
An Inheritance-Based Technique

for Building Simulation Proofs Incrementally

Idit Keidar, Roger Khazan, Nancy Lynch, Alex Shvartsman

MIT Lab for Computer Science University of Connecticut

545 Technology Sq., Room 367 Computer Science and Engineering Dept.

Cambridge, MA 02139, USA Storrs, CT 06269-3155, USA

{idish, roger, lynch}@theory.lcs.mit.edu aas@cse.uconn.edu

+1 617 253 1922 +1 860 486 2672

ABSTRACT

This paper presents a technique for incrementally con-
structing safety specifications, abstract algorithm de-
scriptions, and simulation proofs showing that algo-
rithms meet their specifications.

The technique for building specifications (and algo-
rithms) allows a child specification (or algorithm) to in-
herit from its parent by two forms of incremental mod-
ification: (a) interface extension, where new forms of
interaction are added to the parent’s interface, and (b)
specialization (subtyping), where new data, restrictions,
and effects are added to the parent’s behavior descrip-
tion. The combination of interface extension and spe-
cialization constitutes a powerful and expressive incre-
mental modification mechanism for describing changes
that do not override the behavior of the parent, although
it may introduce new behavior.

Consider the case when incremental modification is ap-
plied to both a parent specification S and a parent al-
gorithm A. A proof that the child algorithm A′ imple-
ments the child specification S ′ can be built incremen-
tally upon a simulation proof that algorithm A imple-
ments specification S. The new work required involves
reasoning about the modifications, but does not require
repetition of the reasoning in the original simulation
proof.

The paper presents the technique mathematically, in
terms of automata. The technique has already been
used to model and validate a full-fledged group commu-
nication system (see [26]); the methodology and results
of that experiment are summarized in this paper.

Keywords

System modeling/verification, simulation, refinement,
specialization by inheritance, interface extension.

1 INTRODUCTION

Formal modeling and validation of software systems is
a major challenge, because of their size and complex-
ity. Among the factors that could increase widespread
usage of formal methods is improved cost-effectiveness
and scalability (cf. [20, 22]). Current software engineer-
ing practice addresses problems of building complex sys-
tems by the use of incremental development techniques
based on an object-oriented approach. We believe that
successful efforts in system modeling and validation will
also require incremental techniques, which will enable
reuse of models and proofs.

In this paper we provide a framework for reuse of
proofs analogous and complementary to the reuse pro-
vided by object-oriented software engineering method-
ologies. Specifically, we present a technique for incre-
mentally constructing safety specifications, abstract al-
gorithm descriptions, and simulation proofs that algo-
rithms meet their specifications. Simulation proofs are
one of the most important techniques for proving prop-
erties of complex systems; such proofs exhibit a simu-
lation relation (refinement mapping, abstraction func-
tion) between a formal description of a system and its
specification [13, 24, 29].

The technique presented in this paper has evolved with
our experience in the context of a large-scale model-
ing and validation project: we have successfully used
this technique for modeling and validating a complex
group communication system [26] that is implemented
in C++, and that interacts with two other services de-
veloped by different teams. The group communication
system acts as middleware in providing tools for build-
ing distributed applications. In order to be useful for
a variety of applications, the group communication sys-
tem provides services with diverse semantics that bear
many similarities, yet differ in subtle ways. We have
modeled the diverse services of the system and vali-
dated the algorithms implementing each of these ser-
vices. Reuse of models and proofs was essential in or-
der to make this task feasible. For example, it has al-
lowed us to avoid repeating the five-page long correct-
ness proof of the algorithm that provides the most ba-

sic semantics when proving the correctness of algorithms
that provide the more sophisticated semantics. The cor-
rectness proof of the most sophisticated algorithm, by
comparison, was only two and a half pages long. (We
describe our experience in this project as well as the
methodology that evolved from it in Section 6.)

Our approach to the reuse of specifications and algo-
rithms through inheritance uses incremental modifica-
tion to derive a new component (specification or algo-
rithm), called child , from an existing component called
parent . Specifically, we present two constructions for
modifying existing components:

1. We allow the child to specialize the parent by
reusing its state in a read-only fashion, by adding
new state components (read/write), and by con-
straining the set of behaviors of the parent. This
corresponds to the subtyping view of inheritance [8].
We will show that any observable behavior of the
child is subsumed (cf. [1]) by the possible behaviors
of the parent, making our specialization analogous
to the substitution inheritance [8]. In particular,
the child can be used anywhere the parent can be
used. (Specialization is the subject of Section 3.)

2. A child can also be derived from a parent by means
of interface (signature) extension. In this case the
state of the parent is unchanged, but the child may
include new observable actions not found in the
parent and new parameters to actions that exist
at the parent. When such new actions and param-
eters are hidden, then any behavior of the child is
exactly as some behavior of the parent. (Interface
extension is presented in Section 5.)

When interface extension is combined with specializa-
tion, this corresponds to the subclassing for extension
form of inheritance [8] which provides a powerful mech-
anism for incrementally constructing specifications and
algorithms. Consider the following example. The par-
ent defines an unordered messaging service using the
send and recv primitives. To produce a totally ordered
messaging service we specialize the parent in such a way
that recv is only possible when the current message is
totally ordered. Next we introduce the safe primitive,
which informs the sender that its message was deliv-
ered. First we extend the service interface to include
safe primitives and then we specialize to enable safe ac-
tions just in case the message was actually delivered.

