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Abstract

This paper presents a formal design for a novel group communication service targeted for
WANs. The service provides Virtual Synchrony semantics. Such semantics facilitate the design
of fault tolerant distributed applications. The presented design is more suitable for WANs
than previously suggested ones. In particular, it features the first algorithm to achieve Virtual
Synchrony semantics in a single communication round. The design also employs a scalable WAN-
oriented architecture: it effectively decouples the main two components of Virtually Synchronous
group communication — group membership and reliable group multicast.

The design is carried out formally and rigorously. This paper includes formal specifications
of both safety and liveness properties. The algorithm is formally modeled and assertionally
verified.
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1 Introduction

Group communication services (GCSs) [ACM96, Bir96] are powerful middleware systems that fa-
cilitate the development of fault-tolerant distributed applications. These services provide a notion
of group abstraction, which allows application processes to easily organize themselves into multi-
cast groups. Application processes can communicate with the members of a group by addressing
messages to the group. Most GCSs strive to present different members of the same group with
mutually consistent perceptions of the communication done in the group. This perception is known
as Virtual Synchrony semantics [BJ87].

Traditionally, GCSs were designed for deployment in local area networks (LANs). Efficient
GCSs that operate in wide area networks (WANs) is still an open area of research. Designing such
GCSs is challenging because in WANs communication is more expensive and connectivity is less
stable than in LANs.

In this paper we present a novel algorithm for a GCS targeted for WANs. The service pro-
vided by our GCS satisfies a variant of the Virtual Synchrony (VS) semantics that has been shown
useful for facilitating the design of distributed applications [VKCD99, Bir96]. Our algorithm for
implementing this semantics is more appropriate for WANs than the existing solutions: it re-
quires less rounds of communication and is designed for the scalable WAN-oriented architecture
of [ACDK98, KSMD00]. Our design is carried out at a very high level of formality and rigor, much
higher than that of most previous designs of Virtually Synchronous GCSs. It includes formal and
precise specifications, algorithms, and proofs.

The rest of this section is organized as follows: In Section 1.1 we present some basic background
on GCSs and Virtual Synchrony. Section 1.2 summarizes the contributions made by our work,
and Section 1.3 gives a brief overview of our design. Section 1.4 gives a roadmap to the rest of the
paper.

1.1 Background

Modern distributed applications often involve large groups of geographically distributed processes
that interact by sending messages over an asynchronous fault-prone network. Many of these appli-
cations maintain a replicated state of some sort. In order for these applications to be correct, the
replicas must remain mutually consistent throughout the execution of the application. For example,
in an online game, the states of the game maintained by different players must be mutually con-
sistent in order for the game to be meaningful to the players. Designing algorithms that maintain
state consistency is difficult however: different application processes may perceive the execution of
the application inconsistently because of asynchrony and failures. For example if Alice, Bob, and
Carol are playing an online game, the following asymmetric scenario is possible: Alice and Bob
perceive each other as alive and well, but they differ in the way they perceive Carol; one sees Carol
as crashed or disconnected, while the other sees her as alive and well. Middleware systems that hide
from the application some of the underlying inconsistencies and instead present them with a more
consistent picture of the distributed execution facilitate development of distributed applications.

Group communication services, such as [ADKM92, AMMS+95, vRBM96, BJ87], are examples of
such middleware systems. They are particularly useful for building applications that require reliable
multi-point to multi-point communication among a group (or groups) of processes. Examples of
such applications are data replication (for example, [KD96, ADMSM94, FLS97, KFL98, FV97],
and [DP99] Ch. 7), highly-available servers (for example, [ADK99]), and online games. GCSs allow
application processes to easily organize themselves into groups and to communicate with all the
members of a group by addressing messages to the group. The semantics of this abstraction are
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such that different members of the group have consistent perceptions of the communication done
in the group. The abstraction is typically implemented through the integration of two types of
services: membership and reliable multicast.

Membership services maintain information about membership of groups. The membership of
a group can change dynamically due to new processes joining and current members departing,
failing, or disconnecting. The membership service tracks these changes and reports them to group
members. The report given by the membership service to a member is called a view. It includes
a unique identifier and a list of currently active and mutually connected members. Failures can
partition a group into disconnected components of mutually connected members. Membership
services strive to form and deliver the same views to all mutually connected members of the group.
While this is not always possible, they typically succeed once network connectivity more or less
stabilizes (see, for example, [KSMD00, VKCD99]).

In addition, GCSs provide reliable multicast services that allow application processes to send
messages to the entire membership of a group. GCSs guarantee that message delivery satisfies
certain properties. For example, one property can be that messages sent by the same sender are
delivered in the order in which they were sent. Different GCSs differ in the specific message delivery
properties they provide, but most of them provide some variant of Virtual Synchrony semantics.
We refer to a GCS providing such semantics as a Virtually Synchronous GCS, and to an algorithm
implementing this semantics as a Virtual Synchrony algorithm.

Virtual Synchrony semantics specifies how message deliveries are synchronized with view de-
liveries. This synchronization is done in a way that simulates a “benign” world in which message
delivery is reliable within each view. Many variants of Virtual Synchrony have been suggested
(for example, [MAMSA94, FvR95, VKCD99, BJ87, SR93, BDM98]). Nearly all of them include
a key property, called Virtually-Synchronous Delivery, which guarantees that processes that re-
ceive the same pair of views from the GCS receive the same sets of messages in between receiving
the views. Henceforth, when we refer to Virtual Synchrony, we assume the semantics includes
Virtually-Synchronous Delivery.

Example 1.1 Assume Alice, Bob, and Carol are playing an online game. Each of them is initially
given a view 〈{Alice, Bob, Carol}, 1〉, where {Alice, Bob, Carol} is a set of members and 1 is
a view id. Then Carol disconnects, and Alice and Bob are given a new view 〈{Alice, Bob}, 2〉.
The Virtually-Synchronous Delivery property guarantees that both Alice and Bob receive the same
messages before receiving the new view. In particular, if Bob receives a message from Carol before
it receives the new view, then Alice also receives this message before the new view. Therefore, if
Alice and Bob modify their game states only when they receive messages, they remain in consistent
states and can safely continue playing the game after they receive the new view.

In general, Virtually Synchronous GCSs are especially useful for building applications that
maintain a replicated state of some sort using a variant of the well-known state-machine/active
replication approach [Lam78, Sch90]. With such approach, processes that maintain state replicas
are organized into multicast groups. Actions that update the state are sent using a multicast prim-
itive that delivers messages to different processes in the same order. When processes receive these
actions, they apply them to their local replicas. Virtual Synchrony guarantees that processes that
remain connected receive the same messages. This implies that processes that remain connected
apply the same sequences of actions to their replicas. Hence, their replicas remain mutually con-
sistent. Examples of GCS applications that use this technique are [ABCD96, ADMSM94, KD96,
SM98, FV97, ADK99].
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Let us consider what is involved in implementing the Virtually-Synchronous Delivery property.
Imagine that GCS processes are forming a new view because someone has disconnected from their
current view. The GCS processes must make sure that they deliver the same messages to their
application clients before delivering to them the new view. However, it may be the case that
some of these GCS processes received messages that others did not. In the scenario illustrated in
Example 1.1, the last messages from Carol may have reached the GCS process of only Bob, and not
of Alice; Bob and Alice need to agree on whether or not to deliver these messages. To ensure such
agreement, GCS processes invoke a synchronization protocol whenever a new view is forming.

Designing correct and efficient algorithms that implement Virtual Synchrony is not trivial.
Different GCS processes may perceive connectivity changes inconsistently. Since the desired syn-
chronization depends on who the members of the new view are, the algorithm has to tolerate
transient inconsistent views and cascading connectivity changes.

In particular, a Virtual Synchrony algorithm needs to know which synchronization messages
sent by different processes pertain to the same view formation attempt. Existing algorithms, such
as [FvR95, ADKM92, SR93, BDM98, GVvR96, AMMS+95], identify such synchronization messages
by tagging them with a common identifier. Some initial communication is performed first, before
synchronization messages are communicated, in order to agree upon a common identifier and to
distribute it to the members of the forming view.

While a view is forming and a synchronization protocol is executing, there may be changes
in connectivity that call for views with altogether different memberships. When such situations
happen, existing Virtual Synchrony algorithms, for example [FvR95, GVvR96, SR93, BDM98,
AMMS+95], continue executing their current synchronization protocol to termination and then
deliver to the application a view that does not reflect the already detected changes in connectivity.
Afterwards, the algorithm is invoked anew to incorporate the new changes.

We refer to a view as obsolete [KSMD00] when it is delivered by a GCS even though the GCS
already has information that the view’s membership has changed. Obsolete views cause an overhead
not just for the GCS, but also for applications. Since application processes do not know when the
views delivered to them are obsolete, they handle such views just as they do any other view, for
example by running state-synchronization protocols [KD96, FLS97, KFL98].

In a WAN, connectivity changes tend to occur frequently, message latency tends to be high and
unpredictable, and message loss is not uncommon. Therefore, WANs call for algorithms that exe-
cute fewer communication rounds and respond to connectivity changes promptly, without wasting
resources on handling obsolete memberships.

1.2 Our Contributions

In this paper, we present a novel design for a Virtually Synchronous GCS targeted for WANs. We
make the following contributions:

• We present a new algorithm for implementing Virtual Synchrony. Our algorithm is more
efficient than existing ones. It neither processes nor delivers views with obsolete memberships.
Moreover, the synchronization protocol run by our algorithm involves just a single message
exchange round among members of the new view. We are not aware of any other algorithm
for implementing Virtual Synchrony that has these two features.

• Our design demonstrates how to more effectively decouple the algorithm for achieving Vir-
tual Synchrony from the algorithm for maintaining membership. As suggested in [ACDK98,
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KSMD00], such efficient decoupling is important for providing scalable GCSs in WANs. Ex-
isting designs typically have a single algorithm handling both Virtual Synchrony and mem-
bership. The few designs that do employ two separate algorithms [SR93, BFHR98] still have
the two algorithms tightly coupled. In particular, the Virtual Synchrony algorithms control
the membership algorithms: the membership algorithms are not allowed to incorporate newly
joining members while the synchronization protocols are running. Moreover, the communi-
cation between the two algorithms is in two directions. In contrast, our design allows the
membership algorithm to freely change memberships of forming views at any time. The in-
teraction between the membership and Virtual Synchrony algorithms is only in one direction,
from the former to the latter, and it has low overhead. The decoupling is such that the
synchronization protocol can execute in parallel with the view formation protocol.

• Our design is carried out much more rigorously and formally than most previous designs of
Virtually Synchronous GCSs. The presented specifications of our GCS and its environment,
description of the algorithm, and proof of correctness are all precise and formal. Our project
is the first to use formal methods for modeling a Virtually Synchronous GCS and to provide
an assertional proof of its correctness.

In order to manage the complexity of the design, we have developed a novel, inheritance-based
methodology [KKLS00]. This methodology allows for incremental construction of formal
specifications, algorithms, and, very importantly, proofs. In addition to making the design
tractable, the use of this methodology makes it evident which part of the algorithm implements
which property.

We now discuss each of the different aspects of our design in more detail.

1.3 Design Overview

The novelty of our algorithm for achieving Virtual Synchrony is concentrated in its synchronization
protocol. Recall that this protocol is run among GCS processes in order for those that remain
connected to agree upon a common set of messages each of them must deliver before moving into the
new view. The protocol depends on a simple, yet powerful idea. Instead of using common identifiers
to designate which synchronization messages pertain to the same view formation attempt, we use
locally generated identifiers. These identifiers are then included as part of the formed views1. Once
a view formation completes at a GCS process, the process knows which synchronization messages of
other members to consider for the view – the messages tagged with the identifiers that are included
in the view.

Example 1.2 View 〈{Alice,Bob, Carol}, [4, 3, 7], 8}〉 has membership {Alice,Bob, Carol}, vector
of local identifiers [4, 3, 7], and view identifier 8. When a GCS process forms this view, it uses the
synchronization messages from Alice, Bob, and Carol tagged respectively with 4, 3, and 7 to decide
on the set of messages it must deliver before delivering this view to its application. Thus, if Alice,
Bob, and Carol form the same view, they use the same synchronization messages, and thus agree
on which application messages each of them needs to deliver.

The use of local identifiers eliminates the need to pre-agree on common identifiers and allows
the synchronization protocol to complete in a single message exchange round. It also allows the

1A similar view structure is suggested in [SR93], for the purpose of not having concurrent views intersect.
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algorithm to promptly and efficiently react to connectivity changes, without wasting resources on
obsolete views. The protocol works correctly even if, because of network instability, GCS processes
send multiple synchronization messages during the same synchronization protocol.

Our design decouples the algorithm for implementing Virtually Synchronous multicast from
the algorithm for maintaining membership. The membership algorithm handles generation of local
identifiers and formation of views. The algorithm for implementing Virtually Synchronous multicast
synchronizes views and application messages to implement the Virtual Synchrony semantics. In
particular, it handles multicast requests submitted by the application, delivers application messages
and views back to the application, and runs the synchronization protocol to synchronize processes
that transition together into new views. The decoupling involves low-cost, one-directional commu-
nication from the membership to the Virtually Synchronous multicast algorithm. It also allows the
synchronization protocol to execute in parallel with the view formation protocol.

Efficient decoupling of membership and Virtually Synchronous multicast algorithms allows
for an architecture in which the membership service is implemented by a small set of dedicated
membership servers maintaining the membership information on behalf of a large set of clients. This
architecture was proposed in [ACDK98, KSMD00] for supporting scalable membership services in
WANs. Our work extends this architecture by specifying how it can be used as a base for a Virtually
Synchronous GCS. In particular, we present precise specifications of the interface and semantics
that a membership service has to provide in order to be decoupled from the Virtually Synchronous
multicast algorithm.

Our interface and membership service specifications allow for straightforward and efficient mem-
bership and Virtually Synchronous multicast algorithms. The Virtually Synchronous multicast
algorithm presented in this paper is an example of such an algorithm: the synchronization proto-
col requires a single message exchange round, which can occur in parallel with the formation of
the view. The algorithm has been implemented (in C++) [Tar00] using the scalable one-round
membership algorithm of [KSMD00]. This membership algorithm was specifically tailored for our
design, but other existing membership algorithms (for example, [DMS94, AMMS+95]) can be also
easily extended to provide the required interface and semantics.

