
A Client-Server Approach to Virtually Synchronous Group Multicast:
Speci£cations and Algorithms

Idit Keidar Roger Khazan
Massachusetts Institute of Technology Lab for Computer Science

545 Technology Square, Cambridge, MA 02143, USA
Email: {idish, roger}@theory.lcs.mit.edu URL: http://theory.lcs.mit.edu/{∼idish, ∼roger}

Abstract

This paper presents a formal design for a novel group
multicast service that provides virtually synchronous se-
mantics in asynchronous fault-prone environments. The de-
sign employs a client-server architecture in which group
membership is maintained not by every process but only by
dedicated membership servers, while virtually synchronous
group multicast is implemented by service end-points run-
ning at the clients. Speci£cally, the paper de£nes service se-
mantics for the client-server interface, that is, for the group
membership service. The paper then speci£es virtually syn-
chronous semantics for the new group multicast service, as
a collection of commonly used safety and liveness proper-
ties. Finally, the paper presents new algorithms that use the
de£ned group membership service to implement the speci-
£ed properties. The algorithm that provides the complete
virtually synchronous semantics executes in a single mes-
sage round in parallel with the membership service’s agree-
ment on views, and is therefore more ef£cient than previ-
ously suggested algorithms providing such semantics.

Keywords: Group Communication, Virtual Synchrony,
Reliable Multicast, Formal Modeling, I/O Automata.

1. Introduction
Group communication systems are powerful building

blocks that facilitate the development of fault-tolerant dis-
tributed applications (see [1, 19, 5] for discussion of the util-
ity of group communication systems). Group communica-
tion provides the notion of group abstraction, which allows
processes to be easily organized in multicast groups. Group
communication systems typically integrate two types of ser-
vices: group membership and reliable group multicast. The
membership service maintains a listing of the currently ac-
tive and connected group members and delivers this infor-
mation to its clients whenever it changes. The output of
the membership service is called a view. Reliable multi-
cast services that deliver messages to the current view mem-
bers complement the membership service. In this paper, we
present a novel group multicast service.

Group communication systems usually run in asyn-
chronous fault-prone environments. In such environments,
group communication systems generally provide some vari-
ant of virtual synchrony semantics which synchronize mem-
bership noti£cations with regular messages and thus sim-
ulate a “benign” world in which message delivery is reli-
able within the set of connected processes. Such semantics
are especially useful for constructing fault-tolerant applica-
tions that maintain consistent replicated state of some sort
(e.g., [7, 14]). The key aspect of virtual synchrony is the se-
mantics of interleaving of message send and delivery events
with view delivery events. In order to reason about this in-
terleaving, we associate message send and delivery events
with views: we say that an event e occurs at a process p in
view v if v was the last view delivered to p before e, or a
default initial view vp if no such view was delivered.

Many variants of virtual synchrony semantics have been
suggested (e.g., [16, 8, 19, 17, 7]). A key property speci£ed
by nearly all of these (e.g., [16, 8, 19, 17]) is that processes
moving together from a view v to another view v′ deliver
the same messages in v. This property allows applications
to avoid costly re-synchronization following certain view
changes. Our service speci£cation includes this property,
as well as several additional safety and liveness properties.
We present our speci£cations in Section 4.

During the period in which the group communication
service is attempting to reach agreement on a view, pro-
cesses may attempt to join/re-join. In such cases, previ-
ously suggested virtual synchrony algorithms, e.g., [8, 17],
can have the current invocation of the membership and vir-
tual synchrony proceed to termination without adding the
joining processes, and then immediately start an attempt
to add them. This strategy results in overhead (e.g., in-
creased network load) because applications react to such
outdated views just as they do to any other view, e.g., by
re-synchronizing with the new members. Moreover, this
strategy precludes situations when applications may rely on
virtual synchrony to avoid the costly re-synchronizations all
together. For example, consider a transient failure when a
process p is unsuspected right after an attempt to remove p



from the membership has started. Existing algorithms typ-
ically deliver a view excluding p and then re-invoke the al-
gorithm to allow p to re-join. Since p does not move into
the resulting view from the same view as the rest of the
processes, these processes cannot rely on the key property
of virtual synchrony to avoid re-synchronizing with p. In
contrast, our algorithm never delivers views that re¤ect a
membership that is already known to be out of date.

Traditionally, virtual synchrony semantics were imple-
mented by algorithms that were integrated with group mem-
bership algorithms (e.g., in [8, 9, 2]). In contrast, our group
multicast service is designed for a client-server architecture
in which a small set of dedicated membership servers main-
tains client membership information (i.e., which clients are
members of which group). This architecture was designed
to provide scalable membership services in wide area net-
works (cf. [3]). Our virtual synchrony algorithm acts as the
client of an external membership service.

Introducing the client-server design poses a major chal-
lenge: One has to de£ne an interface by which a member-
ship server interacts with its clients, in a way that would al-
low for simple and ef£cient implementations of both group
membership (by the membership servers), and virtual syn-
chrony (by service end-points at the clients). Such an in-
terface has to provide suf£cient level of synchronization to
allow the virtual synchrony algorithm to reach agreement
upon the set of messages delivered in the old view in paral-
lel with the servers’ agreement on views. At the same time,
the virtual synchrony algorithm should avoid imposing lim-
itations on the membership’s choice of views (as explained
above). In addition, one has to try to minimize the commu-
nication overhead induced by the client-server interaction.

We have designed an interface that addresses the chal-
lenges above. Our interface consists of two types of mes-
sages sent from membership servers to their clients: When
a server engages in a view change, it sends its clients a
start change message. Each start change message
contains a locally unique identi£er. This identi£er is not
globally agreed upon: start change messages sent to dif-
ferent processes can contain different identi£ers. Once the
server agrees upon the new view with the other servers, it
sends a view message to its clients. The view contains in-
formation that maps clients to the last start change iden-
ti£ers they received before receiving this view. A similar
view structure is suggested in [17], for the purpose of not
having concurrent views intersect. The servers do not need
to hear from their clients in order to complete the algorithm.

Our interface allows for straightforward and ef£cient im-
plementations of both membership and virtual synchrony.
The algorithm we present in Section 5 exploits this interface
to achieve virtual synchrony in a single round. We have im-
plemented this algorithm (in C++) using the scalable one-
round membership algorithm of [13]. The virtual synchrony
round and the membership round are conducted in paral-
lel: once the end-points receive the start change noti£-

cations, they send each other special synchronization mes-
sages which allow them to agree upon the set of messages
to be delivered before moving to the new view. We are not
aware of any other algorithm that implements virtual syn-
chrony in one communication round without pre-agreement
upon a globally unique identi£er while also not imposing
restrictions on the membership’s choice of the next view.