The specialization and extension constructs can be ap-
plied at both the specification level and the algorithm
level in a way that preserves the relationship between
the specification and the algorithm. The main technical
challenge addressed in this paper (in Section 4) is the
provision of a formal framework for the reuse of simu-

lation proofs especially for the specialization construct.
Consider the example in Figure 1: Let S be a specifica-
tion, and A an abstract algorithm description. Assume
that we have proven that A implements S using a sim-
ulation relation Rp. Assume further that we specialize
the specification S, yielding a new child specification S ′.
At the same time, we specialize the algorithm A to con-
struct an algorithm A′ which supports the additional
semantics required by S′.

Figure 1 Algorithm A simulates specification S with
Rp. Can Rp be reused for building a simulation Rc from
a child A′ of A to a child S′ of S?

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

When proving that A′ implements S′, we would like
to rely on the fact that we have already proven that
A implements S, and to avoid the need to repeat the
same reasoning. We would like to reason only about
the new features introduced by S ′ and A′. The proof
extension theorem in Section 4 provides the means for
incrementally building simulation proofs in this manner.

Simulation proofs [13] lend themselves naturally to be
supported by interactive theorem provers. Such proofs
typically break down into many simple cases based on
different actions. These can be checked by hand or with
the help of interactive theorem provers. Our incremen-
tal simulation proofs break down in a similar fashion.

We present our incremental modification constructs in
the context of the I/O automata model [30, 32] (the
basics of the model are reviewed in Section 2). I/O
automata have been widely used in formulating formal
service definitions and abstract implementations, and
for reasoning about them, e.g., [6, 9, 11, 12, 14, 15, 21,
24, 28, 31]). An important feature of the I/O automa-
ton formalism is its strong support of composition. For
example, Hickey et al. [24] used the compositional ap-
proach for modeling and verification of certain modules
in Ensemble [19], a large-scale, modularly structured,
group communication system. Introducing inheritance
into the I/O automaton model is vital in order to push
the limits of such projects from verification of individ-
ual modules to verification of entire systems, as we have
experienced in our work on such a project [26]. Further-
more, a programming and modeling language based on
I/O automata formalism, IOA [17, 18] has been defined.

2

We intend to exploit the IOA framework, to develop
IOA-based tools to support the techniques presented in
this paper both for validation and for code generation.

Stata and Guttag [36] have recognized the need for reuse
in a manner similar to that suggested in this paper,
which facilitates reasoning about correctness of a sub-
class given the correctness of the superclass is known.
They suggest a framework for defining programming
guidelines and supplement this framework with infor-
mal rules that may be used to facilitate such reason-
ing. However, they only address informal reasoning and
do not provide the mathematical foundation for formal
proofs. Furthermore, [36] is restricted to the context of
sequential programming and does not encompass reac-
tive components as we do in this paper.

Many other works, e.g., [1, 6, 10, 23, 25, 33], have for-
mally dealt with inheritance and its semantics. Our dis-
tinguishing contribution is the provision of a mathemat-
ical framework for incremental construction of simula-
tion proofs by applying the formal notion of inheritance
at two levels: specification and algorithm.

2 TECHNICAL BACKGROUND

This section presents background on the I/O automaton
model, based on [30], Ch. 8. In this model, a system
component is described as a state-machine, called an
I/O automaton. The transitions of the automaton are
associated with named actions, classified as input, out-
put and internal. Input and output actions model the
component’s interaction with other components, while
internal actions are externally unobservable.

Formally, an I/O automaton A consists of: an interface
(or signature), sig(A), consisting of input, output and
internal actions; a set of states, states(A); a set of start
states, start(A); and a state-transition relation (a sub-
set of states(A) ×sig(A) ×states(A)), trans(A).

An action π is said to be enabled in a state s if the au-
tomaton has a transition of the form (s, π, s’); input ac-
tions are enabled in every state. An execution of an au-
tomaton is an alternating sequence of states and actions
that begins with a start state, and successive triples are
allowable transitions. A trace is a subsequence of an
execution consisting solely of the automaton’s external
actions. The I/O automaton model defines a compo-
sition operation which specifies how automata interact
via their input and output actions.

I/O automata are conveniently presented using the
precondition-effect style. In this style, typed state vari-
ables with initial values specify the set of states and the
start states. Transitions are grouped by action name,
and are specified using a pre: block with preconditions
on the states in which the action is enabled and an eff:
block which specifies how the pre-state is modified. The

effect is executed atomically to yield the post-state.

Simulation Relations

When reasoning about an automaton, we are only inter-
ested in its externally-observable behavior as reflected in
its traces. A common way to specify the set of traces an
automaton is allowed to generate is using (abstract) I/O
automata that generate the legal sets of traces. An im-
plementation automaton satisfies a specification if all of
its traces are also traces of the specification automaton.
Simulation relations are a commonly used technique for
proving trace inclusion:

Definition 2.1 Let A and S be two automata with the
same external interface. Then a relation R ⊆ states(A)
× states(S) is a simulation from A to S if it satisfies
the following two conditions:

1. If t is any initial state of A, then there is an initial
state s of S such that s ∈ R(t).

2. If t and s ∈ R(t) are reachable states of A and
S respectively, and if (t, π, t′) is a step of A, then
there exists an execution fragment of S from s to
s′ having the same trace, and with s′ ∈ R(t′).