Our design has been carried out and is presented at a level more formal and rigorous than
that of most previous designs of Virtually Synchronous GCSs. We precisely specify the proper-
ties satisfied by our Virtually Synchronous multicast algorithm, the external membership service,
and the underlying communication substrate. We then give a formal description of the Virtually
Synchronous multicast algorithm. The algorithm is accompanied by a careful formal correctness
proof. The safety properties are proved by using invariant assertions and simulation mappings; the
liveness properties are proved by using invariant assertions and careful operational arguments. We
found this level of rigor to be important: in the process of specifying and verifying the algorithm,
we uncovered several ambiguities and errors.

Previously, formal approaches were used to specify the semantics of Virtually Synchronous GCSs
and to model and verify their applications, for example, in [Cho97, FLS97, DPFLS98, KFL98,
DPFLS99, HLvR99]. Existing algorithms implementing Virtual Synchrony are modeled in pseudo-
code and proven correct operationally. However, due to their size and complexity, such algorithms
were not previously modeled using formal methods nor were they assertionally verified.

To manage the complexity of this project we have developed a formal inheritance-based method-
ology [KKLS00] for incrementally constructing specifications, algorithms, and proofs. In addition
to making the project tractable, the use of this construct makes clear which parts of the algorithm
implement which property. The modularity of this approach facilitates further modifications and
alterations of the design. Our project and the inheritance-based construct are both developed in
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the framework of the I/O automaton formalism (see [LT89] and [Lyn96], Ch. 8).

1.4 Roadmap

The rest of this paper is organized as follows: Section 2 reviews the formal model and notation.
In Section 3 we present the client-server architecture of our GCS and formally specify the assump-
tions we make on the membership service and the underlying communication substrate. Section 4
contains precise specifications of the safety and liveness properties satisfied by our GCS. The algo-
rithm is then given in Section 5 and is accompanied by informal correctness arguments. Section 6
concludes the paper. A formal correctness proof that the algorithm of Section 5 satisfies the speci-
fications of Section 4 is given in Appendix: safety properties – in B, and liveness properties – in C.
Appendix A reviews the proof techniques used in Appendices B and C.

2 Formal Model and Notation

In the I/O automaton model (cf. [LT89] and [Lyn96], Ch. 8), a system component is described as a
state-machine, called an I/O automaton. The transitions of this state-machine are associated with
named actions, which are classified as either input, output, or internal. Input and output actions
model the component’s interaction with other components, while internal actions are externally-
unobservable.

Formally, an I/O automaton is defined as the following five-tuple: a signature (input, output
and internal actions), a set of states, a set of start states, a state-transition relation (a cross-product
between states, actions, and states), and a partition of output and internal actions into tasks. Tasks
are used for defining fairness conditions.

An action π is said to be enabled in a state s if the automaton has a transition of the form (s,
π, s′); input actions are enabled in every state. An execution of an automaton is an alternating
sequence of states and actions that begins with its start state and in which every action is enabled
in the preceding state. An infinite execution is fair if, for each task, it either contains infinitely
many actions from this task or infinitely many occurrences of states in which no action from this
task is enabled; a finite execution is fair if no action is enabled in its final state. A trace is a
subsequence of an execution consisting solely of the automaton’s external actions. A fair trace is a
trace of a fair execution.

When reasoning about an automaton, we are interested in only its externally-observable behav-
ior as reflected in its traces. There are two types of trace properties: safety and liveness. Safety
properties usually specify that some particular bad thing never happens. In this paper we specify
safety properties using centralized, global, I/O automata that generate the legal sets of traces; for
such automata we do not specify task partitions. Each external action in such a centralized automa-
ton is tagged with a subscript which denotes the process at which this action occurs. An algorithm
automaton satisfies a specification if all of its traces are also traces of the specification automa-
ton. Refinement mappings are a commonly used technique for proving trace inclusion, in which
one automaton (the algorithm) simulates the behavior of another automaton (the specification).
Refinement mappings and other related proof techniques are reviewed in Appendix A. Liveness
properties usually specify that some good thing eventually happens. An algorithm automaton
satisfies a liveness property if the property holds in all of its fair traces.

The composition operation defines how automata interact via their input and output actions:
It matches output and input actions with the same name in different component automata; when a
component automaton performs a step involving an output action, so do all components that have
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this action as an input one. When reasoning about a certain system component, we compose it
with abstract specification automata that specify the behavior of its environment.

I/O automata are conveniently presented using the precondition-effect style: In this style, typed
state variables with initial values specify the set of states and the start states. A variable type is
a set; if S is a set, the notation S⊥ refers to the set S ∪ {⊥}. Transitions are grouped by action
name, and are specified as a list of triples consisting of an action name, possibly with parameters,
a pre : block with preconditions on the states in which the action is enabled, and an eff : block
which specifies how the pre-state is modified atomically to yield the post-state.

We have developed a novel formal notion of inheritance for automata [KKLS00]. A child au-
tomaton is specified as a modification of the parent automaton’s code. When presenting a child
we first specify a signature extension which consists of new actions, labeled new, and modified ac-
tions. A modified action is labeled with the name of the action which it modifies as follows: modifies
parent.action(parameters)). We next specify the state extension consisting of new state variables
added by the child. Finally, we describe the transition restriction which consists of new precon-
ditions and effects added by the child to both new and modified actions. For modified actions,
the preconditions and effects of the parent are appended to those added by the child. New effects
added by the child are performed before the effects of the parent, all of them in a single atomic
step. The child’s effects are not allowed to modify state variables of the parent. This ensures that
the set of traces of the child, when projected onto the parent’s signature, is a subset of the parent’s
set of traces [KKLS00].

Inheritance allows us to reuse code and avoid redundancies. It also allows us to reuse proofs:
Assume that an algorithm automaton A can simulate a specification automaton S, and let A′ and S′

be child automata of A and S, respectively. Then the Proof Extension theorem of [KKLS00] asserts
that in order to prove that A′ can simulate S′ it is sufficient to show that the restrictions added
by A′ are consistent with the restrictions S′ places on S, and that the new functionality of A′ can
simulate new functionality of S′. Appendix A contains more details.

3 Client-Server Architecture and Environment Specification

Our service is designed to operate in an asynchronous message-passing environment. Processes
and communication links may fail and may later recover, possibly causing network partitions and
merges. For simplicity, we assume that processes recover with their running state intact; this is
a plausible assumption as processes can keep their running state on stable storage. We do not
explicitly model process crashes and recoveries because under this assumption a crashed process
is indistinguishable from a slow one. In Section 5.4, we argue that our algorithm also provides
meaningful semantics when group communication processes lose their entire state upon a crash and
recover with their state reset to an initial value.

Our Group Communication service is implemented by a collection of GCS end-points, which are
the GCS processes that run at the application clients’ locations. GCS end-points handle clients’
multicast requests and inform their clients of view changes.

The GCS architecture is depicted in Figure 1. All GCS end-points run the same algorithm.
The algorithm relies on the underlying membership and multicast services to handle respectively
formation of views and transmission of messages. The algorithm’s task is to synchronize output of
the two underlying services to implement the Virtual Synchrony semantics.

Sections 3.1 and 3.2 below give precise specifications of the interface and semantics that the
underlying membership and multicast services have to provide in order to be suitable for our
algorithm. Services that satisfy these (or very similar) requirements have been previously used for
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Application Application

GCS End−pointGCS End−point

Group Membership Service

Reliable FIFO Multicast Service

Figure 1: The client-server architecture: GCS end-points using an external membership service.
Arrows represent interaction between GCS end-points and underlying services.

GCSs, and efficient implementations of these services for WANs exist.

3.1 The membership service specification

This section presents a formal specification of the membership services that are appropriate for our
GCS design. For simplicity, here and in the rest of the paper, we assume that there is a single
process group; multiple groups can be supported by treating each independently. We also omit
part of the interface that handles processes’ requests to join and leave groups.

Figure 2 contains an I/O automaton, called mbrshp, that defines the interface and the safety
properties of the membership service. The service interface is given by the automaton’s signature;
Informally, it consists of the following two output actions:

start changep(cid, set) notifies process p that the membership service is attempting to form a
view with the members of set; cid is a local start-change identifier.

viewp(v) notifies process p that the membership service has succeeded in forming view v. A view
v is a triple consisting of an identifier v.id, a set of members v.set, and a function v.startId
that maps members of v to start-change identifiers. Two views are the same if they consist
of identical triples.

Automaton mbrshp maintains two state variables, mbrshp view[p] and start change[p], for
each client p. These variables contain respectively the last view and the last start change message
issued to client p; the variables are updated in the effects of the transitions. The safety properties
satisfied by the mbrshp automaton include two basic properties, which are provided by virtually all
group membership services (for example, [BvR94, DMS94, AMMS+95, FvR95, BDM98, KSMD00,
SR93, ADKM92]), as well as some new properties concerning the start change notifications.

The two basic properties are Self Inclusion and Local Monotonicity. Self Inclusion requires every
view issued to a client p to include p as a member; this property is enforced with a precondition
p ∈ v.set on the viewp(v) action. Local Monotonicity requires that view identifiers delivered to p

be monotonically increasing; this property is enforced with a precondition v.id > mbrshp view[p]
on the viewp(v) action. Local Monotonicity has two important consequences: the same view is not
delivered more than once to the same client, and clients that receive the same two views receive
them in the same order [VKCD99].

In addition, the mbrshp automaton specifies that the membership service must issue at least
one start change notification to client p before issuing a new view v to p. Also, the start-change
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automaton mbrshp

Type:

Proc: Set of end-points.

StartChangeId: Total-order; cid0 is smallest.

ViewId: Partial-order; vid0 is smallest.

View: ViewId × SetOf(Proc) × (Proc → StartChangeId).

Def: vp = 〈vid0, {p}, {(p →cid0)}〉.

Signature:

Output: start changep(cid, set), Proc p, StartChangeId cid, SetOf(Proc) set

viewp(v), Proc p, View v

State:

For all Proc p: View mbrshp view[p], initially vp
For all Proc p: (StartChangeId × SetOf(Proc)) start change[p], initially 〈cid0, {}〉

Transitions:

OUTPUT start changep(cid, set)

pre: cid > mbrshp view[p].startId(p)

cid ≥ start change[p].id

p ∈ set

eff: start change[p] ← 〈cid, set〉

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > mbrshp view[p].id

v.set ⊆ start change[p].set

v.startId(p) = start change[p].id

v.startId(p) > mbrshp view[p].startId(p)

eff: mbrshp view[p] ← v

Figure 2: Membership service interface and safety specification.

identifier v.startId(p) contained in the new view v must be the same as the identifier of the
latest preceding start change issued to p. These two requirements are enforced by the last two
preconditions on viewp(v). In particular, the former one is achieved by requiring that a bigger
start-change identifier than the one associated with p in the last view has been issued to p.

The mbrshp specification allows the membership service to react to connectivity changes hap-
pening during view formation. Whenever the service wants to add new members to the membership,
it has to issue a new start change notification to the clients: the second precondition on viewp(v)
actions requires the membership v.set to be a subset of the tentative membership set included in
the last start change notification. In order to remove members from a forming view, the service
does not need to issue a new start change notification.

The first start change notification issued to p after a view marks the beginning of a new
view formation period. It includes a new local identifier cid, different from the ones that were
previously sent to p: the first precondition on start changep(cid, set) requires cid to be strictly
greater than mbrshp view[p].startId(p). Subsequent start change notifications sent during an
on-going view formation may either reuse the last start-change identifier or issue a new one, as
specified by the second precondition on start change actions. We ensure uniqueness of local
start-change identifiers by generating them in increasing order.

Notice that the mbrshp automaton does not specify any relationship between views issued to
different clients.

Example 3.1 Figure 3 presents a sample execution that shows the mbrshp service delivering dif-
ferent sequences of views to two different clients, a and b. Arrows represent time passage at each
client; gray dots represent events. First, both clients receive the same view v = 〈2, {a, b}, [a : 1, b : 1]〉;
we illustrate this with a circle around the view events at both clients. Then, client b receives
a view vmid = 〈3, {b}, [b : 2]〉 by itself. Then, both clients receive another common view v′ =
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〈4, {a, b}, [a : 2, b : 3]〉. Notice how the start-change identifiers included in the views correspond
to the last start-change identifiers issued to the clients.

viewb(4, {a, b}, [a : 2, b : 3])

start changeb(3, {a, b})

viewb(3, {b}, [b : 2])

start changeb(2, {b})

viewb(2, {a, b}, [a : 1, b : 1])

Proc a

start changea(2, {a})

start changea(2, {a, b})

viewa(4, {a, b}, [a : 2, b : 3])

Proc b

v

v′

viewa(2, {a, b}, [a : 1, b : 1])

vmid

Figure 3: A sample execution of mbrshp.

We do not specify liveness properties for membership services. Instead, when we specify the
liveness properties of our GCS in Section 4.2, we condition them on the behavior of the membership
service. For example, we state that if the same view is delivered to all the members and the members
do not receive any subsequent membership events, then they eventually deliver this view to their
application clients. Existing membership services do satisfy meaningful liveness properties. For
example, [KSMD00] guarantees that, when network stabilizes, all members receive “correct” view
and no other views thereafter. By combining our GCS liveness properties with such membership
liveness properties, we can restate the liveness properties of our GCS conditionally on the network
behavior.

The mbrshp specification allows for simple and efficient distributed implementations that
also satisfy meaningful liveness properties. In our implementation [Tar00], we use the service
of [KSMD00], where a small number of servers support a large number of clients, communi-
cating with them asynchronously via fifo ordered channels (TCP sockets). In case a server
fails, clients can migrate to another server. Other existing membership algorithms (for exam-
ple, [DMS94, AMMS+95]) could also be extended easily to provide the specified here interface and
semantics.

3.2 The reliable fifo multicast service specification

The group communication end-points communicate with each other using an underlying multicast
service that provides reliable fifo communication between every pair of connected processes. Many
existing group communication systems (for example, [GVvR96, BDM98, DMS94, ADKM92]) im-
plement Virtual Synchrony over similar communication substrates. In our implementation [Tar00],
we use the service of [ACSD00].

Figure 4 presents an I/O automaton, co rfifo, that specifies a multicast service appropriate
for our GCS design. Portions of the code that define liveness properties are colored gray.