Throughout this paper we use the I/O automaton for-
malism (cf. [15], Ch. 8) to provide rigorous speci£ca-
tions and algorithm descriptions. Previously suggested
I/O automaton-style speci£cations of group communication
systems (e.g., [7, 10]) used a single abstract automaton to
represent multiple properties of the same system compo-
nent and presented a single algorithm automaton that im-
plements all of these properties. Thus, no means were pro-
vided for reasoning about a subset of the properties, and it
was often dif£cult to follow which part of the algorithm im-
plements which part of the speci£cation. We address this
shortcoming by specifying separate properties as separate
abstract automata, and by incrementally constructing the al-
gorithm that implements them – in each step adding sup-
port for an additional property – using a novel inheritance-
based construct, recently introduced to the I/O automaton
model [12]. This paper informally argues the algorithm’s
correctness; a formal correctness proof by simulation is in-
cluded in the full paper [11].

2. Formal Model and Notation
In the I/O automaton model (cf. [15], Ch. 8), a system

component is described as a state-machine, called an I/O
automaton. The transitions of this state-machine are asso-
ciated with named actions, which are classi£ed as either in-
put, output, or internal. Input and output actions model the
component’s interaction with other components, while in-
ternal actions are externally-unobservable.

Formally, an I/O automaton is de£ned as the following
£ve-tuple: a signature (input, output and internal actions),
a set of states, a set of start states, a state-transition relation
(a cross-product between states, actions, and states), and a
partition of output and internal actions into tasks. Tasks are
used for de£ning fairness conditions.

An action π is said to be enabled in a state s if the au-
tomaton has a transition of the form (s, π, s′); input actions
are enabled in every state. An execution of an automaton
is an alternating sequence of states and actions that begins
with its start state, and successive triples are allowable tran-
sitions. An in£nite execution is fair if, for each task, it
either contains in£nitely many actions from this task or in-
£nitely many occurrences of states in which no action from
this task is enabled; a £nite execution is fair if no action is
enabled in its £nal state. A trace is a subsequence of an exe-
cution consisting solely of the automaton’s external actions.
A fair trace is a trace of a fair execution.

When reasoning about an automaton, we are only inter-
ested in its externally-observable behavior as re¤ected in its



traces. There are two types of trace properties: safety and
liveness. Safety properties usually specify that some partic-
ular bad thing never happens. In this paper we specify safety
properties using centralized (global) I/O automata that gen-
erate the legal sets of traces; for such automata we do not
specify task partitions. Each external action in such a cen-
tralized automaton is tagged with a subscript which denotes
the process at which this action occurs. An algorithm au-
tomaton satis£es a speci£cation if all of its traces are also
traces of the speci£cation automaton. Liveness properties
usually specify that some good thing eventually happens.
An implementation automaton satis£es a liveness property
if the property holds in all of its fair traces.

The composition operation de£nes how automata inter-
act via their input and output actions: It matches output and
input actions with the same name in different component
automata; when a component automaton performs a step
involving an output action, so do all components that have
this action as an input one. When reasoning about a certain
system component, we compose it with abstract speci£ca-
tion automata that specify the behavior of its environment.

I/O automata are conveniently presented using the
precondition-effect style: In this style, typed state variables
with initial values specify the set of states and the start
states. A variable type is a set (if S is a set, the notation
S⊥ refers to the set S ∪ {⊥}). Transitions are grouped by
action name, and are speci£ed as a list of triples consisting
of an action name (possibly with parameters), a pre : block
with preconditions on the states in which the action is en-
abled, and an eff : block which speci£es how the pre-state
is modi£ed atomically to yield the post-state.

We use a novel inheritance-based formal concept, re-
cently introduced into the I/O automaton model [12]. A
child automaton is speci£ed as a modi£cation of the parent
automaton’s code. When presenting a child we £rst spec-
ify a signature extension which consists of new actions (la-
beled new) and modi£ed actions (a modi£ed action is labeled
with the name of the action which it modi£es as follows:
modi£es parent.action(parameters)). We next specify
the state extension consisting of new state variables added
by the child. Finally, we describe the transition restriction
which consists of new preconditions and effects added by
the child to both new and modi£ed actions. For modi£ed
actions, the preconditions and effects of the parent are ap-
pended to those added by the child. New effects added by
the child are performed before the effects of the parent, all
of them in a single atomic step. The child’s effects are not
allowed to modify state variables of the parent, to ensure
that the set of traces of the child, when projected onto the
parent’s signature, is a subset of the parent’s set of traces.

3. Environment Speci£cation
Our service is implemented in an asynchronous

message-passing environment. Processes can crash, com-
munication links may fail and may later recover, possibly

Connection-Oriented Reliable FIFO Multicast Service

Group Membership Service

GCS End-pointGCS End-point

Application Application

Figure 1. The client-server architecture.

causing network partitions and merges. In [11], we also
model process recovery.

The service is implemented by group communication
service (GCS) end-points running as clients of an exter-
nal membership service whose speci£cation appears in Sec-
tion 3.1. The end-points communicate with each other us-
ing a reliable FIFO multicast service which we describe in
Section 3.2, as depicted in Figure 1. We use the words
“process” and “end-point” interchangeably.

3.1. The membership service

In Figure 2 we specify an external membership service
whose interface consists of two output events:

start changep(cid, set) noti£es process p that the
membership service is attempting to form a new view
with the members of set; cid is a local identi£er.

viewp(v) noti£es process p of the new view v. A view v

is a triple consisting of an identi£er v.id, a set of
members v.set, and a function v.startId that maps
members of v to start change identi£ers. Two views
are the same if they consist of identical triples.

The membership speci£cation captures two basic mem-
bership properties, which are ful£lled by virtually all group
membership services (e.g., [2, 8, 4, 13, 17]): Self Inclusion
requires every view delivered to an end-point p to include
p as a member, and Local Monotonicity requires that view
identi£ers delivered to p be monotonically increasing.

In addition, the MBRSHP automaton speci£es, using
the mode[p] variable, that the membership service must
precede every view v sent to end-point p with at least
one start change noti£cation to p. It also requires
that, for every view v sent to p, the start change identi-
£er v.startId(p) be the same as the cid of the latest
start change issued to p before the view, and that v.set
be a subset of the set suggested in that start change.
Note that this speci£cation does allow the membership ser-
vice to add new processes while it is recon£guring, as long
as a new start change is sent to the clients. Also note
that the speci£ed service is partitionable [19, 4], i.e., al-
lows several disjoint views to exist concurrently.