The following theorem emphasizes the significance of
simulation relations. (It is proven in [30], Ch. 8.)

Theorem 2.1 If A and S are two automata with the
same external interface and if R is a simulation from A

to S then traces(A) ⊆ traces(S).

The simulation relation technique is complete: any fi-
nite trace inclusion can be shown by using simulation
relations in conjunction with history and prophecy vari-
ables [2, 35].

3 SPECIALIZATION

Our specialization construct captures the notion of sub-
typing in I/O automata in the sense of trace inclusion;
it allows creating a child automaton which specializes
the parent automaton. The child can read the parent’s
state, add new (read/write) state components, and re-
strict the parent’s transitions. The specialize construct
defined below operates on a parent automaton, and ac-
cepts three additional parameters: a state extension –
the new state components, an initial state extension –
the initial values of the new state components, and a
transition restriction which specifies the child’s addition
of new preconditions and effects (modifying new state
components only) to parent transitions. We define the
specialization construct formally below.

Definition 3.1 Let A be an automaton; let N be a set
of states, called a state extension; let N0 be a non-
empty subset of N, called an initial state extension; let

3

TR ⊆ (states(A) × N) × sig(A) × N be a relation,
called a transition restriction. For each action π, TR

specifies the additional restrictions that a child places
on the states of A and N in which π is enabled and spec-
ifies how the new state components are modified as a
result of a child taking a step involving π.

Then specialize(A)(N, N0, TR) defines an automaton A′

as follows:

• sig(A′) = sig(A);

• states(A′) = states(A) × N;

• start(A′) = start(A) × N0;

• trans(A′) = { (〈tp, tn〉, π, 〈t
′
p, t

′
n〉) |

(tp, π, t
′
p) ∈ trans(A) ∧ (〈tp, tn〉, π, t

′
n) ∈ TR }

Notation 3.2 If A′ = specialize(A)(N, N0, TR) we use
the following notation: Given t ∈ states(A′), we write
t|p to denote its parent component and t|n to denote its
new component. If α is an execution sequence of A′,
then α|p (α|n) denotes a sequence obtained by replacing
each state t in α with t|p (t|n). We also extend
this notation to sets of states and to sets of execution
sequences.

We now exemplify the use of the specialization con-
struct. Figure 2 presents a simple algorithm automaton,
write through cache, implementing a sequentially-
consistent register x shared among a set of processes P.
Each process p ∈ P has access to a local cachep. Regis-
ter x is initialized to some default value v0. A writep(v)
request propagates v to both x and cachep. A response
readp(v) to a read request returns the value v of p’s
local cachep without ensuring that it is current. Thus,
a process p responds to a read request with a value of x
which is at least as current as the last value previously
seen by p but not necessarily the most up-to-date one.

Figure 3 presents an atomic write-through cache au-
tomaton, atomic write through cache, as a spe-
cialization of write through cache. The special-
ized automaton maintains an additional boolean vari-
able synchedp for each process p in order to restrict
the behavior of the parent so that a response to a read
request returns the latest value of x. The traces of this
automaton are indistinguishable from those of a system
with a single shared register and no cache.

In general, the transition restriction denoted by this
type of precondition-effect code is the union of the fol-
lowing two sets:

• All triples of the form (t, π, t|n) for which π is
not mentioned in the code for A′, i.e., A′ does not

Figure 2 Write-through cache automaton.

automaton write through cache

Signature:

Input: writep(v)

read reqp()

Output: readp(v)

Internal: synchp()

State:
x ← v0
(∀ p ∈ P) cachep ← x

(∀ p ∈ P) reqp ← 0

Transitions:

INPUT writep(v)

eff: x ← v

cachep ← v

INTERNAL synchp()

eff: cachep ← x

INPUT read reqp()

eff: reqp ← reqp + 1

OUTPUT readp(v)

pre: reqp > 0

v = cachep
eff: reqp ← reqp - 1

Figure 3 Atomic write-through cache automaton.

automaton atomic write through cache

modifies write through cache

State Extension:

(∀ p ∈ P) Bool synchedp, initially true

Transition Restriction:

INPUT writep(v)

eff: (∀ q ∈ P) synchedq ← false

INTERNAL synchp()

eff: synchedp ← true

OUTPUT readp(v)

pre: synchedp = true

restrict transitions involving π. The read reqp ac-
tion of Figure 2 is an example of such a π. Note
that the new state component, t|n, is not changed.

• All triples (t, π, t′n) in which state t satisfies new
preconditions on π placed by A′ and in which state
t′n is the result of applying π’s new effects to t.

Theorem 3.1 below says that every trace of the spe-
cialized automaton is a trace of the parent automaton.
In Section 4, we demonstrate how proving correctness
of automata presented using the specialization operator
can be done as incremental steps on top of the correct-
ness proofs of their parents.

Theorem 3.1 If A′ is a child of an automaton A, then:

1. execs(A′)|p ⊆ execs(A).

2. traces(A′) ⊆ traces(A).

Proof 3.1:

1. Straightforward induction on the length of the ex-
ecution sequence. Basis: If t ∈ start(A′), then

4

t|p ∈ start(A) by the definition of start(A′).
Inductive Step: If (t, π, t′) is a step of A′, then
(t|p, π, t

′|p) is a step of A, by the definition of
trans(A′).