Automaton co rfifo maintains a fifo queue channel[p][q] for every pair of end-points. An
input action sendp(set, m) models a multicast of message m from end-point p to the end-points
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automaton co rfifo

Signature:

Input:

sendp(set,m), Proc p, SetOf(Proc) set, Msg m

reliablep(set), Proc p, SetOf(Proc) set

livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m

Internal: lose(p,q), Proc p, Proc q

skip task(p,q), Proc p, Proc q

State:

For all Proc p, Proc q: SequenceOf(Msg) channel[p][q], initially empty

For all Proc p: SetOf(Proc) reliable set[p], initially {p}
For all Proc p: SetOf(Proc) live set[p], initially {p}

Transitions:

INPUT sendp(set, m)

eff: (∀ q ∈ set) append m to channel[p][q]

OUTPUT deliverp,q(m)

pre: m = first(channel[p][q])

eff: dequeue m from channel[p][q]

INPUT reliablep(set)

eff: reliable set[p] ← set

INTERNAL lose(p, q)

pre: q 6∈ reliable set[p]

eff: dequeue last message from channel[p][q]

INPUT livep(set)

eff: live set[p] ← set

INTERNAL skip task(p, q)

pre: q 6∈ live set[p]

Tasks:

For each Proc p, Proq q: Cp,q = ({deliverp,q(m) | m ∈ Msg} ∪ {skip task(p,q)} ∪ {lose(p,q)})

Figure 4: Reliable fifo multicast service specification. Liveness-related code is colored gray.

listed in the set by appending m to the channel[p][q] queues for every end-point q in set. The
deliverp,q(m) action removes the first message from channel[p][q] and delivers it to q.

In addition, the co rfifo specification allows an end-point p to use the reliablep(set) action
to require that the multicast service maintain a reliable (gap-free) fifo connection to the end-points
listed in set. Whenever this action occurs, set is stored in a special variable reliable set[p]. For
every process q not in reliable set[p], the multicast service may lose an arbitrary suffix of the
messages sent from p to q, as modeled by an internal action lose(p, q).

In order for the multicast service to be considered live, messages sent to live and connected pro-
cesses must eventually reach their destinations. The co rfifo specification enforces this property
in the gray-colored portion of its code.

Recall from Section 2 that an infinite fair execution of an automaton must contain either
infinitely many events from each task C or infinitely many occurrences of states in which no action in
C is enabled. Automaton co rfifo defines the set Cp,q = ({deliverp,q | m ∈ Msg} ∪ skip task(p, q)
∪ lose(p, q)) to be a task for each pair of end-points p and q. This definition implies that deliverp,q
actions must occur in an infinite fair execution of co rfifo, provided the following three conditions
hold: there are messages sent from p to q – hence, deliverp,q is enabled; the client at p is interested
in maintaining reliable connection to q – hence, lose(p, q) is disabled; and q is believed to be lively
connected to p – hence, a special action skip task(p, q) is disabled, as explained below.

Action skip task(p, q) is defined only to provide an alternative to deliverp,q actions so that
deliverp,q actions are not required to happen when q is believed to be disconnected from p.
skip task(p, q) is an internal action that has no effect on the state of co rfifo and is enabled
when q is believed to be disconnected from p. Such belief is modeled using special livep(set) input
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actions. The set argument is assumed to represent a set of processes that are alive and connected
to p; when such an input happens, set is stored in a state variable live set[p]. The precondition
on the skip task(p, q) action is q 6∈ live set[p].

An important implication of how tasks are defined in co rfifo is that, if q remains in both
live set[p] and reliable set[p] from some point on in a fair execution of co rfifo, then all the
messages that p sends to q from that point on are eventually delivered to q.

4 Specifications of the Group Communication Service

The next two subsections contain specifications of the safety and liveness properties satisfied by
our group communication service. These properties have been shown useful for many distributed
applications (see [VKCD99]).

4.1 Safety properties

We present the safety specification of our group communication service incrementally, as four au-
tomata: In Section 4.1.1 we specify a simple group communication service that synchronizes delivery
of views and application messages to require Within-View Delivery of messages. In Section 4.1.2
we extend the specification of Section 4.1.1 to also require Virtually-Synchronous Delivery, the
key property of Virtual Synchrony (see Section 1.1). In Section 4.1.3 we specify the Transitional
Set property, which complements Virtually-Synchronous Delivery. Finally, in Section 4.1.4, we
specify the Self Delivery property, which requires the GCS to deliver to each client the client’s own
messages.

The incremental development of the safety specification is matched later when we develop the
algorithm and its correctness proof in Section 5 and Appendix B.

4.1.1 Within-View reliable fifo multicast

In this section we specify a GCS that captures the following properties:

• Views delivered to the application satisfy the Self Inclusion and Local Monotonicity properties
of the mbrshp service, see Section 3.1.

• Messages are delivered in the same view in which they were sent. This property is useful for
many applications (see [FvR95, VKCD99, SM98]) and appears in several systems and specifi-
cations (for example, [BvR94, vRBM96, AMMS+95, MAMSA94, FLS97, HS95, DPFLS98]).
A weaker property that requires each message to be delivered in the same view at every pro-
cess that delivers it, but not necessarily the view in which it was sent, is typically implemented
on top of an implementation of Within-View Delivery (see [VKCD99]).

• Messages are delivered in gap-free fifo order (within views). This is a basic property upon
which one can build services with stronger ordering guarantees, such as causal order or total
order. The totally ordered multicast algorithm of [CHD98] is implemented atop a service
with a similar specification.

Figure 5 presents automaton wv rfifo : spec that models this specification. The automa-
ton uses centralized queues msgs[p][v] of application messages for each sender p and view v. It
also maintains a variable current view[p] that contains the last view delivered to each process p,
and a variable last dlvrd[q][p], for every pair of processes q and p, containing the index in the
msgs[q][current view[p]] queue of the last q’s message delivered to p in p’s current view.
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automaton wv rfifo : spec

Signature:

Input: sendp(m), Proc p, AppMsg m

Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:

For all Proc p, View v: SequenceOf(AppMsg) msgs[p][v], initially empty

For all Proc p, Proc q: Int last dlvrd[p][q], initially 0

For all Proc p: View current view[p], initially vp

Transitions:

INPUT sendp(m)

eff: append m to msgs[p][current view[p ]]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view[p ]] [last dlvrd[q][p]+1]

eff: last dlvrd[q][p] ← last dlvrd[q][p]+1

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > current view[p].id

eff: (∀ q) last dlvrd[q][p] ← 0

current view[p] ← v

Figure 5: wv rfifo service specification.

Action viewp(v) models the delivery of view v to process p; the precondition on this action
enforces Self Inclusion and Local Monotonicity. Action sendp(m) models the multicast of message
m from process p to the members of p’s current view by appending m to msgs[p][current view[p]].
Action deliverp(q, m) models the delivery to process p of message m sent by process q. The gap-free
fifo ordered delivery of messages within-views is enforced by its precondition, which allows delivery
of only the message indexed by last dlvrd[q][p] + 1 in the msgs[q][current view[p]] queue.

4.1.2 Virtually-Synchronous delivery

In this section we use the inheritance-based methodology to modify the wv rfifo : spec au-
tomaton to also enforce the Virtually-Synchronous Delivery property. The modified automaton,
vsrfifo : spec is defined by the code contained in both Figures 5 and 6.

automaton vs rfifo : spec modifies wv rfifo : spec

Signature Extension:

Output: viewp(v) modifies wv rfifo.viewp(v)

Internal: set cut(v, v ′ , c), View v, View v ′ , (Proc → Int)⊥ c new

State Extension:

For all View v, v ′ : (Proc→Int)⊥ cut[v][v ′ ], initially ⊥

Transition Restriction:

OUTPUT viewp(v)

pre: cut[current view[p ]] [v] 6= ⊥
(∀ q) last dlvrd[q][p]=cut[current view[p ]] [v](q)

INTERNAL set cut(v, v ′ , c)

pre: cut[v][v ′ ] = ⊥
eff: cut[v][v ′ ] ← c

Figure 6: vs rfifo service specification.

Figure 6 contains the code that enforces the Virtually-Synchronous Delivery property. Recall
from Section 1.1 that this property requires processes moving together from view v to view v′ to
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deliver same set of messages while in view v. Since the parent specification, wv rfifo : spec,
imposes gap-free fifo delivery of messages, a message set can be represented by a set of indices,
each pointing to the last message from each member of v; such representation of a set is called a
cut.

The wv rfifo : spec automaton fixes a cut for processes that wish to move from some view
v to some view v′: A new internal action set cut(v, v′, c) sets a new variable cut[v][v′] to a cut
mapping c. For a given pair of views, v and v′, the cut is chosen only once, nondeterministically.
Delivery of a view v to process p is allowed only if a cut for moving from p’s current view into v has
been set and if p has delivered all the messages identified in this cut. These conditions are enforced
by the two new preconditions of the viewp(v) action (see Figure 6). Since vsrfifo : spec is a
modification of wv rfifo : spec the new preconditions work in conjunction with the preconditions
in viewp(v) of wv rfifo : spec.

The vsrfifo : spec automaton, being a safety specification, does not require liveness prop-
erties to hold, such as, that processes actually deliver messages specified by the cuts, and hence,
are able to satisfy conditions for delivering new views. Such liveness specifications are stated in
Section 4.2.

4.1.3 Transitional Set

While Virtually-Synchronous Delivery is a useful property, a process that moves from view v to
view v′ cannot tell locally which of the processes in v.set ∩ v′.set move to view v′ directly from
view v, and which move to v′ from some other view. In order for the application to be able to
exploit the Virtually-Synchronous Delivery property, application processes need to be informed
which other processes move together with them from their current view into their new view. The
set of processes that transition together from one view into the next is called a transitional set
[VKCD99]:

Definition 4.1 A transitional set from view v to view v′, is a subset of v.set ∩ v′.set that includes:
(a) all processes that receive view v′ while in view v; and (b) no process that receive view v′ while
in a view other than v.

The notion of a transitional set was first introduced as part of a special transitional view in the
EVS [MAMSA94] model. In our formulation (as in [VKCD99]), transitional sets are delivered to
the application along with views, as an additional parameter T.

Example 4.1 Assume that Alice and Bob are using a Virtually Synchronous GCS that eventually
reports the views produced by the mbrshp service to Alice and Bob. Consider the scenario described
in Example 3.1: both Alice and Bob receive views v and v′ with the membership {Alice, Bob}. Just
from these views, Alice does not know whether Bob receives view v′ while in view v, or while in
some other view, vmid with the membership {Bob}. If the former holds, then Alice does not need
to synchronize with Bob because Virtually-Synchronous Delivery guarantees that they have received
the same messages while in view v; otherwise, she does. The transitional set given to Alice together
with view v′ provides this information.

Figure 7 presents an automaton ts : spec that specifies delivery of transitional sets satisfying
Definition 4.1. The automaton has two types of actions: output actions viewp(v, T), which deliver
view v with transitional set T to process p; and internal actions set prev viewp(v), which declare
that q intends to deliver view v while in its current view. The intentions are recorded in the variable
prev view[p][v], and the current views are recorded in the variable current view[p].
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automaton trans set : spec

Signature:

Output: viewp(v,T), Proc p, View v, SetOf(Proc) T

Internal: set prev viewp(v), Proc p, View v

State:

For all Proc p: View current view[p], initially vp
For all Proc p, View v: View⊥ prev view[p][v], initially ⊥

Transitions:

OUTPUT viewp(v, T)

pre: prev view[p][v] = current view[p]

(∀ q ∈ v.set ∩ current view[p].set)

prev view[q][v] 6= ⊥
T = {q ∈ v.set ∩ current view[p].set |

prev view[q][v] = current view[p]}
eff: current view[p] ← v

INTERNAL set prev viewp(v)

pre: p ∈ v.set

prev view[p][v] = ⊥
eff: prev view[p][v] ← current view[p]

Figure 7: Transitional set specification.

Before process p can deliver a view v, each member q in the intersection of these views
must execute set prev viewq(v), as enforced by the second precondition. The transitional set
T delivered by p with v is then computed to consist of those processes q in the intersection
current view[p].set ∩ v.set for which prev view[q][v] is the same as current view[p]; this is
specified by the third precondition on viewp(v, T).

4.1.4 Self Delivery

We now specify the Self Delivery property, which requires that each client receives all the messages
it sent in a given view before receiving a new view. We specify this property as a simple modification
of the wv rfifo : spec automaton presented in Section 4.1.1; the modified automaton is defined
by the code contained in both Figures 5 and 8.

automaton wv rfifo+self : spec modifies wv rfifo : spec

Signature Extension:

Output: viewp(v) modifies wv rfifo.viewp(v)

Transition Restriction:

OUTPUT viewp(v)

pre: last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p ]] )

Figure 8: wv rfifo+self service specification.

To enforce Self Delivery, a new precondition on the viewp(v) action requires the last dlvrd[p][p]
index to point to the last message sent by client p in its current view. Since the parent automaton,
wv rfifo : spec, guarantees within-view gap-free fifo delivery, this precondition implies that all
of p’s messages have in fact been delivered back to p.

In order for a GCS to be live and satisfy Within-View Delivery, Self Delivery, and Virtually-
Synchronous Delivery, the GCS must block its application from sending new messages during view
formation periods; this is proved in [FvR95]. Therefore, we introduce a block/block ok synchro-
nization when we extend our algorithm to support the Self Delivery property in Section 5.3.
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Our formulation of Self Delivery as a safety property, when combined with the liveness property
of Section 4.2, implies the formulations in [VKCD99] and [MAMSA94] of Self Delivery as a liveness
property. These formulations require a GCS to eventually deliver to each process its own messages.

4.2 Liveness property

In a fault-prone asynchronous model, it is not feasible to require that a group communication
service be live in every execution. The only way to specify useful liveness properties without
strengthening the communication model is to make these properties conditional on the underlying
network behavior (as specified, for example, in [FLS97, CS95, VKCD99]). Since our GCS uses an
external membership service, we condition the GCS liveness on the behavior of the membership
service. Provided the membership service eventually delivers the same last view to all the end-
points comprising the view and does not deliver to them any subsequent start change events, the
end-points are required to eventually deliver to their applications this last view and all the messages
sent in this view. Formally:

Property 4.1 Let gcs be a group communication service whose interface with its clients consists
of send, deliver, and view events as defined in the automaton signature in Figure 5. Furthermore,
assume that the gcs uses a membership service mbrshp described in Section 3.

Let v be a view. Let α be a fair execution of gcs in which, for every p ∈ v.set, the mbrshp.viewp(v)
action occurs and is followed by neither mbrshp.viewp nor mbrshp.start changep. Then at each
p ∈ v.set, gcs.viewp(v) eventually occurs. Furthermore, for every gcs.sendp(m) that occurs after
gcs.viewp(v), and for every q ∈ v.set, gcs.deliverq(p, m) also occurs.

It is important to note that although our liveness property requires the GCS to be live only in
certain executions, any implementation that satisfies this property has to attempt to be live in every
execution because it cannot test the external condition of the membership becoming stable. Also
note that, even though membership stability is formally required to last forever, in practice it only
has to hold “long enough” for the GCS to reconfigure, as explained in [DLS88, GS97]. However, we
cannot explicitly introduce the bound on this time period in a fully asynchronous model, since it
depends on external conditions such as message latency, process scheduling, and processing time.