The speci£cation allows for simple and ef£cient dis-
tributed implementations, e.g., [13], as well as many other



AUTOMATON MBRSHP

Type StartChangeId: Total-order; cid0 is smallest.
ViewId: Partial-order; vid0 is smallest.
View: ViewId x SetOf(Proc) x

x (Proc → StartChangeId)
Def vp = 〈vid0, {p}, {(p →cid0)}〉

Signature:
Output: start changep(cid, set), Proc p,

StartChangeId cid, SetOf(Proc) set
viewp(v), Proc p, View v

State:
(∀ Proc p) View mbrshp view[p], initially vp
(∀ Proc p) (StartChangeId x SetOf(Proc))

start change[p], initially 〈cid0, {}〉
(∀ Proc p) mode[p] ∈ {normal, change started},

initially normal

Transitions:
OUTPUT start changep(cid, set)
pre: cid > start change[p].id

p ∈ set
eff: start change[p] ← 〈cid, set〉

mode[p] ← change started

OUTPUT viewp(v)
pre: p ∈ v.set ∧ v.id > mbrshp view[p].id

v.set ⊆ start change[p].set
v.startId(p) = start change[p].id
mode[p] = change started

eff: mbrshp view[p] ← v
mode[p] ← normal

Figure 2. Membership service safety spec.

existing membership algorithms (e.g., [2]) which could be
easily extended to provide the speci£ed interface and se-
mantics. In a possible implementation, a small number of
servers could support a large number of clients, commu-
nicating with them asynchronously via FIFO ordered chan-
nels. Fault-tolerant implementations that support client mi-
gration are also possible if the server name is included in
the start change identi£er to guarantee its local uniqueness.

3.2. The reliable FIFO multicast service

The group communication end-points communicate with
each other using an underlying multicast service that pro-
vides reliable FIFO communication between every pair of
connected processes. Many existing group communication
systems (e.g., [9, 4]) implement virtual synchrony over
similar underlying reliable communication substrates. In
our implementation, we currently use the service of [18].

Figure 3 presents a centralized automaton CO RFIFO

which speci£es a multicast service appropriate for our
group communication algorithm. CO RFIFO maintains a
FIFO queue channel[p][q] for every pair of end-points. An
input action sendp(set, m) models the multicast of message
m from end-point p to the end-points listed in the set by ap-

AUTOMATON CO RFIFO

Signature:
Input:

sendp(set,m), Proc p, SetOf(Proc) set, Msg m
reliablep(set), Proc p, SetOf(Proc) set
livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m
Internal: lose(p,q), Proc p, Proc q

State:
(∀ Proc p, Proc q) SeqOf(Msg) channel[p][q],

initially empty
(∀ Proc p) SetOf(Proc) reliable set[p], init. {p}
(∀ Proc p) SetOf(Proc) live set[p], init. {p}

Transitions:
INPUT sendp(set, m)
eff: (∀ q ∈ set) append m to channel[p][q]

OUTPUT deliverp,q(m) hidden parameter live set[p]
pre: m = First(channel[p][q])
eff: dequeue m from channel[p][q]

INPUT reliablep(set)
eff: reliable set[p] ← set

INTERNAL lose(p, q)
pre: q 6∈ reliable set[p]
eff: dequeue last message from channel[p][q]

INPUT livep(set)
eff: live set[p] ← set

Tasks:
1. (∀ p)(∀ q ∈ live set[p]) {deliverp,q(m)}
2. {dummy()} ∪ {deliverp,q(m) | q 6∈ live set[p]}
∪ {lose(p,q)}

Figure 3. CO RFIFO service speci£cation.

pending m to the queues channel[p][q] for every end-point
q in set. The deliverp,q(m) action removes the £rst mes-
sage from channel[p][q] and delivers it to q.

An end-point p may use the action reliablep(set) to
require CO RFIFO to maintain reliable (gap-free) FIFO con-
nections to the end-points in set. For every process q

not in this set, CO RFIFO may lose an arbitrary suf£x of
the messages sent from p to q, as modeled by the action
lose(p, q).

In specifying liveness of CO RFIFO, we require that mes-
sages sent to live and connected processes eventually reach
their destinations. We formulate this property by de£ning
every deliverp,q(m) to be a task if and only if q is a mem-
ber of live set[p], a special variable periodically set by
input actions livep(set). The livep(set) inputs are as-
sumed to re¤ect the real state of the network, that is, the
set of processes which are really alive and connected to p.
Notice that we could not use the variable reliable set[p]
in this formulation because it is controlled by the client and
thus does not necessarily re¤ect the real network situation.



4. GCS Speci£cations
We present the safety and liveness properties satis£ed by

our group communication service in Sections 4.1 and 4.2
respectively. These properties have been proven to be useful
for many distributed applications (see [19]).

4.1. Safety properties

We present our safety speci£cations in four steps, as
four automata: In Section 4.1.1 we specify a simple group
communication service that provides reliable FIFO multicast
within views. In Section 4.1.2 we extend the speci£cation of
Section 4.1.1 to also require that processes moving together
from view v to view v′ deliver the same messages in view
v. In Section 4.1.3 we specify a service which provides
transitional sets (£rst presented as part of Extended Virtual
Synchrony (EVS) [16]). In Section 4.1.4 we specify the Self
Delivery property which requires processes to deliver their
own messages. The speci£ed services are partitionable.

4.1.1 Within-view reliable FIFO multicast

AUTOMATON WV RFIFO : SPEC

Signature:
Input: sendp(m), Proc p, AppMsg m
Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:
(∀ Proc p, View v) SeqOf(AppMsg) msgs[p][v],

initially empty
(∀ Proc p, Proc q) Int last dlvrd[p][q], init. 0
(∀ Proc p) View current view[p], init. vp

Transitions:
INPUT sendp(m)
eff: append m to msgs[p][current view[p]]

OUTPUT deliverp(q, m)
pre: m=msgs[q][current view[p]][last dlvrd[q][p]+1]
eff: last dlvrd[q][p] ← last dlvrd[q][p]+1

OUTPUT viewp(v)
pre: p ∈ v.set ∧ v.id > current view[p].id
eff: (∀ q) last dlvrd[q][p] ← 0

current view[p] ← v

Figure 4. WV RFIFO service speci£cation.

In Figure 4 we present the within-view reliable FIFO

(WV RFIFO) service speci£cation. The speci£cation uses
centralized queues msgs[p][v] of application messages for
each sender p and view v. The action sendp(m) models the
multicast of message m from process p to the members of p’s
current view by appending m to msgs[p][current view[p]].
The deliverp(q, m) action models the delivery to process
p of message m sent by process q while in p’s current view.
The speci£cation enforces gap-free FIFO ordered delivery of

messages by using the variable last dlvrd[q][p] to index
the last message from q delivered to p in p’s current view.