2. Follows from Part 1 and the fact that sig(A′) =
sig(A). Alternatively, notice that trace inclusion
is implied by Theorem 2.1 and the fact that the
function that maps a state t ∈ states(A′) to t|p
is a simulation mapping from A′ to A.

4 INCREMENTAL PROOFS

The formalism we have introduced allows not only for
code reuse, but also, as we show in this section, for proof
reuse by means of incremental proof construction. We
start with an example, then we prove a general theorem.

An Example of Proof Reuse

We now revisit the shared register example of Sec-
tion 3. We present a parent specification of a
sequentially-consistent shared register, and describe a
simulation that proves that it is implemented by the
write through cache automaton presented in the
previous section. We then derive a child specification
of an atomic shared register by specializing the parent
specification. Finally, we illustrate how a proof that au-
tomaton atomic write through cache implements
the child specification can be constructed incrementally
from the parent-level simulation proof.

Figure 4 presents a standard specification of a
sequentially-consistent shared register x. The interface
of seq consistent register is the same as that of
write through cache. The specification maintains
a sequence hist-x of the values stored in x during an
execution. A writep(v) request appends v to the end
of hist-x. A response readp(v) to a read request is al-
lowed to return any value v that was stored in x since p
last accessed x; this nondeterminism is an innate part of
sequential consistency. The specification keeps track of
these last accesses with an index lastp in the hist-x.

We argue that automaton write through cache

of Figure 2 satisfies this specification by exhibit-
ing a simulation relation R. R relates a state
t of write through cache to a state s of
seq consistent register as follows:

(t, s) ∈ R ⇐⇒

last(s.hist-x) = t.x

∧ (∀ p ∈ P) (∃ hip ∈ Integer) such that

1 ≤ s.lastp ≤ hip ≤ |s.hist-x|

∧ s.hist-x(hip) = t.cachep
∧ (∀ p ∈ P) s.reqp = t.reqp

Let (t, s) ∈ R. A step of write through cache ini-
tiating from state t and involving readp(v) simulates a

Figure 4 Sequentially consistent shared register speci-
fication automaton.
automaton seq consistent register

Signature:
Input: writep(v)

read reqp()

Output: readp(v)

State:
Seq hist-x ← (v0)

(∀ p ∈ P) lastp ← 1

(∀ p ∈ P) reqp ← 0

Transitions:

INPUT writep(v)

eff: append v to hist-x

lastp ← | hist-x |

INPUT read reqp()

eff: reqp ← reqp + 1

OUTPUT readp(v) choose i

pre: reqp > 0

v = hist-x(i)

i ≥ lastp
eff: lastp ← i

reqp ← reqp - 1

step of seq consistent register which initiates from
s and involves readp(v) choose hip, where hip is the
number whose existence is implied by the simulation
relation R. Steps of write through cache involving
read reqp() and writep(v) actions simulate steps of
seq consistent register with the respective actions.

It is straightforward to prove that R satisfies the two
conditions of a simulation relation (Definition 2.1). We
are not interested in the actual proof, but only in reusing
it, i.e., avoiding the need to repeat it.

For the purpose of illustrating proof reuse, we present in
Figure 5 a specification of an atomic shared register as a
specialization of seq consistent register. The child
restricts the allowed values returned by readp(v) to the
current value of x by restricting the non-deterministic
choice of i to be the index of the latest value in hist-x.

Figure 5 Atomic shared register specification.

automaton atomic register

modifies seq consistent register

Transition Restriction:

OUTPUT readp(v) choose i

pre: i = | hist-x |

We want to reuse the simulation R to prove that au-
tomaton atomic write through cache implements
atomic register. Since atomic register does not
extend the states of seq consistent register, the
simulation relation does not need to be extended, and
it works as is. In general, one may need to extend the
parent’s simulation relation to capture how the imple-
mentation’s state relates to the new state added by the
specification’s child.

To prove that R is also a simulation relation from
the child algorithm atomic write through cache

5

to the child specification atomic register we have to
show two things:

First, we have to show that initial states of
atomic write through cache relate to the initial
states of atomic register. In general, as we prove
in Theorem 4.1 below, we need to check the new vari-
ables added by the specification child. We need to show
that, for any initial state of the implementation, there
exists a related assignment of initial values to these new
variables. In our example, since atomic register does
not add any new state, we get this property for free.

Second, we need to show that whenever R simulates
a step of seq consistent register, this step is still
a valid transition in atomic register. As implied
by Theorem 4.1, we only have to check that the new
preconditions placed by atomic register on transi-
tions of seq consistent register are still satisfied
and that the extension of the simulation relation is pre-
served. Since in our example atomic register does
not add any new state variables, we only need to show
the first condition: whenever readp(v) choose i is
simulated in atomic register, the new precondition
“i = |hist-x|” holds.

Recall that, when readp(v) choose i is simulated in
atomic register, i is chosen to be hip. For this
simulation to work, we need to prove that it is al-
ways possible to choose hip to be |hist-x|. This
follows immediately from the added precondition in
atomic write through cache, which requires that
readp(v) only occurs when synchedp = true, and
from the following simple invariant. (This invariant can
be proven by straightforward induction.)