5 The Virtually Synchronous Group Multicast Algorithm

In this section we present an algorithm for a group communication service, gcs, that satisfies the
specifications in Section 4. The group communication service is implemented by a collection of gcs

end-points, each running the same algorithm. Figure 9 (a) shows the interaction of a gcs end-
point with its environment: a membership service mbrshp and a reliable fifo multicast service
co rfifo; these services are assumed to satisfy specifications of Section 3. The end-point interacts
with its application client by accepting the client’s send-requests and by delivering application
messages and views to the client. The end-point uses the co rfifo service to send messages to
other gcs end-points and to receive messages sent by other gcs end-points. When necessary, the
end-point uses the reliable action to inform co rfifo of the set of end-points to which co rfifo

must maintain reliable (gap-free) fifo connections. The gcs end-point also receives start change

and view notifications from the membership service.
The algorithm running at each gcs end-point is constructed incrementally using the inheritance-

based methodology of [KKLS00]. We proceed in three steps, at each step adding support for a new
property (see Figure 9 (b)):
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Figure 9: A GCS end-point and its environment.

• First, in Section 5.1, we present an algorithm wv rfifop for an end-point of the within-view
reliable fifo multicast service specified in Section 4.1.1, and argue that this service satisfies
safety specification wv rfifo : spec and liveness Property 4.1.

• Then, in Section 5.2, we add support for the Virtually-Synchronous Delivery and Transitional
Set properties specified in Sections 4.1.2 and 4.1.3. We present a child vs rfifo+tsp of
wv rfifop, and argue that the service built from vs rfifo+tsp end-points satisfies safety
specifications vsrfifo : spec and ts : spec, and liveness Property 4.1.

• Finally, in Section 5.3, we add support for the Self Delivery property specified in Section 4.1.4.
The resulting automaton vs rfifo+ts+sdp models a complete gcs end-point. Due to the use
of inheritance, the service built from these end-points automatically satisfies safety specifi-
cations wv rfifo : spec, vsrfifo : spec, and ts : spec. We argue that it also satisfies
safety specification self : spec and liveness Property 4.1.

In the presented automata, each locally controlled action is defined to be a task by itself, which
means that, if it becomes and stays enabled, it eventually gets executed.

When composing automata into a service, actions of the type mbrshp.start changep(id, set)
are linked with co rfifo.livep(set), and mbrshp.viewp(v) are linked with co rfifo.livep(v.set).
This way, the live set[p] variable of co rfifo matches the mbrshp’s perception of which end-
points are alive and connected to p. (We assume that every permanently disconnected end-point
is eventually excluded by either a start change or a view notification.) In the composed system,
all output actions except the application interface are reclassified as internal.

For simplicity of the code, the presented automata do not include certain practical optimizations,
such as for example garbage collection; we point out some of the important ones in Section 5.4.
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5.1 Within-view reliable fifo multicast algorithm

In this section we present the wv rfifop algorithm running at an end-point p of a basic group
communication service, wv rfifo. The end-point algorithm is quite simple: It relies on the mbrshp

service to form and deliver views involving end-point p; the end-point forwards these views to
its client. The algorithm also relies on the co rfifo service to provide reliable gap-free fifo

multicast communication. When the end-point receives a message-send request from its client, it
uses co rfifo to send the message to other end-points in the client’s current view. The end-point
delivers to its client the messages received from other end-points via co rfifo, provided the client’s
current view matches the views in which the messages were sent. The algorithm keeps track in
which views messages are sent using the following technique: each time the end-point delivers a
view v to its client, it sends a special view msg message to the end-points in v.set, informing them
that the end-point’s future messages will be sent in view v. Reliable delivery of messages is ensured
by having co rfifo maintain a reliable connection to every member of the end-point’s view.

Figure 10 models the wv rfifop algorithm as an automaton. The signature defines the interface
through which end-point p interacts with its client and with the mbrshp and co rfifo services.

When a view v is received from mbrshp via action mbrshp.viewp(v), end-point p saves it in
a variable mbrshp view and then delivers v to its client by executing action viewp(v). Variable
current view contains the last view delivered to the client. The precondition, v = mbrshp view 6=
current view, on the viewp(v) action ensures that v is indeed the last view received from mbrshp

and that it has not already been delivered to the client. After end-point p delivers view v to its
client, it sends a view msg containing v to the rest of the members of current view.set by using
action co rfifo.sendp(set, tag = view msg, v) with set = current view.set − {p} and v =
current view. Variable view msg[p] contains the last view sent as a view msg. The first precondi-
tion, view msg[p] 6= current view, on co rfifo.sendp(set, tag = view msg, v) ensures that each
view msg is sent only once, and the second precondition, current view.set ⊆ reliable set, en-
sures that, prior to sending the view msg, end-point p has requested co rfifo to maintain reliable
connection to every member of the client’s view by executing action co rfifo.reliablep(set),
which sets variable reliable set to the value of set. When end-point p receives a view msg from
some end-point q via the co rfifo.deliverq,p(tag = view msg, v) action, it stores v in a variable
view msg[q].

End-point p maintains a queue msgs[q][v] per each end-point q and view v; these queues are
used for storing application messages received both from other end-points via co rfifo.deliverq,p
and from the end-point’s own client via sendp. When action sendp(m) occurs, m is appended to
msgs[p][current view]. The end-point maintains indices that enforce message handling in the
order of their appearances in the msgs queues: index last sent points to the last application
message m on msgs[p][current view] that was sent using co rfifo.sendp(set, tag = app msg, m);
index last rcvd[q], for each end-point q, points to the last message m on msgs[q][view msg[q]] that
was delivered to p by co rfifo.deliverq,p(tag = app msg, m); index last dlvrd[q], for each end-
point q, points to the last message m on msgs[q][current view] that was delivered to p’s client using
deliverp(q, m). The first precondition of co rfifo.sendp(set, tag = app msg, m) ensures that a
view msg containing current view has been already sent to everybody in set = current view −
{p}. The preconditions on sending view msgs, imply that co rfifo already maintains a reliable
connection to everyone in set, when co rfifo.sendp(set, tag = app msg, m) occurs.

Automaton wv rfifop implements auxiliary functionality that allows end-point p to forward
an application message received from some end-point to some other end-points. Specifically, using
co rfifo.sendp(set, tag = fwd msg, r, v, m, i), end-point p can forward to some set of end-points
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automaton wv rfifop

Type:

ViewMsg = View

FwdMsg = Proc × View × AppMsg × Int

Signature:

Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q,

(AppMsg + ViewMsg + FwdMsg) m

mbrshp.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m

co rfifo.sendp(set, m), SetOf(Proc) set,

(AppMsg + ViewMsg + FwdMsg) m

co rfifo.reliablep(set), SetOf(Proc) set

viewp(v), View v

State:

// Variables for handling application messages
For all Proc q, View v: SequenceOf(AppMsg⊥)

msgs[q][v], initially empty

Int last sent, initially 0

For all Proc q: Int last rcvd[q], initially 0

For all Proc q: Int last dlvrd[q], initially 0

// Variables for handling views and view messages
View current view, initially vp
View mbrshp view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:

INPUT mbrshp.viewp(v)

eff: mbrshp view ← v

OUTPUT viewp(v)

pre: v = mbrshp view 6= current view

eff: current view ← v

last sent ← 0

(∀ q) last dlvrd[q] ← 0

OUTPUT co rfifo.reliablep(set)

pre: current view.set ⊆ set

eff: reliable set ← set

OUTPUT co rfifo.sendp(set, tag=view msg, v)

pre: view msg[p] 6= current view

current view.set ⊆ reliable set

set = current view.set - {p}
v = current view

eff: view msg[p] ← current view

INPUT co rfifo.deliver
q, p

(tag=view msg, v)

eff: view msg[q] ← v

last rcvd[q] ← 0

INPUT sendp(m)

eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view][last dlvrd[q]+1]

eff: last dlvrd[q] ← last dlvrd[q] + 1

OUTPUT co rfifo.sendp(set, tag=app msg, m)

pre: view msg[p] = current view

set = current view.set - {p}
m = msgs[p][current view][last sent + 1]

eff: last sent ← last sent + 1

INPUT co rfifo.deliverq,p(tag=app msg, m)

eff: msgs[q][view msg[q ]] [last rcvd[q]+1]←m

last rcvd[q] ← last rcvd[q] + 1

OUTPUT co rfifo.sendp(set,tag=fwd msg,r,v,m,i)

pre: (p 6∈ set) ∧ (m = msgs[r][v][i])

INPUT co rfifo.deliverq,p(tag=fwd msg,r,v,m,i)

eff: msgs[r][v][i] ← m

Figure 10: Within-view reliable fifo multicast end-point automaton.

the ith message, m, sent by the client at r in view v. In turn, when the end-point receives a forwarded
message from end-point q via co rfifo.deliverq,p(tag = fwd msg, r, v, m, i), it stores m in the ith
location of the msgs[r][v] queue. The code of wv rfifop does not specify a particular strategy for
forwarding messages; the strategy can be chosen non-deterministically. Such a strategy can be
specified by more refined versions of the algorithm and/or by modifications of wv rfifop, as we
do in the vs rfifo+tsp modification of the wv rfifop automaton in Section 5.2 below.

Leaving certain level of non-determinism at the parent automaton, with the intention of re-
solving it later at the child automaton, is a technique similar to the use of abstract methods or
pure virtual methods in object-oriented methodology [KKLS00]. We use the same technique in
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the co rfifo.reliablep(set) action when we require set to be a nondeterministic superset of
current view.set. The vs rfifo+tsp modification of wv rfifop places additional preconditions
on this action, thereby specifying precise values for the set argument.

The wv rfifo automaton resulting from the composition of all the end-point automata and the
mbrshp and co rfifo automata models the wv rfifo service. The automaton satisfies the safety
properties specified by wv rfifo : spec: it preserves the Local Monotonicity and Self Inclusion
properties of view deliveries guaranteed by the mbrshp service; and it also extends the gap-free
fifo-ordered message delivery of co rfifo with the Within-View Delivery property. The Within-
View Delivery is achieved by delivering messages to the clients only if the views in which the
messages were sent match the clients’ current views.

Appendix B.1 contains a simulation from wv rfifo to wv rfifo : spec: Actions of automaton
wv rfifo : spec involving viewp(v), sendp(m), and deliverp(q, m) are simulated when wv rfifo

takes the corresponding viewp(v), sendp(m), and deliverp(q, m) actions. Steps of wv rfifo involv-
ing other actions correspond to empty steps of wv rfifo : spec. We define the following function
R that maps every reachable state s of wv rfifo to a reachable state of wv rfifo : spec, where
s[p].var denotes an instance of a variable var of end-point p in a state s:

R(s ∈ ReachableStates(wv rfifo)) = t ∈ ReachableStates(wv rfifo : spec), where

For each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: t.current view[p] = s[p].current view

Lemma B.1 states that R is a refinement mapping from wv rfifo to wv rfifo : spec; the proof
relies on a number of invariant assertions, stated and proved in Appendix B.1 as well.

The wv rfifo automaton also satisfies liveness Property 4.1. Consider a fair execution in
which each end-point p in v.set receives the same view v from the membership and no view events
afterwards. Starting from the time the mbrshp.viewp(v) action occurs, the viewp(v) action stays
enabled; therefore it eventually happens due to the fairness of the execution. After view v is
delivered to the clients, all messages sent in view v are also eventually delivered to the clients. This
is due to the liveness property of co rfifo, which guarantees that messages sent between live and
connected end-points (as perceived by the membership service) are eventually delivered to their
destinations. We prove these claims formally for the complete gcs algorithm in Appendix C.

5.2 Adding support for Virtually Synchronous Delivery and Transitional Sets

The wv rfifo service of the previous section guarantees that each member p of a view v receives
some prefix of the fifo ordered stream of messages sent by every member q in v. In this section, we
modify the wv rfifop algorithm to yield an end-point vs rfifo+tsp of a service, vs rfifo+ts,
that, in addition to the semantics provided by wv rfifo, guarantees that those members that
transition from v in to the same view v′, receive not just some but the same prefix of the message
stream sent by each member q in v. This is the Virtually-Synchronous Delivery property, the
key property of Virtual Synchrony semantics (see Section 4.1.2). Overall, the vs rfifo+ts service
satisfies the vsrfifo : spec and ts : spec safety specifications, as well as liveness Property 4.1;
we prove these claims respectively in Appendixes B.2, B.3, and C.

In a nutshell, here is how the vs rfifo+tsp algorithm computes transitional sets and enforces
Virtually-Synchronous Delivery: When end-point p is notified via mbrshp.start changep(cid, set)
of the mbrshp’s attempt to form a new view, p sends via co rfifo a synchronization message
tagged with cid to every end-point in set; if subsequent start change notifications with the same
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cid but a different set occur, p forwards its last synchronization message to the joining end-
points. The synchronization message includes p’s current view v and a mapping cut, such that
cut(q) is the index of the last message from each q in v.set that p commits to deliver in view v.
Notice that a synchronization message is sent right after a start change notification is received,
without waiting for a new view to be formed. Once p receives a new view v′ from mbrshp and
also a synchronization message tagged with v′.startId(q) from each end-point q in v.set ∩ v′.set,
p computes a transitional set from v to v′ and decides on which messages it needs to deliver to
its client in view v before delivering view v′. A transitional set T from v to v′ is computed to
include every client q in v.set ∩ v′.set whose synchronization message tagged with v′.startId(q)
contains the same view as p’s current view v. For each client r in v.set, end-point p decides to
deliver as much messages sent by r as committed to by any member q of T in its synchronization
message tagged with v′.startId(q). Section 5.2.1 describes two message-forwarding strategies that
ensure p’s ability to actually deliver all the messages it decides to deliver. After p delivers all these
messages to its client, it then delivers to its client the new view v′ along with the transitional set T.