This speci£cation captures the following properties:

• Views delivered to the application satisfy Local Mono-
tonicity and Self Inclusion (cf. Sec. 3.1).

• Messages are delivered in the same view in which they
were sent. This property is useful for many applica-
tions (cf. [8, 19]) and appears in several systems and
speci£cations (e.g., see [1, 2, 16, 7]). A weaker prop-
erty that requires each message to be delivered in the
same view at every process that delivers it, but not nec-
essarily the view in which it was sent, is typically im-
plemented on top of an implementation of within-view
delivery (see [19]).

• Messages are delivered in gap-free FIFO order (within
views). This is a basic property upon which one can
build services with stronger ordering guarantees (e.g.,
causally or totally ordered multicast).

4.1.2 Virtual synchrony

In this section we specify a virtually synchronous reliable
FIFO multicast service, VS RFIFO, as a child of the pre-
sented above WV RFIFO automaton. The VS RFIFO speci-
£cation consists of the code given in both Figures 4 and 5.

AUTOMATON VS RFIFO : SPEC MODIFIES WV RFIFO : SPEC

Signature Extension:
Output: viewp(v) modi£es wv rfifo.viewp(v)
Internal: set cut(v, v ′, c), View v, View v ′,

(Proc → Int)⊥ c new

State Extension:
(∀ View v, v ′) (Proc→Int)⊥ cut[v][v ′], init. ⊥

Transition Restriction:
OUTPUT viewp(v)
pre: cut[current view[p]][v] 6= ⊥
(∀ q) last dlvrd[q][p]=cut[current view[p]][v](q)

INTERNAL set cut(v, v ′, c)
pre: cut[v][v ′] = ⊥
eff: cut[v][v ′] ← c

Figure 5. VS RFIFO service speci£cation.

In addition to the properties inherited from WV RFIFO,
the VS RFIFO speci£cation also requires that processes
moving together from view v to view v′ deliver the same
set of messages in v. To enforce this property, the speci£ca-
tion introduces internal actions set cut(v, v′, c) that non-
deterministically £x the set of messages to be delivered in
view v by every process that moves from v to v′. This set
is represented by the index of the last message to be deliv-
ered in v from each sender. Note that a process that delivers
messages beyond an already established cut is not allowed
to move into the view associated with the cut.



This property is commonly provided (e.g., [16, 8, 19, 17,
10]) and is often called Virtual Synchrony by itself. It is es-
pecially useful for applications that implement data replica-
tion using the state machine approach (e.g., [7, 14]). Such
applications may exploit Virtual Synchrony to avoid send-
ing costly synchronization messages among processes that
continue together from one view to the next.

4.1.3 Transitional set

While Virtual Synchrony is a useful property, a process that
moves from view v to view v′ cannot locally tell which of
the processes in v.set ∩ v′.set move to view v′ directly
from view v, and which move to v′ from some other view.
In order for the application to be able to exploit the Virtual
Synchrony property, application processes need to be told
which other processes move together with them from their
old views in to their new views. The set of such processes is
called a transitional set. The notion of a transitional set was
£rst introduced as part of a special transitional view in the
EVS [16] model. In our formulation (as in [19]), transitional
sets are delivered to the applications together with (regular)
views, as an additional parameter T. The delivery of transi-
tional sets satis£es the following property (cf. [19]):

Property 4.1 The transitional set delivered by a process
p when it moves from view v to view v′ is a subset of
v.set ∩ v′.set that includes (a) all the processes (includ-
ing p) that move directly from v to v′ and (b) no member of
v′.set that moves to v′ from any view other than v.

Note that processes that move to the same view from dif-
ferent views deliver different transitional sets.

AUTOMATON TRANS SET : SPEC

Signature:
Output: viewp(v,T), Proc p, View v, SetOf(Proc) T
Internal: set prev viewp(v), Proc p, View v

State:
(∀ Proc p) View current view[p], initially vp
(∀ Proc p, View v) View⊥ prev view[p][v], init. ⊥

Transitions:
OUTPUT viewp(v, T)
pre: prev view[p][v] = current view[p]

(∀ q ∈ v.set ∩ current view[p].set)
prev view[q][v] 6= ⊥

T = {q ∈ v.set ∩ current view[p].set |
prev view[q][v] = current view[p]}

eff: current view[p] ← v

INTERNAL set prev viewp(v)
pre: p ∈ v.set

prev view[p][v] = ⊥
eff: prev view[p][v] ← current view[p]

Figure 6. Transitional set speci£cation.

Figure 6 contains an automaton (without inheritance)
specifying the Transitional Set property. Before p can

move from view v to v′, each member q of v.set ∩ v′.set

must execute set prev viewq(v
′) to “declare” the view

from which it intends to move to v′; this action sets
prev view[q][v′] to q’s current view. The transitional set
delivered by p with v′ is then computed to consist of those
q in v.set ∩ v′.set for which prev view[q][v′] = v.

4.1.4 Self delivery

In Figure 7 we modify the WV RFIFO speci£cation automa-
ton (Fig. 4) to capture the Self Delivery property by for-
bidding an end-point p to move from view v to v′ before
delivering all its own application messages sent in v.

AUTOMATON SELF : SPEC MODIFIES WV RFIFO : SPEC

Signature Extension:
Output: viewp(v) modi£es wv rfifo.viewp(v)

Transition Restriction:
OUTPUT viewp(v)
pre: last dlvrd[p][p] =

= LastIndexOf(msgs[p][current view[p]])

Figure 7. Self Delivery property speci£cation.

This safety property, when accompanied by the liveness
property of Section 4.2, implies the Self Delivery liveness
properties of [19] and [16], which require processes to even-
tually deliver their own messages.

4.2. Liveness property

In a fault-prone asynchronous model, it is not feasible
to require that a group communication service be live in
every execution. The only way to specify useful liveness
properties without strengthening the communication model
is to make these properties conditional on the underlying
network behavior (as speci£ed, e.g., in [7, 19]). Since our
GCS uses an external membership service, we condition its
liveness on the behavior of the membership service (which
itself is assumed to satisfy some meaningful liveness prop-
erties, e.g., those of [13]). Provided the membership even-
tually delivers the same view to all the view end-points and
does not deliver any subsequent views (i.e., stabilizes), we
require the end-points to eventually deliver this view and all
the messages sent in this view to their applications.

Property 4.2 Let v be a view with v.set = S. Let α

be a fair execution of a group communication service
GCS in which, for every p ∈ S, MBRSHP.viewp(v) ac-
tion occurs and is followed by neither MBRSHP.viewp
nor MBRSHP.start changep. Then at each p ∈ S,
GCS.viewp(v) eventually occurs. Furthermore, for every
GCS.sendp(m) that occurs after GCS.viewp(v), and for ev-
ery q ∈ S, GCS.deliverq(p, m) also occurs.