Invariant 4.1 In any reachable state t of atomic -

write through cache:

(∀ p ∈ P) t.synchedp = true =⇒ t.cachep = x

Proof Extension Theorem

We now present the theorem which lays the founda-
tion for incremental proof construction. Consider the
example illustrated in Figure 1, where a simulation re-
lation Rp from an algorithm A to a specification S is
given, and we want to construct a simulation relation
Rc from a specialized version A′ of an automaton A to
a specialized version S′ of a specification automaton S.
In Theorem 4.1 we prove that such a relation Rc can be
constructed by supplementing Rp with a relation Rn that
relates the states of A′ to the state extension introduced
by S′. Relation Rn has to relate every initial state of A

′

to some initial state extension of S′ and it has to satisfy
a step condition similar to the one in Definition 2.1, but
only involving the transition restriction relation of S′.

Theorem 4.1 Let automaton A′ be a child of automa-
ton A. Let automaton S′ be a child of automaton S such
that S′ = specialize(S)(N, N0, TR). Let relation Rp be a
simulation from A to S. Let Rn ⊆ states(A′) × N.

A relation Rc ⊆ states(A′) × states(S′), defined in
terms of Rp and Rn as

{〈t, s〉 : 〈t|p, s|p〉 ∈ Rp ∧ 〈t, s|n〉 ∈ Rn},

is a simulation from A′ to S′ if Rc satisfies the following
two conditions:

1. For any t ∈ start(A′), there exists a state s|n ∈
Rn(t) such that s|n ∈ N0.

2. If t is a reachable state of A′, s is a reachable state
of S′ such that s|p ∈ Rp(t|p) and s|n ∈ Rn(t), and
(t, π, t′) is a step of A′, then there exists a finite
sequence α of alternating states and actions of S′,
beginning from s and ending at some state s′, and
satisfying the following conditions:

(a) α|p is an execution sequence of S.

(b) ∀ (si, σ, si+1) ∈ α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ Rp(t
′|p).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

Proof 4.1: We show that Rc satisfies the two conditions
of Definition 2.1:

1. Consider an initial state t of A′. By the fact that
Rp is a simulation, there must exist a state s|p ∈
Rp(t|p) such that s|p ∈ start(S). By property 1,
there must exist a state s|n ∈ Rn(t) such that
s|n ∈ N0. Consider state s = 〈s|p, s|n〉. State s
is in Rc(t) by definition. Also, s = 〈s|p, s|n〉 ∈
start(S) × N0 = start(S′), where we use the fact
that start(S′) = start(S) × N0 (Def. 3.1).

2. First, notice that the assumption on state s and
relation Rc imply that s ∈ Rc(t) and that proper-
ties 2c and 2d imply that s′ ∈ Rc(t

′).

Next, we show that α is an execution sequence of
S′ with the right trace. Indeed, every step of α is
consistent with trans(S) (by 2a) and is consis-
tent with TR (by 2b). Therefore, by definition of
trans(S′) (Def. 3.1), every step of α is consistent
with trans(S′). In other words, α is an execution
sequence of S′ which starts with state Rc(t), ends
with state Rc(t

′) (by 2d), and has the same trace
as (t, π, t′) (by 2e).

6

In practice, one would exploit this theorem as follows:
The simulation proof between the parent automata al-
ready provides a corresponding execution sequence of
the parent specification for every step of the parent al-
gorithm. It is typically the case that the same execution
sequence, padded with new state variables, corresponds
to the same step at the child algorithm. Thus, condi-
tions 2a, 2c, and 2e of Theorem 4.1 hold for this se-
quence. The only conditions that have to be checked
are 2b, and 2d, i.e., that every step of this execution
sequence is consistent with the transition restriction TR

placed on S by S′ and that the values of the new state
variables of S′ in the final state of this execution are
related to the post-state of the child algorithm.

Note that, we can state a specialized version of Theo-
rem 4.1 for the case of three automata, A, S, and S′, by
letting A′ be the same as A. This version would be useful
when we know that algorithm A simulates specification
S, and we would like to prove that A can also simulate a
child S′ of S. The statement and the proof of this spe-
cialized version are the same as those of Theorem 4.1,
except there is no child A′ of A (A′ ≡ A), so A must be
substituted for A′ and t for t|p. In fact, given this spe-
cialized version, Theorem 4.1 then follows from it as a
corollary because the relation {〈t, s〉 : 〈t|p, s〉 ∈ Rp} is
a simulation relation from A′ to S, and the specialized
theorem applies to automata A′, S, and S′.

5 INTERFACE EXTENSION

Interface extension is a formal construct for altering the
interface of an automaton and for extending it with new
forms of interaction.

For technical reasons, it is convenient to assume that the
interface of every automaton contains an empty action
ε and that its state-transition relation contains empty-
transitions: i.e., if A is an automaton, then

(s, ε, s′) ∈ trans(A) ⇔ s = s′.

An interface extension of an automaton is defined using
an interface mapping function that translates the new
(child) interface to the original (parent) interface. New
actions added by the child are mapped to the empty
action ε at the parent. The child’s states and start
states are the same as those of the parent. The state-
transition of the child consists of all the parent’s transi-
tions, renamed according to the interface mapping. In
particular, the state-transition includes steps that do
not change state but involve the new actions (those that
map to ε).

Definition 5.1 Automaton A′ is an interface-
extension of an automaton A if states(A′) =
states(A), start(A′) = start(A), and if there exists

a function f, called interface-mapping1, such that

1. f is a function from sig(A′) onto sig(A). Note
that f can map non-ε actions of A′ to ε (these are
the new actions added by A′) and is also allowed to
be many-to-one.

