O(f(1/ε)nO(1)).

We can relate kernels to approximation algorithms, which are parametrized
by ε. The contrapositive is often used to rule out the existence of an EPTAS for
some problems. That is, if it is not a FPT, then there is no EPTAS.
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31.1 Distributed algorithms

The final exam is on Monday!

“Three hour exam! We want to go for the full experience. I was
actually thinking of four.”—madry

So far, the class has “lied” to us. We assumed that everything ran on a
single computational unit. In the real world, this is rarely the case. There could
be many players, but we may not always receive n times the gain for n times
the players.

Example 31.1

We’re digging a deep hole, and more people won’t help.

But if we dig a shallow trench, more people are good!

One model is parallel computing, in which there are multiple processors
working at the same time.

Another model is distributed computing, in which we have many proces-
sors over a network. The setup is as follows: we have n processors (players),
each of which has input xI and needs to compute yi = fi(x1, . . . , xn). There are
two prevailing models.

1. The message passing model has a network of nodes, connected somehow.

•
•

•

•

•

Each node can communicate with its neighbors via messages, and labels
are all relative.

2. The shared memory model allows nodes to communicate via a shared
piece of memory, which can be written to and read from.

shared memory

y1 y2 y3
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31.2 Leader election

A common issue in distributed computing is leader election.

Problem 31.2 (Leader election)

There are n processors, but exactly one outputs “I am the leader.”

This is impossible if we require a deterministic result and the processors are
truly identical.

Proof. Imagine that we have two processors, exactly identical. They send
identical messages forever, and one of them has to say “I am the leader,” but
they always send the same messages, so there cannot be a unique leader.

The first solution is to assume that each processor i has a unique ID (for
example, MAC addresses).

Algorithm 31.3

1. Each processor i has a local variable maxi, initialized to its own ID.

2. At each round, it sends maxi to each neighbor and upon receiving a
message, updates its maxi

3. If at the end, a processor’s ID matches the max, output “I am the
leader.”

The second solution is to use randomness, and we do not require uniqueness.

Algorithm 31.4

1. Try to “manufacture” unique IDs for each processor by producing
IDi ← {1, . . . , k}.

2. Run previous algorithm.

For fixed i 6= j,Pr {IDi = IDj} = 1/k. We use the union bound over all
(
n
2

)
pairs, so

Pr {collisions} ≤
∑
i 6=j

Pr {IDi = IDj} ≤
(
n

2

)
1

k
≤ ε

where we require k ≥ 1
ε

(
n
2

)
. This is a Monte Carlo algorithm, correct with some

probability O(δ). But for some critical applications, we’d like an exact algorithm.
We can detect and repeat if repeats. In expectation, we require 1/(1− ε) repeats.
The expectation time to succeed, given probability p of success, is

∞∑
i

(1− p)ip =
1

p
.
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31.3 Maximal independent set

“Maximal” means we cannot increase the size, while “maximum” means the
largest. We are looking for the former.

Problem 31.5 (Maximal independent set (MIS))

Find a protocol such that each processor outputs YES or NO, where the YES

processors (optimists) form a maximal independent set.

Example 31.6

We find a maximal independent set on the following graph.

•
•

•

•

•

We find another MIS on the same graph.

•
•

•

•

•

We use leader election to solve this problem.

Algorithm 31.7

1. Until done, elect a leader among active processors.

2. Leader outputs YES and tells its neighbors to output NO.

3. All processors that have decided become inactive.

However, the running complexity is sad. We could have a worst case of a
path, in which the algorithm takes O(δn).

Algorithm 31.8 (Luby’s randomized MIS algorithm)

We do not require unique IDs, but require randomization. The protocol
proceeds in phases, each of which has two rounds.

1. Assume that n ∈ {1, . . . , k} and broadcast. If received values < n
(you are uniquely maximum), then join the MIS and output YES

2. If joined MIS, announce to neighbors. Each processor that receives
this message outputs NO.

This algorithm takes advantage of local maxima.
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Example 31.9

Consider the following graph.

1 3

4 2

5

In the first round, {3, 4, 5} join the MIS and output YES. Then all its
neighbors output NO.

We claim that this algorithm finishes in O(4 log n) phases with high proba-
bility. The proof in the notes only applies to an annelid.16 In class we prove by
picture.

• • • • • • • • • •

The key claim is that Pr {becoming inactive} ≥ 1/2. Left as exercise to
reader.

16line graph lol
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