Virtually-Synchronous Delivery follows from the fact that all end-points transitioning from view
v to v′ consider the same synchronization messages, compute the same set T, and hence use the
same data to decide which messages to deliver in view v before delivering view v′. Set T satisfies
Definition 4.1 of a transitional set from v to v′ because (a) every end-point that computes T is itself
included in T, and (b) no end-point q in T is allowed to deliver v′ while in some view other than v

because v′.startId(q) is linked through q’s synchronization message to v.
Figures 10, 11 and 12, together, contain the code of the vs rfifo+tsp automaton that models

end-point p of the vs rfifo+ts service. Figures 11 and 12 specify how the wv rfifop automaton
of Figure 10 is modified to support Virtually-Synchronous Delivery and Transitional Sets. Figure 11
contains Signature Extension that defines the signatures of new and modified actions; Figure 12
contains State Extension and Transition Restriction defining respectively new state variables and
new precondition/effect code. We now describe automaton vs rfifo+tsp in detail.

automaton vs rfifo+tsp modifies wv rfifop

Type: SyncMsg = StartChangeId × View × (Proc→Int)

Signature Extension:

Input: mbrshp.start changep(id, set), StartChangeId id, SetOf(Proc) set new

co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modifies wv rfifo.deliverp(q, m)

viewp(v, T), SetOf(Proc) T modifies wv rfifo.viewp(v)

co rfifo.reliablep(set), SetOf(Proc) set modifies wv rfifo.co rfifo.reliablep(set)

co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new

co rfifo.sendp(set, m) modifies wv rfifo.co rfifo.sendp(set, m), FwdMsg m

Internal: set cutp() new

Figure 11: Virtually Synchronous reliable fifo multicast: Signature Extension.

Upon receiving mbrshp.start changep(cid, set), vs rfifo+tsp stores the cid and set pa-
rameters in the id and set fields of a variable start change. When start change has a value
different from ⊥, it indicates that vs rfifo+tsp is engaged in a synchronization protocol, during
which it exchanges synchronization messages tagged with start change.id with the end-points in
start change.set; after vs rfifo+tsp delivers a view to its client it resets start change to ⊥.
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automaton vs rfifo+tsp modifies wv rfifop

State Extension:

(StartChangeId × SetOf(Proc))⊥ start change, initially ⊥
For all Proc q, ViewId id: (View v, (Proc→Int) cut)⊥ sync msg[q][id], initially ⊥
SetOf(Proc) sync set, initially empty

SetOf((Proc × Proc × View × Int)) forwarded set, initially empty

Transition Restriction:

INPUT mbrshp.start changep(cid, set)

eff: if start change 6= ⊥ ∧ start change.id = cid

then sync set ← sync set ∩ set

else sync set ← {}
start change ← 〈cid, set〉

OUTPUT co rfifo.reliablep(set)

pre: start change = ⊥ ⇒ set = current view.set

start change 6= ⊥ ⇒ set = current view.set ∪ start change.set

INTERNAL set cutp()

pre: start change 6= ⊥ ∧ sync msg[p][start change.id] = ⊥
eff: Let cut = {〈q, LongestPrefixOf(msgs[q][current view])〉 | q ∈ current view.set}

sync msg[p][start change.id] ← 〈current view, cut〉
sync set ← {p}

OUTPUT co rfifo.sendp(set, tag=sync msg, cid, v, cut)

pre: start change 6= ⊥ ∧ sync msg[p][start change.id] 6= ⊥
set = (start change.set - sync set) 6= { }
set ⊆ reliable set

cid = start change.id ∧ 〈v, cut〉 = sync msg[p][cid]

eff: sync set ← start change.set

INPUT co rfifo.deliverq,p(tag=sync msg, cid, v, cut)

eff: sync msg[q][cid] ← 〈v, cut〉

OUTPUT deliverp(q, m)

pre: if (start change 6= ⊥ ∧ sync msg[p][start change.id] 6= ⊥) then

if start change.id 6= mbrshp view.startId(p) then

last dlvrd[q]+1 ≤ sync msg[p][start change.id].cut(q)

else let S = {r ∈ mbrshp view.set ∩ current view.set |

sync msg[r][mbrshp view.startId(r)].view = current view}
last dlvrd[q]+1 ≤ max

r ∈ S
sync msg[r][mbrshp view.startId(r)].cut(q)

OUTPUT viewp(v, T)

pre: v.startId(p) = start change.id // to prevent delivery of obsolete views
v.set - sync set = { } // all sync msgs are sent
last sent ≥ sync msg[p][v.startId(p)].cut(p) // sent out your own msgs
(∀ q ∈ v.set ∩ current view.set) sync msg[q][v.startId(q)] 6= ⊥
T = {q ∈ v.set ∩ current view.set | sync msg[q][v.startId(q)].view = current view}
(∀ q ∈ current view.set) last dlvrd[q] = max

r ∈ T
sync msg[r][v.startId(r)].cut(q)

eff: start change ← ⊥
sync set ← {}

OUTPUT co rfifo.sendp(set,tag=fwd msg,r,v,m,i)

pre: (∀ q ∈ set) (〈q, r, v, i〉 6∈ forwarded set) ∧ ForwardStrategyPredicate(set, r, v, i)

eff: (∀ q ∈ set) add 〈q, r, v, i〉 to forwarded set

Figure 12: Virtually Synchronous reliable fifo multicast: State Extension & Transition Restriction.
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Variable sync set indicates a set of end-points to which a synchronization message tagged
with the latest start change.id has already been sent. When mbrshp modifies the membership
of a forming view by issuing a new mbrshp.start changep(cid, set) with the previous cid and
an updated set, the disconnected end-points are removed from sync set by setting sync set to
sync set ∩ set. This way, if any of the disconnected end-points later re-join, the synchronization
message will be re-sent to them. If mbrshp issues a new cid, then sync set is reset to { } to
indicate that a new synchronization message needs to be sent to every end-point in set.

After vs rfifo+tsp receives a mbrshp.start changep(cid, set) input from mbrshp, it executes
an internal action, set cutp(), that commits p to deliver to its client all the messages it has so
far received from the members of its current view. For each member q of current view.set,
cut(q) is set to the length of the longest continuous prefix of messages in msgs[q][current view].2

Action set cutp() results in p’s current view being stored in sync msg[p][start change.id].view,
the committed cut – in sync msg[p][start change.id].cut, and sync set being set to {p}.

vs rfifo+tsp specifies precise preconditions on the co rfifo.reliablep(set) actions. When
vs rfifo+tsp is not engaged in a synchronization protocol (i.e., when start change= ⊥), co rfifo

is asked to maintain reliable connection just to the end-points in p’s current view, current view.set.
When vs rfifo+tsp is engaged in a synchronization protocol, it requires co rfifo to maintain
reliable connection to the members of a forming view, start change.set, as well as to those in
current view.set. Thus, co rfifo avoids loss of messages sent to the disconnected end-points in
case these end-points are later added to the forming view.

After setting the cut and telling co rfifo to maintain reliable connection to everyone in
current view.set ∪ start change.set, vs rfifo+tsp uses co rfifo.sendp to send the synchro-
nization message sync msg[p][start change.id] tagged with start change.id to the end-points
in start change.set − sync set. Synchronization messages received from other end-points via
co rfifo.deliverq,p(tag = sync msg, cid, v, cut) result in 〈v, cut〉 being saved in sync msg[q][cid].

vs rfifo+tsp restricts delivery of application messages while it is engaged in a synchroniza-
tion protocol (i.e., when start change 6= ⊥ and sync msg[p][start change.id] 6= ⊥): Prior to
receiving a new view from mbrshp, only the messages identified in the cut of its own latest
synchronization message, sync msg[p][start change.id].cut, can be delivered to the client. Af-
ter mbrshp.viewp(v) occurs, vs rfifo+tsp is allowed to deliver messages identified in the cut
sync msg[q][v.startId(q)].cut received from q, provided q is a member of a transitional set from
current view to v. An end-point q ∈ current view.set ∩ v.set is considered to be in a transitional
set from current view to v if sync msg[q][v.startId(q)].view is the same as p’s current view.

vs rfifo+tsp delivers a view v received from mbrshp and a transitional set T to its client when
p receives a synchronization message sync msg[q][v.startId(q)] from every q in current view.set
∩ v.set, computes T, and delivers all the application messages identified in the cuts of the members
of T (as specified by the last three preconditions on viewp(v, T)). The first two preconditions ensure
respectively that no new mbrshp.start changep notification was issued after mbrshp.viewp(v) and
that p sent its synchronization message to everybody in v.set. The third precondition specifies
that, before delivering view v, p must send to others all of its own messages indicated in its own
cut. All these preconditions work in conjunction with those in wv rfifo.viewp(v).

Recall from Section 5.1 that wv rfifop allows for nondeterministic forwarding of other end-
points’ application mesages. vs rfifo+tsp resolves this nondeterminism by placing two addi-
tional preconditions on co rfifo.sendp(set, tag = fwd msg, r, v, m, i): The first checks a variable

2The longest continuous prefix can be different from the length of msgs[q][current view] because forwarded mes-
sages may arrive out of order and introduce gaps in the msgs queues.
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forwarded set to make sure that message m was not previously forwarded to anyone in set. The
second tests that a certain ForwardingStrategyPredicate(set, r, v, i) holds. This predicate is
designed to ensure that all end-points in the transitional set T are able to deliver all the messages
that each has committed to deliver in its synchronization message, in particular those sent by dis-
connected clients. End-points test ForwardingStrategyPredicate to decide whether they need to
forward any messages to others.

5.2.1 Forwarding Strategy Predicate

We now provide two examples of ForwardingStrategyPredicates. With the first, multiple copies
of the same message may be forwarded by different end-points. The second strategy minimizes the
number of forwarded copies of a message. Many other possible strategies exist. For example, a
strategy can employ randomization to decide whether an end-point should forward a message in a
certain time slice, and suppress forwarding of messages that have already been forwarded by others.

A simple strategy: With our first strategy, a process p forwards a message m only if p has
committed to deliver m. In addition, if m was originally sent in view v, p forwards m to a process
q only if p does not know of any view of q later than v, and if the latest sync msg from q sent in
view v indicates that q has not received message m. The strategy is defined as follows:

ForwardingStrategyPredicate(set, r, v, i) ≡
(∃ cid) (sync msg[p][cid].view = v ∧ i ≤ sync msg[p][cid].cut(r))

∧ set = { q | view msg[q] ≤ v ∧ (∃ cid ′) (sync msg[q][cid ′].view = v

∧ (6∃ cid ′ ′ > cid ′) sync msg[q][cid ′ ′].view = v ∧ sync msg[q][cid ′].cut(r) < i) }

If some process q is missing a certain message m, m will be forwarded to q by some end-point p
that has committed to deliver m, when p learns from q’s synchronization message that q misses m.

Minimizing the number of forwarded copies of a message: The second strategy relies on the
computed transitional set T from view v to v′ to decide which message should be forwarded by which
member of the transitional set. Assume that a member u of T misses a message m that was originally
sent in v by a non-member r of T, but that was committed to delivery by some other members
of T. Among these memebers, ForwardingStrategyPredicate selects the one with the minimal
process-identifier to forward m to u; variations of this predicate may use a different deterministic
rule for selecting a member, for example, accounting for network topology or communication costs.
The selected end-point, p, forwards the message to u only if view v′ is the latest view known to
p, as specified by the first conjunct below. Otherwise, v′ is an obsolete view, so there is no need
to help u transition in to v′. The described strategy does not forward to u ∈ T messages from the
members of T because u is guaranteed to receive these messages directly from their original senders
(unless v′ becomes obsolete because of further view changes occur).

ForwardingStrategyPredicate(set, r, v, i) ≡
Let v ′ = mbrshp view ∧ // latest view known to {p}

sync msg[p][v ′.startId(p)] 6= ⊥ ∧ // already sent own sync msg

Let v = sync msg[p][v ′.startId(p)].view ∧
(∀ q ∈ v.set ∩ v ′.set) sync msg[q][v ′.startId(q)] 6= ⊥ ∧ // received right sync msgs

Let T = {q ∈ v.set ∩ v ′.set | sync msg[q][v ′.startId(q)].view = v} ∧
r 6∈ T ∧ // only forward messages from end--point not in T

set = {u ∈ T | sync msg[u][v ′.startId(u)].cut(r) < i } ∧
p = min{u ∈ T | sync msg[u][v ′.startId(u)].cut(r) ≥ i }
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If all end-points receive the same view from mbrshp, only one copy of m will be forwarded to
each u. In rare cases, however, when mbrshp delivers different views to different end-points, more
than one end-point may forward the same message m to the same end-point u.

Each end-point waits to receive a new view from mbrshp and all the right synchronization
messages before it forwards messages to others. Thus, compared to the first strategy, this strategy
reduces the communication traffic at the cost of slower recovery of lost messages.

5.2.2 Correctness

The vs rfifo+ts automaton, resulting from the composition of all end-point automata and the
mbrshp and co rfifo automata, satisfies the vsrfifo : spec and ts : spec safety specifications,
as well as Liveness Property 4.1, as we formally prove in Appendixes B.2, B.3, and C, respectively.
Below we give high-lights of these proofs.

vsrfifo : spec is a modification of wv rfifo : spec. The proof that vs rfifo+ts satisfies
vsrfifo : spec reuses the proof that wv rfifo satisfies wv rfifo : spec and involves reason-
ing about only how vsrfifo : spec modifies wv rfifo : spec. The proof extends refinement
mapping R between wv rfifo and wv rfifo : spec with a mapping Rn that maps the cuts used
by the end-points of vs rfifo+ts to move from a view v to a view v′ to the cut[v][v′] variable
of vsrfifo : spec. The proof depends on Invariant B.9 and Corollary B.1, which state that all
end-points that move from a view v to a view v′ use the same synchronization messages, compute
the same transitional set T, and therefore, use the same cuts.

The proof in Appendix B.3 shows that vs rfifo+ts satisfies ts : spec. The proof augments
vs rfifo+tsp with a prophecy variable that guesses, at the time p receives a start changep(cid, set)
notification from mbrshp, possible future views that may contain cid in their startId(p) map-
pings. For each of these views v′, vs rfifo+ts simulates a set prev viewp(v

′) action of ts : spec,
thereby fixing the previous view of v′ to be p’s current view v.

In a fair execution of vs rfifo+ts in which the same last view v′ is delivered to all its mem-
bers and no start change events subsequently occur, the three preconditions on the viewp(v

′, Tp)
delivery are eventually satisfied for every p ∈ v′.set:

1. Condition v′.startId(p) = start change.id remains true since by the assumption there are
no subsequent start change events at p.

2. End-point p eventually receives synchronization messages tagged with the “right” cid from
every member of v.set ∩ v′.set because they keep taking steps towards reliably sending
these synchronization messages to p (by low-level fairness of the code) and because co rfifo

eventually delivers these messages to p (by the liveness assumption on co rfifo).

3. End-point p eventually receives and delivers all the messages committed to in the cuts of
the members of the transitional set Tp because for each such message there is at least one
end-point in Tp that has the message in its msgs buffer and that would reliably forward it to
p (according to the ForwardingStrategyPredicate) if so necessary. Also, p never delivers
any messages beyond those committed to in the cuts of the members of Tp because of the
precondition on application message delivery.