2. f preserves the classification of actions as “input”,
“output”, and “internal”. That is, if π ∈ sig(A′), π
is an input action, and f(π) 6= ε, then f(π) is also
an input action; likewise, for output and internal
actions.

3. (s, π, s′) ∈ trans(A′) ⇔ (s, f(π), s′) ∈ trans(A).

Notation 5.2 Let A′ be an interface-extension of A

with an interface-mapping f.

If α is an execution sequence of A′, then α|f denotes a
sequence obtained by replacing each action π in alpha

with f(π), and then collapsing every transition of the
form (s, ε, s) to s.

Likewise, if β is a trace of A′, then β|f denotes a
sequence obtained by replacing each action π in β to
f(π), and by subsequently removing all the occurrences
of ε.

The following theorem formalizes the intuition that the
sets of executions and traces of an interface-extended
automaton are equivalent to the respective sets of
the parent automaton, modulo the interface-mapping.
The proof is straightforward by induction using Defini-
tion 5.1 and Notation 5.2.

Theorem 5.1 Let automaton A′ be an interface exten-
sion of A with an interface-mapping f.

Let α be a sequence of alternating states and actions of
A′ and let β be a sequence of external actions of A′.
Then:

1. α ∈ execs(A′) ⇔ α|f ∈ execs(A).

2. β ∈ traces(A′) ⇔ β|f ∈ traces(A).

When interface extension is followed by the special-
ization modification, the resulting combination corre-
sponds to the notion of modification by subclassing for
extension [8]. The resulting child specializes the parent’s
behavior and introduces new functionality. Specifically,
a specialization of an interface-extended automaton may
add transitions involving new state components and new
interface. The generalized definition of the parent-child
relationship is then as follows:

1Interface-mapping is similar to strong correspondence of [38].

7

Definition 5.3 Automaton A′ is a child of an automa-
ton A if A′ is a specialization of an interface extension
of A.

Theorem 5.1 enables the use of the proof extension theo-
rem (Theorem 4.1) for this parent-child definition, once
the child’s actions are translated to the parent’s actions
using the interface mapping of Definition 5.1.

6 PRACTICAL EXPERIENCE WITH IN-

CREMENTAL PROOFS

In this section we describe our experience designing
and modeling a complex group communications service
(see [26]), and how the framework presented in this pa-
per was exploited. We then describe an interesting mod-
eling methodology that has evolved with our experience
in this project.

Group communication systems (GCSs) [3, 37] are pow-
erful building blocks that facilitate the development of
fault-tolerant distributed applications. GCSs typically
provide reliable multicast and group membership ser-
vices. The task of the membership service is to maintain
a listing of the currently active and connected processes
and to deliver this information to the application when-
ever it changes. The output of the membership service
is called a view. The reliable multicast services deliver
messages to the current view members.

Traditionally, GCS developers have concentrated pri-
marily on making their systems useful for real-
world distributed applications such as data replication
(e.g., [16]), highly available servers (e.g., [5]) and col-
laborative computing (e.g., [7]). Formal specifications
and correctness proofs were seldom provided. Many
suggested specifications were complicated and difficult
to understand, and some were shown to be ambiguous
in [4]. Only recently, the challenging task of specify-
ing the semantics and services of GCSs has become an
active research area.

The I/O automaton formalism has been recently ex-
ploited for specifying and reasoning about GCSs (e.g.,
in [9, 11, 12, 15, 24, 28]). However, all of these sug-
gested I/O automaton-style specifications of GCSs used
a single abstract automaton to represent multiple prop-
erties of the same system component and presented a
single algorithm automaton that implements all of these
properties. Thus, no means were provided for reasoning
about a subset of the properties, and it was often dif-
ficult to follow which part of the algorithm implements
which part of the specification. Each of these papers
dealt with proving correctness of an individual service
layer and not with a full-fledged system.

In [26], we modeled a full-fledged example spanning
the entire virtually synchronous reliable group multi-
cast service. We provided specifications, formal algo-

rithm descriptions corresponding to our actual C++
implementation, and also simulation proofs from the al-
gorithms to the specifications. We employed a client-
server approach: We presented a virtually synchronous
group multicast client that interacts with an external
membership server. Our virtually synchronous group
multicast client was implemented using approximately
6000 lines of C++ code. The server [27] was developed
by another development team also using roughly 6000
lines of C++ code. Our group multicast service also
exploits a reliable multicast engine which was imple-
mented by a third team [34] using 2500 lines of C++
code.

We sought to model the new group multicast service in
a manner that would match the actual implementation
on one hand, and would allow us to verify that the algo-
rithms meet their specifications on the other hand. In
order to manage the complexity of the project at hand
we found a need for employing an object-oriented ap-
proach that would allow for reuse of models and proofs,
and would also correspond to the implementation, which
in turn, would reuse code and data structures.

In [26], we used the I/O automaton formalism with the
inheritance-based incremental modification constructs
presented in this paper to specify the safety properties
of our group communication service. We specified four
abstract specification automata which capture different
GCS properties: We began by specifying a simple GCS
that provides reliable fifo multicast within views. We
next used the new inheritance-based modification con-
struct to specialize the specification to require also that
processes moving together from one view to another de-
liver the same set of messages in the former. We then
specialized the specification again to also capture the
Self Delivery property which requires processes to de-
liver their own messages. The fourth automaton speci-
fied a stand-alone property (without inheritance) which
augments each view delivery with special information
called transitional set [37].