It is important to note that although our liveness prop-
erty requires GCS to be live only in certain executions, any



implementation which satis£es this property has to attempt
to be live in every execution because of its inability to test
the external condition of the membership becoming stable.
Also note that, even though membership stability is for-
mally required to last forever, in practice it only has to hold
“long enough” for GCS to recon£gure.

5. The Group Multicast Algorithm

Our group communication service is implemented by a
collection of GCS end-points, each running the same algo-
rithm. Figure 8 (a) shows the interaction of a GCS end-point
with its environment, MBRSHP and CO RFIFO (see Sec. 3).
The end-point interacts with its application client by ac-
cepting the client’s send-requests and by delivering appli-
cation messages and views to the client. The end-point uses
CO RFIFO to send messages to other GCS end-points and
to receive messages sent by other GCS end-points. When
necessary, the end-point uses the action reliable to in-
form CO RFIFO of the set of end-points to which CO RFIFO

must maintain reliable (gap-free) FIFO connections. The
GCS end-point also receives start change and view no-
ti£cations from the membership service.

WV_RFIFO

VS_RFIFO+TS

VS_RFIFO+TS+SD

GCS End-Point

d
e
l
i
v
e
r

s
e
n
d

l
i
v
e

d
e
l
i
v
e
r

GCS
End-pointMembership

start_change

r
e
l
i
a
b
l
e

view

v
i
e
w

s
e
n
d

(a) Interaction with Membership and Multicast Services (b) Inheritance Hierarchy

Connection-Oriented Reliable FIFO Multicast

Figure 8. GCS end-point and environment.

The algorithm running at each end-point is constructed
in steps, at each step adding support for a new property:

• First, we present an algorithm WV RFIFOp for an end-
point of a within-view reliable FIFO multicast service.

• Then, in Section 5.2, we add support for the Vir-
tual Synchrony and Transitional Set properties. We
present a child VS RFIFO+TSp of WV RFIFOp, and ar-
gue that the service built from VS RFIFO+TSp end-
points satis£es safety speci£cations VSRFIFO : SPEC

and TS : SPEC, and liveness Property 4.2.

• Finally, in Section 5.3, we add support for Self De-
livery. The resulting automaton VS RFIFO+TS+SDp

models a GCS end-point. Due to the use of inheri-
tance, the service built from these end-points satis£es
WV RFIFO : SPEC, VSRFIFO : SPEC, and TS : SPEC.
We argue that it also satis£es safety speci£cation
SELF : SPEC and liveness Property 4.2.

In the presented automata, each locally controlled action
is de£ned to be a task by itself, which means that, if it be-
comes and stays enabled, it would eventually get executed.

When composing automata into a service, actions
of the type MBRSHP.start changep(id, set) are linked
with CO RFIFO.livep(set), and MBRSHP.viewp(v) with
CO RFIFO.livep(v.set). This way, the live set[p] at
CO RFIFO matches the MBRSHP’s perception of which pro-
cesses are alive and connected to p. (We assume that every
permanently disconnected end-point is eventually excluded
by either a start change or a view noti£cation.) Also, in
the composed system, all output actions except the applica-
tion interface are reclassi£ed as internal.

We present our algorithm at a level that would be easy to
follow and then supplement this presentation with a discus-
sion of some important, practical optimizations.

5.1. Within-view reliable FIFO multicast algorithm

In this section we present algorithm WV RFIFOp for an
end-point p of a service that interacts with MBRSHP and
CO RFIFO services and satis£es the WV RFIFO : SPEC

safety speci£cation and liveness Property 4.2.
The MBRSHP and CO RFIFO services by themselves

already provide most of the properties required by the
WV RFIFO : SPEC speci£cation: MBRSHP generates views
that satisfy Local Monotonicity and Self Inclusion, and
CO RFIFO provides gap-free FIFO communication. Since
WV RFIFOp can just forward to its application the views
generated by MBRSHP and can use CO RFIFO to multicast
application messages to other end-points, it only needs to
ensure that messages are delivered in the same views in
which they were sent. This can be done simply by tagging
messages with the views in which they were sent and by al-
lowing delivery of a message when its view tag matches the
end-point’s current view.

As an optimization of this idea, instead of tagging each
message with a view in which it was sent, our algorithm
sends a single, special view msg(v) to all members of view
v before sending them application messages in that view.
An end-point can deduce the view in which an application
message is sent from the latest view msg(v) received from
the application message sender.

The algorithm is captured in the WV RFIFOp automa-
ton of Figure 9. Note that, instead of blindly relying on
CO RFIFO regarding which messages get delivered in a
given view, WV RFIFO allows processes to forward appli-
cation messages on behalf of other processes. The code of
WV RFIFOp does not specify a particular forwarding strat-
egy – it allows for non-deterministic forwarding of mes-
sages. Without this, more re£ned versions and extensions
of WV RFIFO would not be able to introduce a speci£c for-
warding strategy (as we do in VS RFIFO+TS by adding a
precondition on the action that sends forwarded messages).

There is also another place where the code leaves a non-
deterministic choice: it is in handling of the reliable set



AUTOMATON WV RFIFOp

Signature:
Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q,
(AppMsg + ViewMsg + FwdMsg) m

mbrshp.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m
co rfifo.sendp(set, m), SetOf(Proc) set,

(AppMsg + ViewMsg + FwdMsg) m
viewp(v), View v

State:
// Variables for handling application messages
(∀ Proc q, View v) SeqOf(AppMsg⊥) msgs[q][v],

initially empty
Int last sent, initially 0
(∀ Proc q) Int last rcvd[q], initially 0
(∀ Proc q) Int last dlvrd[q], initially 0

// Variables for handling views and view messages
View current view, initially vp
View mbrshp view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:
INPUT mbrshp.viewp(v)
eff: mbrshp view ← v

OUTPUT viewp(v)
pre: v = mbrshp view 6= current view
eff: current view ← v

last sent ← 0
(∀ q) last dlvrd[q] ← 0

OUTPUT co r£fo.reliablep(set)
pre: current view.set ⊆ set
eff: reliable set ← set

OUTPUT co r£fo.sendp(set, tag=view msg, v)
pre: view msg[p] 6= current view

current view.set ⊆ reliable set
set = current view.set - {p}
v = current view

eff: view msg[p] ← current view

INPUT co r£fo.deliverq, p(tag=view msg, v)

eff: view msg[q] ← v
last rcvd[q] ← 0

INPUT sendp(m)
eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)
pre: m = msgs[q][current view][last dlvrd[q]+1]