5.3 Adding support for Self Delivery

As a final step in constructing the automaton that models an end-point of our group communication
service, gcsp, we add support for Self Delivery to the vs rfifo+tsp automaton presented above.
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Self Delivery requires each end-point to deliver to its client all the messages the client sends in a
view, before moving on to the next view.

automaton gcsp = vs rfifo+ts+sdp modifies vs rfifo+tsp

Signature Extension:

Input: block okp() new

Internal: set cutp() modifies set cutp()

Output: blockp() new

viewp(v,T) modifies vs rfifo+ts.viewp(v,T)

State Extension:

block status ∈ {unblocked, requested, blocked}, initially unblocked

Transition Restriction:

INTERNAL set cutp()

pre: block status = blocked

OUTPUT viewp(v,T)

eff: block status ← unblocked

OUTPUT blockp()

pre: start change 6= ⊥
block status = unblocked

eff: block status ← requested

INPUT block okp()

eff: block status ← blocked

Figure 13: GCSp end-point automaton.

In order to implement Self Delivery, Virtually-Synchronous Delivery, and Within-View Delivery
together in a live manner, each end-point must block its client from sending new messages while a
view change is taking place (as proven in [FvR95]). Therefore, we add to vs rfifo+tsp an output
action block and an input action block ok. We assume that the client at end-point p has the
matching actions and that it eventually responds to every block request with a block ok response
and subsequently refrains from sending messages until a view is delivered to it. In Section B.4, we
formalize this requirement as an abstract client automaton.

The gcsp automaton appears in Figure 13. After receiving the first start change notification
in a given view, end-point p issues a block request to its client and awaits receiving a block ok

response before executing set cutp(). As a result of set cutp(), p commits to deliver all the
messages its client has sent in the current view. Therefore, p has to deliver all these messages
before moving on to a new view, and Self Delivery is satisfied. Due to the use of inheritance, the
gcs automaton preserves all the safety properties satisfied by its parent. Since end-point p has its
own messages on the msgs[p][p] queue and can deliver them to its client, liveness is also preserved.
Thus, gcs satisfies all the properties we have specified in Section 4.

5.4 Optimizations and Extensions

Having formally presented the basic algorithm for an end-point of our Virtually-Synchronous GCS,
we now discuss several optimizations and extensions that can be added to the algorithm to make
its implementation more practical. Specifically, we discuss ways to reduce the size and number
of synchronization messages, as well as to avoid the use of non-volatile storage. We also discuss
garbage collection.

The first optimization that reduces the size of synchronization messages relies on the following
observation: An end-point p does not need to send its current view and its cut to end-points which
are not in current view.set because p cannot be included in their transitional sets. However, these
end-points still need to hear from p if p is in their current views. Therefore, end-point p could send
a smaller synchronization message to the end-points in start change.set − current view.set,
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containing its start change.id only (but neither a view nor a cut). This message would be inter-
preted as saying “I am not in your transitional set”, and the recipients of this message would know
not to include p in their transitional sets for views v′ with v′.startId(p) = p’s start change.id.
When using this optimization, p also does not need to include its current view in the synchroniza-
tion messages sent to current view.set− start change.set, since the view information can be
deduced from p’s view msg.

An additional optimization can be used if we strengthen the membership specification to require
a mbrshp.start change with a new identifier to be sent every time mbrshp changes its mind
about the membership of a forming view. In this case, the latest mbrshp.start change has the
same membership as the delivered mbrshp.view. Therefore, the synchronization messages can
be shortened to not include information about application messages delivered from end-points
in start change.set ∩ current view.set: for an end-point p, end-points that have p in their
transitional sets will deliver all the application messages that p sent before its synchronization
message.

Other optimizations can reduce the total number of messages sent during synchronization pro-
tocol by all end-points. A simple way to do this is to transform the algorithm into a leader-based
one, as [vRBM96, SR93]. A more scalable approach was suggested by Guo et al. [GVvR96].
Their algorithm uses a two-level hierarchy for message dissemination in order to implement Vir-
tual Synchrony: end-points send synchronization messages to their designated leaders, which in
turn exchange only the cumulative information among themselves. The number of messages ex-
changed to synchronize multiple groups can be also reduced, as suggested in [BFHR98, RGS+96],
by aggregating information pertaining to multiple groups into a single message.

Another optimization addresses the use of stable storage. Recall that in Section 3 we assumed
that end-points keep their running states on stable storage, and therefore, recover with their state
intact. However, our group multicast service does provide meaningful semantics even when gcs

end-points maintain their running state on volatile storage. When an end-point p recovers after a
crash, it can start executing with its state reset to an initial value with current view being the
singleton view vp. It needs to contact the mbrshp service to be re-added to its groups. The client
would refrain from sending any messages in its recovered view until it receives a new view from
its end-point. This view would satisfy Local Monotonicity and Self Inclusion because these are the
properties guaranteed by the mbrshp service. The specification of Virtually-Synchronous Delivery
should be changed to make recovery be interpreted as delivering a singleton view. The remaining
safety properties are also preserved because they involve message delivery within a single view.

In a practical implementation of our service, some sort of garbage collection mechanism is
required in order to keep the buffer sizes finite. The implementation of [Tar00] discards messages
from older views when moving to a new view, and also when learning that they were already
delivered to every client in the view. This implementation also discards older synchronization
messages: an end-point only holds on to the latest synchronization message it received from each
end-point. This optimization does not violate liveness since discarded synchronization messages
necessarily pertain to obsolete views.

6 Discussion

We have designed a novel, efficient group multicast service targeted for WANs. Our service imple-
ments a variant of the Virtual Synchrony semantics that includes a collection of properties that
have been shown useful for many distributed applications (see [VKCD99]). Many GCSs, for ex-
ample [vRBM96, SR93, BDM98, AMMS+95, DM96], support these and similar properties. Our
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design has been implemented [Tar00] (in C++) as part of a novel architecture for scalable group
communication in WANs, using the datagram service of [ACSD00] and the membership algorithm
of Keidar et al. [KSMD00].

The main contribution of this paper is a Virtual Synchrony algorithm run by gcs end-points,
in particular, its synchronization protocol, which enforces Virtually-Synchronous Delivery. This
protocol is invoked when the underlying membership service begins to form a new view, and is
run while the view is forming. The protocol involves a single message-exchange round during
which members of the forming view send synchronization messages to each other. In contrast to
previously suggested Virtual Synchrony algorithms (e.g., [FvR95, AMMS+95, GVvR96, ADKM92,
BDM98]), our algorithm does not require end-points to pre-agree upon a globally unique identifier
before sending synchronization messages, and thus involves less communication. Performing less
communication is especially important in WANs, where message latency tends to be high.

Furthermore, unlike the algorithms in [AMMS+95, GVvR96, BDM98, SR93], our algorithm al-
lows the membership service to change the membership of a forming view while the synchronization
protocol is running; the protocol responds immediately to such membership changes. The following
example demonstrates the benefits of this approach:

Example 6.1 Figure 14 presents a sample execution involving two clients, a and b. Vertical
arrows represent time passage at each client, empty circles represent client-level events, and gray
circles – mbrshp-level events. First, both clients receive the same view v = 〈2, {a, b}, [a : 1, b : 1])〉
from their gcs end-points, gcsa and gcsb; the circle around these view events highlights that the
delivered views are the same. At some point, the mbrshp service notifies gcsb that it is starting to
form a view without a. While doing so, it detects that a is connected to b afterall, so it changes the
membership of the forming view to {a, b}. gcsb forwards to gcsa its latest synchronization message;
synchronization messages are denoted by dashed lines. gcsa is also notified by mbrshp of its attempt
to form a new view with b; this causes gcsa to send a synchronization message to gcsb. When

Application clients do not need to synchronize their states after new views are delivered

synch msgs

Client b

gcs.viewb(v, T)

gcs.viewb(v
′, T′)

mbrshp.start changeb(2, {a, b})

mbrshp.viewb(3, {a, b}, [a : 2, b : 2])

mbrshp.start changeb(2, {b})

Client a

gcs.viewa(v, T)

gcs.viewa(v
′, T′)

mbrshp.viewb(3, {a, b}, [a : 2, b : 2])

mbrshp.start changea(2, {a, b})

Figure 14: Handling membership changes while synchronization protocol is running.

mbrshp completes its view formation protocol, it delivers the new view v′ = 〈3, {a, b}, [a : 2, b : 2]〉
to both gcs end-points. After the gcs end-points receive each-others’ synchronization messages,
they compute their transitional sets to be T′ = {a, b}, decide on which application messages they
need to deliver, deliver these messages, and then deliver v′ and T′ to their clients. From T′, a and
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b can deduce that, due to Virtually-Synchronous Delivery, they received the same messages while
in v, and therefore do not need to synchronize their states.

Example 6.1 demonstrates two additional advantages of our algorithm: (a) the algorithm does
not waste resources on synchronizing end-points in order to deliver views that are known to be
obsolete; and (b) the application benefits from not seeing obsolete views, as it has to do fewer
state synchronizations (or other view processing activity). Responding promptly to connectivity
changes is therefore especially important in WANs, where transient connectivity changes may occur
frequently due to variability of message latency and less reliable connectivity. In contrast to our
algorithm, algorithms that do not allow new members to be added to the membership of an already
forming view (such as, [AMMS+95, GVvR96, BDM98, SR93]) lack these advantages, as illustrated
by the following example:

Example 6.2 When executed in the scenario of Example 6.1, algorithms that do not allow new
members to be added to the membership of an already forming view would deliver an obsolete view
vmid with membership {b} to client b, and then re-start the view formation and synchronization
protocols anew in order to deliver to a and b a new view with membership {a, b}. As part of
the synchronization protocol, a and b would first exchange messages to agree upon a common
identifier before actually exchanging synchronization messages. The synchronization protocol would
not synchronize end-points a and b because they would be transitioning into the new view from
different views, a from v and b from vmid. As a result, after the clients get the new view from gcs,
they would have to run an additional state synchronization protocol.

We are not aware of any other algorithm for Virtual Synchrony that does not pre-agree on
common identifiers before sending synchronization messages and that always allows new members
to join a forming view while the synchronization protocol is running. Our algorithm achieves
these two features by virtue of a simple yet powerful idea: End-points tag their synchronization
messages with start-change identifiers that are locally generated by the membership service; when
the membership service forms a view and delivers it to the end-points, the view includes information
about which start-change identifiers were given to which member. This information communicates
to the end-points which synchronization messages they need to consider from each member. Since
no pre-agreement upon a common identifier takes place, there is nothing that would inhibit the
membership service and the Virtual Synchrony algorithm from allowing new members to join the
forming view; end-points just have to forward their last synchronization messages to the joiners.

As a second contribution of this paper, our design has demonstrated how to effectively decouple
the algorithm for achieving Virtual Synchrony from the algorithm for maintaining membership. As
argued in [ACDK98, KSMD00], such decoupling is important for providing efficient and scalable
group communication services in WANs. In previous designs that implement Virtual Synchrony
atop an external membership service [BFHR98, SR93], the membership service is not allowed to
add new members to an already forming view, and the membership service waits to synchronize
with all end-points of the formed view before delivering the view to any of the clients.

A distinct and important characteristic of our design is the high level of formality and rigor
at which it has been carried out. This paper has provided precise descriptions of the gcs algo-
rithm and the semantics it provides, as well as a formal proof of the algorithm’s correctness – both
safety and liveness. Previously, formal approaches based on I/O automata were used to specify
the semantics of Virtually Synchronous GCSs and to model and verify their applications, for ex-
ample, in [Cho97, FLS97, DPFLS98, KFL98, DPFLS99, HLvR99]. However, due to their size and
complexity, Virtual Synchrony algorithms were not previously modeled using formal methods, nor
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were they assertionally verified. Our experience has taught us the importance of careful modeling
and verification: in the process of proving our algorithm’s correctness we have often uncovered
subtleties and ambiguities that had to be resolved.

In order to manage the complexity of our design, we developed a new formal inheritance-
based methodology [KKLS00]. The incremental way in which we constructed our algorithms and
specifications allowed us to also construct the simulation proof incrementally. For example, in order
to prove that vs rfifo+ts simulates vs rfifo+ts : spec we extended the simulation relation from
wv rfifo to wv rfifo : spec and reasoned solely about the extension, without repeating the
reasoning about the parent components (see Appendix B.2). This reuse was justified by the Proof
Extension theorem of [KKLS00] (see Appendix A.3). The use of incremental construction was the
key to our success in formally modeling and reasoning about such a complex and sophisticated
service. We hope that the methodology employed in this paper shall also be helpful to other
researchers working on formal modeling of complex distributed systems.
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A Review of Proof Techniques

In this section we describe the main techniques used to prove correctness of I/O automata: invariant
assertions, hierarchical proofs, refinement mappings, and history and prophecy variables. The
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material in this section is closely based on [Lyn96, pages 216-228] and [Lam97, pages 3,4, and 13].
In Section A.3 we present a proof-extension theorem of [KKLS00] that provides a formal framework
for the reuse of simulation proofs based on refinement mappings.

A.1 Invariants

The most fundamental type of property to be proved about an automaton is an invariant assertion,
or just invariant, for short. An invariant assertion of an automaton A is defined as any property
that is true in every single reachable state of A.

Invariants are typically proved by induction on the number of steps in an execution leading to
the state in question. While proving an inductive step, we consider only critical actions, which
affect the state variables appearing in the invariant.

A.2 Hierarchical Proofs

One of the important proof strategies is based on a hierarchy of automata. This hierarchy represents
a series of descriptions of a system or algorithm, at different levels of abstraction. The process of
moving through the series of abstractions, from the highest level to the lowest level, is known as
successive refinement. The top level may be nothing more than a problem specification written
in the form of an automaton. The next level is typically a very abstract representation of the
system: it may be centralized rather than distributed, or have actions with large granularity, or
have simple but inefficient data structures. Lower levels in the hierarchy look more and more like
the actual system or algorithm that will be used in practice: they may be more distributed, have
actions with small granularity, and contain optimizations. Because of all this extra detail, lower
levels in the hierarchy are usually harder to understand than the higher levels. The best way to
prove properties of the lower-level automata is by relating these automata to automata at higher
levels in the hierarchy, rather than by carrying out direct proofs from scratch.

A.2.1 Refinement Mappings

The simplest way to relate two automata, say A and S, is to present a refinement mapping R
from the reachable states of A to the reachable state of S such that it satisfies the following two
conditions:

1. If t0 is an initial state of A, then R(s0) is an initial state of S.

2. If t and R(t) are reachable states of A and S respectively, and (t, π, t′) is a step of A, then
there exists an execution fragment of S beginning at state R(t) and ending at state R(t)′,
with its trace being the same as the trace of π and its final state R(t)′ being the same as
R(t′).