We then proceeded to formalize the algorithms imple-
menting these specifications. We first presented an al-
gorithm for within-view reliable fifo multicast and pro-
vided a five page long formal simulation proof showing
that the algorithm implements the first specification.
Next, we presented a second algorithm as an extension
and a specialization of the first one. In the second al-
gorithm, we restricted the parent’s behavior according
to the second specification, i.e., we added the restric-
tion that processes moving together from one view to
another deliver the same set of messages in the former.
Additionally, in the second algorithm, we extended the
service interface to convey transitional sets, and added
the new functionality for providing clients with transi-
tional sets as per the fourth specification. By exploiting

8

Theorem 4.1, we were able to prove that the second al-
gorithm implements the second specification (and there-
fore also the first one) in under two pages without need-
ing to repeat the arguments made in the previous five
page proof. We separately proved that the algorithm
meets the fourth specification. Finally, we extended and
specialized the second algorithm to support the third
property. Again, we exploited Theorem 4.1 in order to
prove that the final algorithm meets the third specifica-
tion (and hence all four specifications) in a merely two
and a half page long proof.

We are currently continuing our work on group commu-
nication. We are incrementally extending the system
described in [26] with new services and semantics using
the same techniques.

A Modeling Methodology

Specialization does not allow children to introduce be-
haviors that are not permitted by their parents and does
not allow them to change state variables of their par-
ents. However, when we modeled the algorithms in [26],
in one case we saw the need for a child algorithm to
modify a parent’s variable. We dealt with this case by
introducing a certain level of non-determinism at the
parent, thereby allowing the child to resolve (specialize)
this nondeterminism later.

In particular, the algorithm that implemented the sec-
ond specification described above sometimes needed to
forward messages to other processes, although such for-
warding was not needed at the parent. The forwarded
messages would have to be stored at the same buffers
as other messages. However, these message buffers were
variables of the parent, so the child was not allowed
to modify them. We solved this problem by adding a
forwarding action which would forward arbitrary mes-
sages to the parent automaton; the parent stored the
forwarded messages in the appropriate message buffers.
The child then restricted this arbitrary message for-
warding according to its algorithm.

We liken this methodology to the use of abstract meth-
ods or pure virtual methods in object-oriented methodol-
ogy, since the non-determinism is left at the parent as a
“hook” for prospective children to specify any forward-
ing policy they might need. In our experience, using
this methodology did not make the proofs more compli-
cated.

7 DISCUSSION

We described a formal approach to incrementally defin-
ing specifications and algorithms, and incorporated an
inheritance-based methodology for incrementally con-
structing simulation proofs between algorithms and
specifications. This technique eliminates the need to
repeat arguments about the original system while prov-
ing correctness of a new system.

We have successfully used our methodology in specifying
and proving correct a complex group communication
service [26]. We are planning to experiment with our
methodology in order to prove other complex systems.

We have presented the technique mathematically, in
terms of I/O automata. Furthermore, the formalism
presented in this paper and the syntax of incremental
modification is consistent with the continued evolution
of the IOA programming and modeling language. Since
IOA is being developed as a practical programming
framework for distributed systems, one of our goals is
to incorporate our inheritance-based modification tech-
nique and approach to proof reuse into the IOA pro-
gramming language toolset [17, 18].

Future plans also include extending our proof-reuse
methodology to a construct that allows a child to mod-
ify the state variables of its parent. Other future plans
include adding the ability to deal with multiple inher-
itance. In all of our work, we aim to formulate and
extend formal specification techniques that would be
useful for practical software development.

ACKNOWLEDGMENTS

We thank Paul Attie, Steve Garland, Victor Luchangco
and Jens Palsberg for their helpful comments and sug-
gestions.

REFERENCES

[1] M. Abadi and L. Cardelli. A Theory of Objects.
Springer-Verlag, 1996.

[2] M. Abadi and L. Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–
284, May 1991.

[3] ACM. Commun. ACM 39(4), special issue on Group
Communications Systems, April 1996.

[4] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg.
On the formal specification of group membership ser-
vices. Comp. Sci. TR 95-1534, Cornell Univ., Aug. 1995.

[5] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-
on-demand services. 19th Intern. Conference on Distr.
Computing Systems (ICDCS), pp. 244–252, June 1999.

[6] M. Bickford and J. Hickey. An object-oriented ap-
proach to verifying group communication systems.
http://www.cs.cornell.edu/jyh/papers/cav99 ooioa/.

[7] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Mid-
dleware support for distributed multimedia and collab-
orative computing. Multimedia Computing and Net-
working (MMCN98), 1998.

[8] T. Budd. An Introduction to Object-Oriented Program-
ming, 2nd Edition. Addison Wesley Longman, 1996.

[9] G. V. Chockler. An Adaptive Totally Ordered Multi-
cast Protocol that Tolerates Partitions. Master’s thesis,
Institute of Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel, 1997.

9

[10] W. Cook and J. Palsberg. A denotational semantics of
inheritance and its correctness. Information and Com-
putation, 114(2):329–350, 1994. Also OOPSLA’89.

[11] R. De Prisco, A. Fekete, N. Lynch, and A. Shvarts-
man. A dynamic view-oriented group communication
service. 17th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 227–236, June 1998.