(q = p) ⇒ (last dlvrd[q] < last sent)
eff: last dlvrd[q] ← last dlvrd[q] + 1

OUTPUT co r£fo.sendp(set, tag=app msg, m)
pre: view msg[p] = current view

set = current view.set - {p}
m = msgs[p][current view][last sent + 1]

eff: last sent ← last sent + 1

INPUT co r£fo.deliverq,p(tag=app msg, m)
eff: msgs[q][view msg[q]][last rcvd[q]+1]←m

last rcvd[q] ← last rcvd[q] + 1

OUTPUT co r£fo.sendp(set,tag=fwd msg,r,v,m,i)
pre: m = msgs[r][v][i]

INPUT co r£fo.deliverq,p(tag=fwd msg,r,v,m,i)
eff: msgs[r][v][i] ← m

Figure 9. Within-view reliable FIFO multicast end-point automaton.

of CO RFIFO. The code allows it to be an arbitrary superset
of current view.set. This set is further restricted in a
child VS RFIFO+TSp of WV RFIFOp.

The correctness of WV RFIFO follows from the use of or-
dered message queues, the safety and liveness properties of
CO RFIFO, and the safety properties of MBRSHP. A formal
proof is given in [11].

Also note that the presented code never removes mes-
sages from its buffers. An actual implementation can and
should employ some sort of a garbage collection mech-
anism, for example discard messages sent in older views
when moving in to a new view.

5.2. Virtual Synchrony and Transitional Sets

The WV RFIFO service presented above guarantees that
in each view v every member delivers some pre£x of
the FIFO ordered messages sent by each end-point in v.

The VS RFIFO+TS service presented in this section extends
WV RFIFO to also guarantee that those end-points which
transition directly from view v to the same view v′ de-
liver not just “some” pre£xes but “the same” pre£xes of the
FIFO ordered messages sent by each end-point in view v

(cf. Sec. 4.1.2). Moreover, every view delivery is accompa-
nied by a transitional set T that satis£es the Transitional Set
property of Sec. 4.1.3.

In order to satisfy these two properties, an end-point
moving from a view v to a view v′ must £rst learn which
other end-points may transition from v to v′ and must agree
with them on the lengths of the pre£xes they need to de-
liver. In a nutshell, here is how the VS RFIFO+TS service
accomplishes this: Each time an end-point p is noti£ed
via MBRSHP.start changep(cid, set) of the MBRSHP’s
attempt to form a new view, p reliably sends to set

a synchronization message tagged with cid. When
MBRSHP.viewp(v

′) is delivered to p, p uses the v′.startId



mapping to determine which synchronization message to
use from each end-point q in v.set ∩ v′.set; it uses the one
tagged with v′.startId(q). As a result, all end-points that
move from view v to v′ use the same set of synchronization
messages for computing the transitional set and the set of
messages to be delivered to their application clients before
v′. Notice that, by enriching views with the startId map-
ping, we eliminate the need to pre-agree on a common tag
for identifying which synchronization messages to consider
for a given view.

5.2.1 Algorithm details and safety argument

Figure 10 presents the VS RFIFO+TSp automaton as
a child of WV RFIFOp. While there are no view
changes, VS RFIFO+TSp does not modify the behavior of
WV RFIFOp. During a view change, VS RFIFO+TSp sends
and handles synchronization messages, and also restricts the
delivery of application messages according to the synchro-
nization messages associated with the new view.

Upon receiving a start changep(cid, set) noti£ca-
tion from MBRSHP, end-point p stores 〈cid, set〉 in the
variable start change, tells CO RFIFO to maintain reliable
communication to the end-points in current view ∪ set,
and then sends a synchronization message tagged with cid

to every end-point in set. The synchronization message
contains p’s current view v and a cut, which is a mapping
from processes to indices; cut(q) is the index of the last
message from q that p commits to deliver before delivering
any view v′ with v′.startId(p) = cid.

End-point p stores the synchronization message from q

tagged with cid in sync msg[q][cid]. Until p receives a
view from MBRSHP, it does not know which synchroniza-
tion messages from others to consider, so it restricts delivery
of application messages to only those identi£ed in its own
latest cut. When a MBRSHP view v′ is delivered to p, the
v′.startId mapping tells p to use the synchronization mes-
sages sync msg[q][v′.startId(q)] from q ∈ v′.set. The
members of p’s transitional set for view v′ are those end-
points q whose sync msg[q][v′.startId(q)].view is the
same as p’s current view v. After receiving view v′ from
MBRSHP, p allows delivery of application messages identi-
£ed by cuts in the synchronization messages from the pro-
cesses that are already known to be members of the transi-
tional set. The delivery of viewp(v′, T) to p’s application is
enabled only after p has received the synchronization mes-
sages from all the potential members of T and after it has de-
livered all application messages committed to by the cuts

of the members of T. Since all the end-points that move
from v to v′ use the same set of synchronization messages,
the Virtual Synchrony and Transitional Set safety properties
are satis£ed.

End-point p is guaranteed to eventually receive all the
application messages sent by the members of its transitional
set T. However, p may fail to receive some of the applica-
tion messages sent by disconnected end-points (not in T)

although certain cuts of members of T commit to deliver
these messages. Such messages need to be forwarded to p

by the members of T that have them. These members of
T deduce from the p’s cut that p lacks these messages and
use a ForwardingStrategyPredicate to compute which
of them have to forward which missing messages to p. We
describe some of the many possible such predicates in [11].

5.2.2 Liveness of VS RFIFO+TS

We show that, in a fair execution of VS RFIFO+TS in which
the same view v′ is delivered to all its members as their last
MBRSHP event, the three preconditions on the viewp(v′, Tp)
delivery are eventually satis£ed for every p ∈ v ′.set:

1. Condition v′.startId(p) = start change.id re-
mains true since by the assumption there are no sub-
sequent start change events at p.

2. End-point p eventually receives synchronization mes-
sages tagged with the “right” cid from everybody
in v.set ∩ v′.set because they keep taking steps
towards reliably sending these synchronization mes-
sages to p (by low-level fairness of the code) and be-
cause CO RFIFO eventually delivers these messages to
p (by the liveness assumption on CO RFIFO).

3. End-point p eventually receives and delivers all the
messages committed to in the cuts of the mem-
bers of the transitional set Tp because for each
such message there is at least one end-point in Tp
that has the message in its msgs buffer and that
would reliably forward it to p (according to the
ForwardingStrategyPredicate) if so necessary.
Also, p never delivers any messages beyond those
committed to in the cuts of the members of Tp because
of the precondition on application message delivery.