The first condition asserts that any initial state of A has some corresponding initial state of S.
The second condition asserts that any step of A has a corresponding sequence of steps of S. This
corresponding sequence can consist of one step, many steps, or even no steps, as long as the
correspondence between the states is preserved and the external behavior is the same.

The following theorem gives the key property of refinement mappings:

Theorem A.1 If there is a refinement mapping from A to S, then traces(A) ⊆ traces(S).
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If automata A and S have the same external signature and the traces of A are the traces of S,
then we say that A implements S in the sense of trace inclusion, which means that A never does
anything that S couldn’t do. Theorem A.1 implies that, in order to prove that one automaton
implements another in the sense of trace inclusion, it is enough to produce a refinement mapping
from the former to the latter.

A.2.2 History and Prophecy Variables

Sometimes, however, even when the traces of A are the traces of S, it is not possible to give a
refinement mapping from A to S. This may happen due to the following two generic reasons:

• The states of S may contain more information than the states of A.

• S may make some premature choices, which A makes later.

The situation when A has been optimized not to retain certain information that S maintains
can be resolved by augmenting the state of A with additional components, called history variables
(because they keep track of additional information about the history of execution), subject to the
following constraints:

1. Every initial state has at least one value for the history variables.

2. No existing step is disabled by the addition of predicates involving history variables.

3. A value assigned to an existing state component must not depend on the value of a history
variable.

These constraints guarantee that the history variables simply record additional state information
and do not otherwise affect the behavior exhibited by the automaton. If the automaton AHV

augmented with history variables can be shown to implement S by presenting a refinement mapping,
it follows that the original automaton A without the history variables also implements S, because
they have the same traces.

The situation when S is making a premature choice, which A makes later, can be resolved by
augmenting A with a different sort of auxiliary variable, prophecy variable, which can look into
the future just as history variable looks into the past. A prophecy variable guesses in advance
some non-deterministic choice that A is going to make later. The guess gives enough information
to construct a refinement mapping to S (which is making the premature choice). For an added
variable to be a prophecy variable, it must satisfy the following conditions:

1. Every state has at least one value for the prophecy variable.

2. No existing step is disabled in the backward direction by the new preconditions involving a
prophecy variable. More precisely, for each step (t, π, t′) there must be a state (t, p) and a p
such that there is a step ((t, p), π, (t′, p′)).

3. A value assigned to an existing state component must not depend on the value of the prophecy
variable.

4. If t is an initial state of A and (t, p) is a state of the A augmented with the prophecy variable,
then it must be its initial state.

If these conditions are satisfied, the automaton augmented with the prophecy variable will have
the same (finite) traces as the automaton without it. Therefore, if we can exhibit a refinement
mapping from APV to S, we know that the A implements S.
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A.3 Inheritance and Proof Extension Theorem

We now present a theorem from [KKLS00] which lays the foundation for incremental proof con-
struction. Consider the example illustrated in Figure 15, where a refinement mapping R from an
algorithm A to a specification S is given, and we want to construct a refinement mapping R′ from
a child A′ of an automaton A to a child S′ of a specification automaton S.

S

A

S’

A’

simulation

simulation

R

R’ ?

inheritance

inheritance

Figure 15: Algorithm A simulates specification S with R. Can R be reused for building a refinement
R′ from a child A′ of A to a child S′ of S?

Theorem A.2 below implies that such a refinement R′ can be constructed by supplementing
R with a mapping Rn from the states of A′ to the state extension introduced by S′. Mapping Rn
has to map every initial state of A′ to some initial state extension of A′ and it has to satisfy a
step condition similar to the one for refinement mapping (Section A.2.1), but only involving the
transition restriction of S′.

Theorem A.2 Let automaton A′ be a child of automaton A. Let automaton S′ be a child of au-
tomaton S. Let mapping R be a refinement from A to S.

Let Rn be a mapping from the states of A′ to the state extension introduced by S′.
A mapping R′ from the states of A′ to the states of S′, defined in terms of R and Rn as

R′(〈t, tn〉) = 〈R(t), Rn(〈t, tn〉)〉

is a refinement from A′ to S′ if R′ satisfies the following two conditions:

1. If t is an initial state of A′, then Rn(t) is an initial state extension of S′.

2. If 〈t, tn〉 is a reachable state of A′, s = 〈R(t), Rn(〈t, tn〉)〉 is a reachable state of S′, and
(〈t, tn〉, π, 〈t

′, t′n〉) is a step of A′, then there exists a finite sequence α of alternating states
and actions of S′, beginning from s and ending at some state s′, and satisfying the following
conditions:

(a) α projected onto states of S is an execution sequence of S.

(b) Every step (si, σ, si+1)∈ α is consistent with the transition restriction placed on S by S′.

(c) The parent component of the final state s′ is R(t′).

(d) The child component of the final state s′ is Rn(〈t
′, t′n〉).
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(e) α has the same trace as π.

In practice, one would exploit this theorem as follows: The simulation proof between the parent
automata already provides a corresponding execution sequence of the parent specification for every
step of the parent algorithm. It is typically the case that the same execution sequence, padded with
new state variables, corresponds to the same step at the child algorithm. Thus, conditions 2a, 2c,
and 2e of Theorem A.2 hold for this sequence. The only conditions that have to be checked
are 2b, and 2d, that is, that every step of this execution sequence is consistent with the transition
restriction placed on S by S′ and that the values of the new state variables of S′ in the final state
of this execution match those obtained when Rn is applied to the post-state of the child algorithm.

A.4 Safety versus Liveness

Proving that one automaton implements another in the sense of trace inclusion constitutes only
partial correctness, as it implies safety but not liveness. In other words, partial correctness ensures
than “bad” things never happen, but it does not say anything whether some “good” thing eventually
happens.

In this paper, we use invariant assertions and simulation techniques to prove that our algo-
rithms satisfy safety properties, which are stated as I/O automata. For liveness proofs, we use a
combination of invariant assertions and carefully proven operational arguments.

B Correctness Proof: Safety Properties

We now formally prove using invariant assertions and simulations that our algorithms satisfies
the safety properties of Section 4.1. Proofs done with invariant assertions and simulations are
easily verifiable (even by a computer) because they involve reasoning only about single steps of the
algorithm. A review of the used in this section proof techniques appears in Appendix A.

The safety proof is modular: we exploit the inheritance-based structure of our specifications
and algorithms to reuse proofs. In Section B.1 we prove correctness of the within-view reliable
fifo multicast service by showing a refinement mapping from wv rfifo to wv rfifo : spec. In
Section B.2 we extend this refinement mapping to map the new state added in vs rfifo+ts to that
in vsrfifo : spec. In Section B.3 we prove that vs rfifo+ts also simulates ts : spec. Finally,
in Section B.4 we extend the refinement above to map the new state of gcs to that of self : spec.
The proof-extension theorem of [KKLS00] (also reviewed in Appendix A) implies that the gcs

automaton satisfies wv rfifo : spec, vsrfifo : spec, ts : spec, and self : spec.

B.1 Within-view reliable fifo multicast

Intuitively, in order to simulate wv rfifo : spec with wv rfifo, we need to show that wv rfifo

satisfies Self Inclusion and Local Monotonicity for delivered views, and we need to show that the
i’th message delivered by q from p in view v is the i’th message sent in view v by the client at p.
In order to prove this, we need to show that the algorithm correctly associates messages with the
views in which they were sent and with their indices in the sequences of messages sent in these
views. We split the proof into three parts: Section B.1.1 states key invariants, but defers the proof
of one of them to Section B.1.3; Section B.1.2 contains the simulation proof.
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B.1.1 Key Invariants

The following invariant captures the Self Inclusion property.

Invariant B.1 (Self-Inclusion) In every reachable state s of wv rfifo, for all Proc p, p ∈
s[p].mbrshp view.set and p ∈ s[p].current view.set.

Proof B.1: Immediate from the mbrshp specification.

The Local Monotonicity property follows directly from the precondition, v.id > mbrshp view,
of the mbrshp.viewp(v) actions.

The following invariant relates application messages at different end-points’ queues to the cor-
responding messages on the original senders’ queues.

Invariant B.2 (Message Consistency) In every reachable state s of wv rfifo, for all Proc p

and Proc q, if s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

This proposition is vacuously true in the initial state because all message queues are empty.
For the inductive step, we have to consider actions co rfifo.deliverq,p(tag = app msg, m) and
co rfifo.deliverq,p(tag = fwd msg, r, v, m, i), and have to argue that the message m they deliver
is placed in the right place in q’s msgs buffer. The proof of this invariant appears in Section B.1.3,
after the simulation proof.

B.1.2 Simulation

Lemma B.1 The following function R() is a refinement mapping from automaton wv rfifo to
automaton wv rfifo : spec with respect to their reachable states.

R(s ∈ ReachableStates(wv rfifo)) = t ∈ ReachableStates(wv rfifo : spec), where

For each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: t.current view[p] = s[p].current view

Proof B.1:

Action Correspondence: Automaton wv rfifo : spec has three types of actions. Actions
of the types viewp(v), sendp(m), and deliverp(q, m), are simulated when wv rfifo takes the
corresponding viewp(v), sendp(m), and deliverp(q, m) actions. Steps of wv rfifo involving other
actions correspond to empty steps of wv rfifo : spec.

Simulation Proof: In the most part the simulation proof is straightforward. Here, we present
only the interesting steps:

The fact that the corresponding step of wv rfifo : spec is enabled when wv rfifo takes a step
involving viewp(v) relies on p ∈ mbrshp view.set (Invariant B.1).

For steps involving deliverp(q, m), to deduce that the corresponding step of wv rfifo : spec is
enabled, we need to know that the message at index s[p].last dlvrd[q] + 1 at end-point p’s
s[p].msgs[q][s[p].current view] is the same message that end-point q has on its corresponding
queue at the same index. This property is implied by Invariant B.2.

Steps that involve receiving original and forwarded application messages from the network sim-
ulate empty steps of wv rfifo : spec. Among these steps the only critical ones are those that
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deliver a message from p to p because they may affect s[p].msgs[p][p] queue. Since end-points
do not send messages to themselves (co rfifo.sendp(set, tag = app msg, m) is preconditioned
by set = s[p].current view.set − {p}, and co rfifo.sendp(set, tag = fwd msg, r, v, m, i) is
preconditioned by p 6∈ set), such steps may not happen.

From Lemma B.1 and Theorem A.1 we conclude the following:

Theorem B.1 wv rfifo implements wv rfifo : spec in the sense of trace inclusion.

B.1.3 Auxiliary Invariants

We now state and prove a number of auxiliary invariants necessary for the proof of the key message
consistency invariant (Invariant B.2).

In any view, before an end-point sends a view msg to others (and hence before it sends any
application message to others) it tells co rfifo to maintain reliable connection to every member
of its current view. The following invariant captures this property.

Invariant B.3 (Connection Reliability) In every reachable state s of wv rfifo, for all Proc p,
if s[p].current view = s[p].view msg[p], then s[p].current view.set ⊆ s[p].reliable set.

Proof B.3: By induction on the length of the execution sequence; follows directly from the code.

After an end-point delivers a new view to its client, it sends a view msg to other members of
the view. The stream of view msgs that an end-point sends to others is monotonic because the
delivered views satisfy Local Monotonicity. The following invariant captures this property. It states
that the subsequence of messages in transit from end-point p to end-point q consisting solely of
the view msgs is monotonically increasing. It also relates the current view of an end-point p to the
view contained in the p’s latest view msg to q.

Invariant B.4 (Monotonicity of View Messages) Let s be a reachable state of wv rfifo.
Consider the subsequence of messages in s.channel[p][q] for which m.tag=view msg. We exam-
ine the sequence of views included in these view messages, and construct a new sequence seq of views
by pre-pending this view sequence with the element s[q].view msg[p]. For all Proc p, Proc q,
the following propositions are true:

1. The sequence seq is (strictly) monotonically increasing.

2. If s[p].current view 6= s[p].view msg[p], then s[p].current view is strictly greater then
the last (largest) element of seq.

3. If s[p].current view = s[p].view msg[p], and if q ∈ s[p].current view.set, then
s[p].current view is equal to the last (largest) element of seq.

Proof B.4: All three propositions are true in the initial state. We now consider steps involving
the critical actions:
co rfifo.lose(p, q): The first two propositions remain true because this action throws away only
the last message from the co rfifo s.channel[p][q].

The third proposition is vacuously true because q can not be in s[p].current view.set. If it
were, the co rfifo.lose(p, q) action would not be enabled because Invariant B.3 would imply
that s[p].current view.set is a subset of s[p].reliable set, which would then imply that q
∈ s.reliable set[p] (because s[p].reliable set = s.reliable set[p], as can be shown by
straightforward induction).
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viewp(v): The first proposition is unaffected. The second proposition follows from the inductive
hypothesis and the precondition v.id > s[p].current view.id. The third proposition is vac-
uously true because s[p].current view 6= s[p].view msg[p] as follows from the precondition
v.id > s[p].current view.id and the fact that, in every reachable state s, s[p].current view

≥ s[p].view msg[p] (can be proved by straightforward induction).

co rfifo.sendp(set, tag = view msg, v): The first proposition is true in the post-state because
of the inductive hypothesis of the second proposition. The second proposition is vacuously true in
the post-state. The third proposition is true in the post-state because of the effect of this action.

co rfifo.deliverp,q(tag = view msg, v): It is straightforward to see that all three propositions
remain true in the post-state.

History Tags

In order to reason about original application messages traveling on co rfifo channels we need
a way to reference, for each of these messages, the view in which it was originally sent and its
index in the fifo-ordered sequence of messages sent in that view. To this end, we augment each
original application message 〈 tag=app msg, m 〉 with two history tags, Hv and Hi, that are set
to current view and last sent + 1 respectively when co rfifo.sendp(set, tag = app msg, m)
occurs. (See Appendix A for details on history variables).

OUTPUT co rfifo.sendp(set, tag=app msg, m, Hv, Hi)

pre: ...

Hv = current view

Hi = last sent + 1

eff: ...

With the addition of these history tags, the interface between wv rfifo and co rfifo for han-
dling original application messages becomes co rfifo.sendp(set, tag = app msg, m, Hv, Hi) and
co rfifo.deliverp,q(tag = app msg, m, Hv, Hi).

The goal of the next three invariants is to show that, when end-point q receives an application
message m tagged with a history view Hv and a history index Hi, the current value of q’s view msg[p]

equals Hv and that of last rcvd[p] + 1 equals Hi.

Invariant B.5 (History View Consistency) In every reachable state s of wv rfifo, for all
Proc p, Proc q, the following is true: For all messages 〈 tag=app msg, m, Hv, Hi 〉 on the
co rfifo s.channel[p][q], view Hv equals either the view of the closest preceding view message
on s.channel[p][q] if there is such, or s[q].view msg[p] otherwise.