[12] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman.
A dynamic primary configuration group communication
service. 13th International Symposium on DIStributed
Computing (DISC), pp. 64–78, 1999.

[13] W. P. de Roever and K. Engelhardt. Data Refinement
Model-Oriented Proof Methods and their Comparison.
Cambridge University Press, Dec. 1998.

[14] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.
Theoretical Computer Science, special issue on Dis-
tributed Algorithms, 220, 1999.

[15] A. Fekete, N. Lynch, and A. Shvartsman. Specify-
ing and using a partionable group communication ser-
vice. 16th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 53–62, August 1997.

[16] R. Friedman and A. Vaysburg. Fast replicated state ma-
chines over partitionable networks. 16th IEEE Intern.
Symp. on Reliable Distrib. Systems, October 1997.

[17] S. J. Garland and N. A. Lynch. Foundations of Compo-
nent Based Systems, chapter Using I/O Automata for
Developing Distributed Systems. Cambridge University
Press, USA, 1999. To appear.

[18] S. J. Garland, N. A. Lynch, and M. Vaziri. IOA:
A Language for Specifying, Programming and Vali-
dating Distributed Systems. MIT LCS, Dec. 1997.
http://sds.lcs.mit.edu/∼garland/ioaLanguage.html.

[19] M. Hayden and R. van Renesse. Optimizing Layered
Communication Protocols. TR96-1613, Dept. of Com-
puter Science, Cornell University, November 1996.

[20] M. P. Heimdahl and C. L. Heitmeyer. Formal methods
for developing high assurance computer systems: Work-
ing group report. Second IEEE Workshop on Industrial-
Strength Formal Techniques, Oct. 1998.

[21] C. Heitmeyer and N. Lynch. The generalized railroad
crossing: A case study in formal verification of real-time
systems. Real Time Systems Symposium, Dec. 1994.
Full version: MR-7619, Naval Research Laboratory.

[22] C. L. Heitmeyer. On the need for ’practical’ for-
mal methods. Formal Techniques in Real-Time Fault-
Tolerant Systems. 5th Intern. Symposium, pp. 18–26,
Sept. 1998. LNCS 1486 (invited paper).

[23] A. V. Hense. Wrapper semantics of an object-oriented
programming language with state. T. Ito and A. R.
Meyer, editors, Proceedings of Theoretical Aspects of
Computer Software, pp. 548–568. LNCS 526, 1991.

[24] J. Hickey, N. Lynch, and R. van Renesse. Specifications
and proofs for ensemble layers. 5th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS, Mar. 1999.

[25] S. Kamin. Inheritance in Smalltalk–80: A denotational
definition. 15th Symp. on Principles of Programming
Languages, pp. 80–87, 1988.

[26] I. Keidar and R. Khazan. A client-server approach
to virtually synchronous group multicast: Specifica-
tions, algorithms and proofs. TR 794, MIT Lab. for
Comp. Science, Nov. 1999. To appear in ICDCS 2000.
http://theory.lcs.mit.edu/∼idish/Abstracts/vs.html.

[27] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev.
A Client-Server Oriented Algorithm for Virtually Syn-
chronous Group Membership in WANs. TR CS99-623,
Comp. Sci., Univ. of California, San Diego, June 1999.

[28] R. Khazan, A. Fekete, and N. Lynch. Multicast group
communication as a base for a load-balancing replicated
data service. 12th International Symposium on DIS-
tributed Computing (DISC), pp. 258–272, Sept. 1998.

[29] B. Lampson. Generalizing Abstraction Functions. MIT,
Laboratory for Computer Science, Principles of Com-
puter Systems, Handout 8, 1997. ftp://theory.lcs.mit
.edu/pub/classes/6.826/www/6.826-top.html.

[30] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[31] N. Lynch and A. Shvartsman. Robust emulation of
shared memory using dynamic quorum-acknowledged
broadcasts. 27th IEEE Fault-Tolerant Computing Sym-
posium (FTCS), pp. 272–281, 1997.

[32] N. Lynch and M. Tuttle. An introduction to In-
put/Output Automata. CWI Quart., 2(3):219–246, ’89.

[33] U. S. Reddy. Objects as closures: Abstract semantics of
object-oriented languages. Proc. of ACM Conference on
Lisp and Functional Programming, pp. 289–297, 1988.

[34] I. Shnaiderman. Implementation of Reliable Data-
gram Service in the LAN environment. Lab project,
The Hebrew University of Jerusalem, January 1999.
http://www.cs.huji.ac.il/∼transis/publications.html.

[35] A. P. Sistla. Proving correctness with respect to nonde-
terministic safety specifications. Information Processing
Letters, 39(1):45–49, July 1991.

[36] R. Stata and J. V. Guttag. Modular reasoning in the
presence of subclassing. 10th Conf. on Object-Oriented
Progrgamming Systems, Lang., and Appl. (OOPSLA),
vol. 30 of ACM SIGPLAN, pp. 200–214, Oct. 1995.

[37] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev.
Group Communication Specifications: A Comprehen-
sive Study. TR CS99-31, Institute of Comp. Science,
The Hebrew University of Jerusalem, Israel, Sept. 1999.

[38] D. Yates, N. Lynch, V. Luchangco, and M. Seltzer. I/O
automaton model of operating system primitives. Mas-
ter’s thesis, Harvard University and MIT, May 1999.

10