5.2.3 Optimizations

Notice that end-point p does not need to send its cur-
rent view and its cut to end-points which are not in
current view.set because p cannot be included in their
transitional sets. Nevertheless, these end-points may wait to
hear from p as p may still be in their current views. There-
fore, in our algorithm, p sends synchronization messages
to all the end-points in start change.set. As an opti-
mization, p could send a smaller synchronization message
to processes in start change.set− current view.set,
containing its start change.id only (but neither a view
nor a cut). The recipients of this message would know
not to include p in their transitional sets for views v′

with v′.startId(p) = p’s start change.id. When us-
ing this optimization, p also does not need to include
its current view in the synchronization messages sent to
current view.set− start change.set, since the view
information can be deduced from p’s view msg.



AUTOMATON VS RFIFO+TSp MODIFIES WV RFIFOp

Signature Extension:
Input: sendp(m) modi£es wv rfifo.sendp(m)

mbrshp.start changep(id, set), StartChangeId id, SetOf(Proc) set new
co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modi£es wv rfifo.deliverp(q, m)
viewp(v, T), SetOf(Proc) T modi£es wv rfifo.viewp(v)
co rfifo.reliablep(set), SetOf(Proc) set modi£es wv rfifo.co rfifo.reliablep(set)
co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new
co rfifo.sendp(set, m) modi£es wv rfifo.co rfifo.sendp(set, m), FwdMsg m

State Extension:
(StartChangeId × SetOf(Proc))⊥ start change, initially ⊥
For all Proc q, ViewId id: (View v, (Proc→Int) cut)⊥ sync msg[q][id], initially ⊥
SetOf(FwdMsg) forwarded set, initially empty

Transition Restriction:
INPUT mbrshp.start changep(id, set)
eff: start change ← 〈id, set〉

OUTPUT co r£fo.reliablep(set)
pre: start change = ⊥ ⇒ set = current view.set

start change 6= ⊥ ⇒ set = current view.set ∪ start change.set

OUTPUT co r£fo.sendp(set, tag=sync msg, cid, v, cut)
pre: start change 6= ⊥

start change.set ⊆ reliable set
〈cid, set〉 = 〈start change.id, start change.set - {p}〉
sync msg[p][cid] = ⊥ ∧ v = current view
(∀ q ∈ current view.set) cut(q) = LongestPrefixOf(msgs[q][v])

eff: sync msg[p][cid] ← 〈v, cut〉

INPUT co r£fo.deliverq,p(tag=sync msg, cid, v, cut)
eff: sync msg[q][cid] ← 〈v, cut〉

OUTPUT deliverp(q, m)
pre: if (start change 6= ⊥ ∧ sync msg[p][start change.id] 6= ⊥) then

if start change.id 6= mbrshp view.startId(p) then
last dlvrd[q]+1 ≤ sync msg[p][start change.id].cut(q)

else let S = {r ∈ mbrshp view.set ∩ current view.set |
sync msg[r][mbrshp view.startId(r)].view = current view}

last dlvrd[q]+1 ≤ maxr ∈ S sync msg[r][mbrshp view.startId(r)].cut(q)

OUTPUT viewp(v, T)
pre: v.startId(p) = start change.id // to prevent delivery of obsolete views

(∀ q ∈ v.set ∩ current view.set) sync msg[q][v.startId(q)] 6= ⊥
T = {q ∈ v.set ∩ current view.set | sync msg[q][v.startId(q)].view = current view}
(∀ q ∈ current view.set) last dlvrd[q] = maxr ∈ T sync msg[r][v.startId(r)].cut(q)

eff: start change ← ⊥

OUTPUT co r£fo.sendp(set,tag=fwd msg,r,v,m,i)
pre: (∀ q ∈ set) 〈q, r, v, i〉 6∈ forwarded set

ForwardStrategyPredicate(〈set, r, v, i〉, current state)
eff: (∀ q ∈ set) add 〈q, r, v, m, i〉 to forwarded set

Figure 10. Virtually synchronous reliable FIFO multicast and transitional set end-point automaton.



Another optimization can be used to minimize synchro-
nization message sizes if we strengthen the membership
speci£cation to require a MBRSHP.start change to be
sent every time the membership changes its mind about the
next view. In this case, the latest MBRSHP.start change

has the same membership as the delivered MBRSHP.view,
and therefore the synchronization messages do not need to
include information about messages delivered from end-
points in start change.set ∩ current view.set be-
cause the synchronization message from each of these end-
points can terminate a stream of application messages that
this end-point would deliver in its current view.

5.3. Self Delivery

As a £nal step in constructing the automaton that models
an end-point of our group communication service, GCSp, we
add support for Self Delivery to the VS RFIFO+TSp automa-
ton presented above. Self Delivery requires each end-point
to deliver to its application all the messages the application
sends in a view, before moving on to the next view.

AUTOMATON GCSp= VS RFIFO+TS+SDp MODIFIES VS RFIFO+TSp

Signature Extension:
Input: block okp() new

Output: blockp() new
viewp(v,T) modi£es vs rfifo+ts.viewp(v,T)
co rfifo.sendp(set, m) modi£es
vs rfifo+ts.co rfifo.sendp(set,SyncMsg m)

State Extension:
block status ∈ {unblocked, requested, blocked},

initially unblocked

Transition Restriction:
OUTPUT blockp()
pre: start change 6= ⊥

block status = unblocked
eff: block status ← requested

INPUT block okp()
eff: block status ← blocked

OUTPUT co r£fo.sendp(set, tag=sync msg, cid, v, cut)
pre: block status = blocked

OUTPUT viewp(v,T)
eff: block status ← unblocked

Figure 11. GCSp end-point automaton.

In order to implement Self Delivery and Virtual Syn-
chrony together in a live manner, each end-point must block
its application from sending new messages while a view
change is taking place (as proven in [8]). Therefore, we
modify VS RFIFO+TSp to have an output action block and
an input action block ok, and we assume that the applica-
tion at end-point p has the matching actions and that it even-
tually responds to every block request with a block ok

response and subsequently refrains from sending messages
until a view is delivered to it. In [11], we model this as-
sumption with an abstract application automaton.

The GCSp automaton appears in Figure 11. After re-
ceiving the £rst start change noti£cation in a given
view, end-point p issues a block request to the appli-
cation and awaits receiving a block ok response before
sending a synchronization message to other members of
start change.set. The cut sent in the synchronization
message commits to all the messages p received from its
application in the current view.

Since the application is required to respond with
block ok and is then blocked from sending further mes-
sages, and since the p’s cut commits to all the messages
the application has sent in the current view, the set of mes-
sages agreed upon based on the cuts includes all of p’s
messages. Therefore, p delivers all these messages before
moving on to a new view, and Self Delivery is satis£ed.
Since end-point p has its own messages on the msgs[p][p]
queue, the modi£cation does not affect the liveness property
of VS RFIFO+TS. Finally, we note that due to the use of in-
heritance, the GCSp automaton satis£es all the properties we
have speci£ed in Secion 4.

6. Conclusions

We have constructed a virtually synchronous group mul-
ticast algorithm which exchanges one round of synchroniza-
tion messages during recon£guration, in parallel with the
execution of a group membership algorithm. In contrast to
previously suggested virtual synchrony algorithms, our al-
gorithm does not require processes to conduct an additional
communication round in order to pre-agree upon a globally
unique identi£er and does not impose restrictions on mem-
bership service’s choice of views. We are not aware of any
other algorithm that has both of these features.

These features are achieved by virtue of a simple yet
powerful idea: Membership service issues a locally unique
start-change identi£er every time it has new information
about client membership. The inclusion of such identi£ers
in views eliminates the need to tag clients’ messages with a
common (globally unique) identi£er.

The start-change interface is an important aspect of the
design of a client-server oriented group communication ser-
vice which decouples membership maintenance from group
multicast in order to provide scalable group membership
services in WANs. Maestro [6] and the service of [17] also
separate the maintenance of membership from group multi-
cast. Unlike Maestro [6], in our design, the client does not
wait for the membership to agree upon a globally unique
identi£er before starting the virtual synchrony algorithm,
and the membership service does not wait for responses
from clients asserting that virtual synchrony was achieved
before delivering views. Unlike [17], our service does not
impose restrictions on the membership service’s choice of



views, thereby allowing its applications to bene£t from Vir-
tual Synchrony in more cases (as explained in Introduction).

In [11] we show that the service presented in Section 5
also provides meaningful and correct semantics in the en-
vironment where GCS end-points can crash and recover. In
particular, it allows the recovered GCS end-points to con-
tinue running the algorithm under their original identity (in
contrast e.g., to Isis [5] which requires recovered processes
to assume new identities). Furthermore, GCS end-points do
not need to store any information on stable storage.

Our service is implemented as part of a novel architec-
ture for scalable group communication in WANs. After test-
ing its current scalability limits, we intend to explore ways
to improve the scallability further by incorporating a two-
tier hierarchy into our algorithm, as suggested by Guo et
al. [9]. With this approach, processes would send synchro-
nization messages to their designated leaders, who would
in turn exchange only the cumulative information among
themselves. The framework in which we presented our al-
gorithm allows us to incorporate extensions such as this one.

In [11] we formally prove the correctness of our algo-
rithms. In particular, we prove the safety properties by
de£ning simulation relations from the algorithm automata
to the speci£cation automata. The incremental way in
which we have constructed our algorithms and speci£ca-
tions allows us to also construct the simulation proof incre-
mentally. For example, in order to prove that VS RFIFO+TS

simulates VS RFIFO+TS : SPEC we extend the simulation
relation from WV RFIFO to WV RFIFO : SPEC and reason
solely about the extension, without repeating the reasoning
about the parent components. This reuse is justi£ed by the
Proof Extension theorem of [12].

Acknowledgments

We thank Nancy Lynch, Alex Shvartsman and Jeremy Suss-
man for many discussions and helpful suggestions.

References

[1] ACM. Commun. ACM 39(4), special issue on Group Com-
munications Systems, April 1996.

[2] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. The Totem single-ring ordering and mem-
bership protocol. ACM Trans. Comp. Syst., 13(4), Nov. ’95.

[3] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scal-
able group membership services for novel applications. In
M. Mavronicolas, M. Merritt, and N. Shavit, editors, Net-
works in Distributed Computing, vol. 45 of DIMACS, pp.
23–42. American Mathematical Society, ’98.

[4] Ö. Babao®glu, R. Davoli, and A. Montresor. Partitionalbe
Group Membership: Speci£cation and Algorithms. TR
UBLCS97-1, Comp. Sci., Univ. of Bologna, Jan. ’97.

[5] K. Birman. Building Secure and Reliable Network Applica-
tions. Manning, 1996.

[6] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Mid-
dleware support for distributed multimedia and collabora-
tive computing. In Multimedia Computing and Networking
(MMCN98), 1998.

[7] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and
using a partionable group communication service. In 16th
ACM Symposium on Principles of Distributed Computing
(PODC), pp. 53–62, August 1997.

[8] R. Friedman and R. van Renesse. Strong and Weak Virtual
Synchrony in Horus. TR 95-1537, Dept. of Computer Sci-
ence, Cornell University, August 1995.

[9] K. Guo, W. Vogels, and R. van Renesse. Structured virtual
synchrony: Exploring the bounds of virtual synchronous
group communication. In 7th ACM SIGOPS European
Workshop, September 1996.

[10] J. Hickey, N. Lynch, and R. van Renesse. Speci£cations and
proofs for ensemble layers. In 5th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS, Mar. 1999.

[11] I. Keidar and R. Khazan. A client-server approach to vir-
tually synchronous group multicast: Speci£cations, algo-
rithms, and proofs. MIT-LCS-TR-794, MIT, Nov. 1999.

[12] I. Keidar, R. Khazan, N. Lynch, and A. Shvartsman. An
inheritance-based technique for building simulation proofs
incrementally. MIT-LCS-TR. 2000. In preparation.

[13] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A Client-
Server Oriented Algorithm for Virtually Synchronous Group
Membership in WANs. In 20th Intern. Conf. on Distr. Comp.
Syst. (ICDCS), Apr. 2000. Full version: MIT-LCS-TM-593.

[14] R. Khazan, A. Fekete, and N. Lynch. Multicast group com-
munication as a base for a load-balancing replicated data
service. In 12th International Symposium on DIStributed
Computing (DISC), pp. 258–272, September 1998.

[15] N. Lynch. Distributed Algorithms. Morgan Kaufmann, ’96.
[16] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-

wal. Extended virtual synchrony. In 14th Intern. Conference
on Distr. Comp. Systems (ICDCS), pp. 56–65, June 1994.

[17] A. Schiper and A. Ricciardi. Virtually synchronous com-
munication based on a weak failure suspector. In 23rd IEEE
Fault-Tolerant Comp. Symp. (FTCS), pp. 534–543, June ’93.

[18] I. Shnaiderman. Implementation of Reliable Data-
gram Service in the LAN environment. Lab project.
The Hebrew University of Jerusalem, January 1999.
http://www.cs.huji.ac.il/∼transis/publications.html.

[19] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev. Group
Communication Speci£cations: A Comprehensive Study.
TR CS99-31. The Hebrew Univ. of Jerusalem. Sept. 1999.