Proof B.5: By induction. The step involving a co rfifo.sendp(set, tag = app msg, m, Hv, Hi)
action follows directly from Invariant B.4 Part 3. The proposition is not affected by steps in-
volving co rfifo.lose(p, q) because those may only remove the last messages from the co rfifo

s.channel[p][q]. The other steps are straightforward.

The following invariant states that the value of s[p].last sent equals to the number of appli-
cation messages that p sent in its current view and that are either still in transit on the co rfifo

s.channel[p][q] or are already received by q.

40



Invariant B.6 In every reachable state s of wv rfifo, for all Proc p and for all Proc q ∈
s[p].current view.set − {p}, the following is true:

s[p].last sent =
∣

∣{msg ∈ s.channel[p][q] : msg.tag=app msg and msg.Hv = s[p].current view}
∣

∣+

+

{

s[q].last rcvd[p] if s[q].view msg[p] = s[p].current view

0 otherwise.

Proof : By induction. Consider steps involving the following critical actions:
co rfifo.lose(p, q): Assume that the last message on s.channel[p][q] is an application mes-
sage msg with msg.Hv = s[p].current view. If a step involving co rfifo.lose(p, q) action
could occur, then the proposition would be false. However, as we are going to argue now, q ∈
s.reliable set[p], so such a step cannot occur.

We can prove by straightforward induction that msg ∈ s.channel[p][q] implies s[p].view msg[p]

= s[p].current view. By invariant B.3, s[p].current view.set ⊆ s[p].reliable set. Since
q ∈ s[p].current view.set and s[p].reliable set = s.reliable set[p], it follows that q ∈
s.reliable set[p].

viewp(v): The proposition remains true for steps involving viewp(v) action because its effect sets

s′[p].last sent to 0 and because both summands of the right hand side of the equation also becomes
0. Indeed, the first summand becomes 0 because co rfifo channels never have messages tagged
with views that are larger then the current views of the messages’ senders (as can be shown by a
simple inductive proof); the second summand becomes 0 because Invariant B.4 Part 2 implies that
s′[q].view msg[p] 6= s′[p].current view.

co rfifo.deliverp,q(tag = view msg, v): The proposition remains true for steps involving this
action because s[q].view msg[p] 6= s[p].current view, as follows immediately from Invari-
ant B.4.

co rfifo.sendp(set, tag = app msg, m, Hv, Hi) and

co rfifo.deliverp,q(tag = app msg, m, Hv, Hi): For steps involving these actions the truth of the
proposition follows immediately from the effects of these actions, the inductive hypotheses, and
Invariant B.5.

The history index attached to an original application message m sent in a view Hv that is in
transit on a co rfifo channel to end-point q is equal to the number of such messages (including
m) that precede m on that channel, plus those (if any) that q has already received.

Invariant B.7 (History Indices Consistency) In every reachable state s of wv rfifo, for all
Proc p and Proc q, if 〈 tag=app msg, m, Hv, Hi 〉 = s.channel[p][q][j] for some index j,
then

Hi =
∣

∣{msg ∈ s.channel[p][q][ .. j] : msg.tag=app msg and msg.Hv = Hv}
∣

∣+

+

{

s[q].last rcvd[p] if s[q].view msg[p] = Hv

0 otherwise.

Proof B.7: In the initial state s.channel[p][q] is empty. For the inductive step, we consider
steps involving the following critical actions:
co rfifo.lose(p, q): The proposition remains true since co rfifo.lose(p, q) discards only the
last messages from the co rfifo s.channel[p][q].
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co rfifo.deliverp,q(tag = view msg, v): We have to consider the effects on two types of appli-
cation messages: those associated with view s[q].view msg[p], and those associated with view
Hv. Invariants B.4 Part 1 and B.5 imply that there are no application messages with msg.Hv =
s[q].view msg[p] on the co rfifo channel[p][q]. Thus, the proposition does not apply for
such messages. For those messages that have msg.Hv = Hv, the proposition remains true because
s′[q].last rcvd[p] is set to 0 as a result of this action.

co rfifo.deliverp,q(tag = app msg, m, Hv, Hi): Follows immediately from the effect of this ac-
tion, the inductive hypothesis, and Invariant B.5.

co rfifo.sendp(set, tag = app msg, m, Hv, Hi): The inductive step follows immediately from the
inductive hypothesis and Invariant B.6.

We now prove a generalization of Invariant B.2, which relates application messages either in
transit on the co rfifo channels or at end-points’ queues to their corresponding messages on the
senders’ queues.

Invariant B.8 (General Message Consistency) In every reachable state s of wv rfifo, for
all Proc p and Proc q, the following are true:

1. If 〈 tag=app msg, m, Hv, Hi 〉 ∈ s.channel[p][q], then s[p].msgs[p][Hv][Hi] = m.

2. If 〈 tag=fwd msg, r, m, v, i 〉 ∈ s.channel[p][q], then s[r].msgs[r][v][i] = m.

3. If s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

Proof B.8:

Basis: In the initial state all message queues are empty.

Inductive Step: The following are the critical actions:

sendp(m),

co rfifo.sendp(set, tag=app msg, m, Hv, Hi),

co rfifo.deliverq,p(tag=app msg, m, Hv, Hi),

co rfifo.sendp(set, tag=fwd msg, r, v, m, i),

co rfifo.deliverq,p(tag=fwd msg, r, v, m, i).

For steps involving co rfifo.deliverq,p(tag = app msg, m, Hv, Hi), we use Invariants B.5 and
Invariant B.7, which respectively imply that history view Hv equals s[p].view msg[q] and that
history index Hi equals s[p].last rcvd[q] + 1. Inductive steps involving each of the other actions
are straightforward.

Invariant B.2 is a private case of this invariant.

B.2 Virtual Synchrony

We now show that automaton vs rfifo+ts simulates vsrfifo : spec. We prove this by extending
the refinement above using the Proof Extension Theorem of [KKLS00] (see Appendix A for details).

B.2.1 Invariants

We prove that end-points that move together from one view to the next consider the same syn-
chronization messages and thus compute the same transitional sets and use the same cuts from the
members of the transitional set.
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Invariant B.9 In every reachable state s of vs rfifo+ts, for all Proc p, Proc q, and for every
StartChangeId cid,

if s[q].sync msg[p][cid] 6= ⊥, then s[q].sync msg[p][cid] = s[p].sync msg[p][cid].

Proof B.9: The proposition is true in the initial state s0 as all s0[q].sync msg[p][cid] = ⊥.
The inductive step involving a set cutp() action is trivial, for it only affects the case q = p.
The inductive step involving a co rfifo.deliverp,q(tag = sync msg, cid, v, cut) action follows
immediately from the following proposition:

〈tag=sync msg, cid, v, cut〉 ∈ s.channel[p][q]⇒ s[p].sync msg[p][cid] = 〈v, cut〉,

which can be proved by straightforward induction. Indeed, there are two critical actions:
co rfifo.sendp(set, tag = sync msg, cid, v, cut) – immediate from the code, and
co rfifo.deliverp,p(tag = sync msg, cid, v, cut) – may not occur because end-points do not
send synchronization messages to themselves.

Corollary B.1 End-points that move together from one view to the next, use the same sets of
synchronization messages to calculate transitional sets and message cuts.

Proof : Consider two end-points that deliver view v′ while in view v. At the time of delivering view
v′, each of these end-points has synchronization messages from all end-points in the intersection
of these views (second precondition), and these synchronization messages are the same as those at
their original end-points (Invariant B.9). Thus, the two end-points calculate the same transitional
sets, and use the same cuts from the members of this transitional set.

B.2.2 Simulation

We augment vs rfifo+ts with a global history variable H cut that keeps track of the cuts used for
moving between views.

For each View v, v ′: (Proc → Int)⊥ H cut[v][v ′], initially ⊥

OUTPUT viewp(v, T) modifies wv rfifo.viewp(v)

pre: ...

eff: ...

(∀ q ∈ Proc) H cut[current view][v](q) ← maxr∈T (sync msg[r][v.startId(r)].cut(q))

Variable H cut[v][v′] is updated every time any end-point is delivering view v′ while in view v.
Corollary B.1 implies that whenever this happens after H cut[v][v′] is set for the first time the value
of H cut[v][v′] remains unchanged.

We now extend the refinement mapping R() of Lemma B.1 with the new mapping Rn():

For each View v, View v′: Rn(s.H cut[v][v′]) = cut[v][v′].

We call the resulting mapping R′(). We exploit the Proof Extension Theorem of [KKLS00]
(see Appendix A) in order to prove that R′() is a refinement mapping from vs rfifo+ts to
vsrfifo : spec.

Lemma B.2 R′() defined above is a refinement mapping from vs rfifo+ts to vsrfifo : spec.
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Proof B.2:

Action Correspondence: The action correspondence is the same as that of wv rfifo, except
for the steps of the type (s, viewp(v

′, T), s′) which involve vs rfifo+ts delivering views to the
application clients. Among these steps, those that are the first to set variable H cut[v][v′] (when
s.H cut[v][v′] = ⊥) simulate two steps of vsrfifo : spec: set cut(v, v′, s′.H cut[v][v′]) followed
by viewp(v

′). The rest (when s.H cut[v][v′] 6= ⊥) simulate single steps that involve just viewp(v
′).

Simulation Proof:

First, we show that the refinement mapping of wv rfifo (presented in Lemma B.1) is still pre-
served after the modifications introduced by vsrfifo : spec to wv rfifo : spec. Automaton
vsrfifo : spec adds the following preconditions to viewp(v) actions of wv rfifo : spec:

cut[current view[p]][v] 6= ⊥
(∀ q) last dlvrd[q][p] = cut[current view[p]][v](q)

The first precondition holds since action set cut(current view[p], v, s′.H cut[current view[p]][v])
is simulated before action viewp(v). The second one follows immediately from the precondition on
vs rfifo+ts.viewp(v, T), and the extended mapping R′().

Second, we show that the mapping Rn() used to extend R() to R′() is also a refinement. For those
steps (s, viewp(v

′, T), s′) that are the first to set variable H cut[v][v′], the action correspondence im-
plies that the mapping is preserved. For those steps that are not the first to set variable H cut[v][v′],
the mapping is preserved because s′.H cut[v][v′] = s.H cut[v][v′], by Corollary B.1.

From Lemmas B.1 and B.2 and from Theorem A.1 we conclude the following:

Theorem B.2 vs rfifo+ts implements vsrfifo : spec in the sense of trace inclusion.

B.3 Transitional Set

We now show that vs rfifo+ts simulates ts : spec. The proofs makes use of prophecy variables.
A simulation proof that uses prophecy variables implies only finite trace inclusion, but this is
sufficient for proving safety properties, (see Appendix A).

B.3.1 Invariants

Invariant B.10 In every reachable state s of vs rfifo+ts, for all Proc p and StartChangeId

id,

if id > s[mbrshp].start change[p].id, then s[p].sync msg[p][id] = ⊥.

Proof B.10: The proposition is true in the initial state. It remains true for the inductive step
involving mbrshp.start changep(id, set) because s[mbrshp].start change[p].id is increased
as a result of this action. For the step involving set cutp(), the proposition remains true because
s[p].start change.id = s[mbrshp].start change[p].id, as implied by the following invariant,
which can be proved by straightforward induction:

In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change.id 6= ⊥, then
s[mbrshp].start change[p].id = s[p].start change.id. This invariant holds in the initial
state. Critical action mbrshp.start changep(id, set) makes it true; Critical action viewp(v, T)
makes it vacuously true.
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Finally, a step involving co rfifo.deliverq,p(tag = sync msg, cid, v, cut) does not affect the
proposition because the case q=p can not happen since end-points do not send synchronization
messages to themselves.

Lemma B.3 For any step (s,mbrshp.start changep(id, set), s
′) of vs rfifo+ts,

s[p].sync msg[p][start change.id] = ⊥.

Proof B.3: Follows immediately from the precondition id > s[mbrshp].start change[p].id

and Invariant B.10.

Invariant B.11 In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change

6= ⊥ and s[p].sync msg[p][s[p].start change.id] 6= ⊥, then

s[p].sync msg[p][s[p].start change.id].view = s[p].current view.

Proof B.11: The proposition is vacuously true in the initial state. For the inductive step, consider
the following critical actions:
mbrshp.start changep(id, set): The proposition remains vacuously true because

s′[p].sync msg[p][start change.id] = s[p].sync msg[p][start change.id] = ⊥ (Lemma B.3).

set cutp(): Follows immediately from the code.

co rfifo.deliverq,p(tag = sync msg, cid, v, cut): The proposition is unaffected because the case
q=p can not happen since end-points do not send synchronization messages to themselves.

viewp(v): The proposition becomes vacuously true because s′[p].start change = ⊥.

B.3.2 Simulation

We augment vs rfifo+ts with a prophecy variable P legal views(p)(id) for each Proc p, and
each StartChangeId id. At the time a start change id is delivered to an end-point p, this variable
is set to a predicted finite set of future views that are allowed to contain id as p’s start change id.

Prophecy Variable:

For each Proc p, StartChangeId id: SetOf(View) P legal views(p)(id), initially arbitrary

INTERNAL mbrshp.start changep(id, set) hidden parameter V, a finite set of views

pre: ...

choose V such that ∀ v ∈ V: (p ∈ v.set) ∧ (v.startId(p) = id)

eff: ...

P legal views(p)(id) ← V

OUTPUT viewp(v, T)

pre: ...

(∀ q ∈ v.set) v ∈ P legal views(q)(v.startId(q))

eff: ...

The vs rfifo+ts automaton augmented with the prophecy variable has the same traces as
those of the original automaton because, it is straightforward to show that the following conditions
required for adding a prophecy variable hold:
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1. Every state has at least one value for P legal views(p)(id).

2. No step is disabled in the backward direction by new preconditions involving P legal views.

3. Values assigned to state variables do not depend on the values of P legal views.

4. If s0 is an initial state of vs rfifo+ts, and 〈s0, P legal views〉 is a state of the automaton
vs rfifo+ts augmented with the prophecy variable, then this state is an initial state.

Invariant B.12 In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change

6= ⊥, then, for all View v ∈ P legal views(p)(s[p].start change.id), it follows that p ∈ v.set

and v.startId(p) = s[p].start change.id.

Proof B.12: By induction. The only critical actions are mbrshp.start changep(id, set) and
viewp(v, T). The proposition is true after the former, and is vacuously true after the latter.

Lemma B.4 The following function TS() is a refinement mapping from automaton vs rfifo+ts

to automaton ts : spec with respect to their reachable states.

TS(s ∈ ReachableStates(vs rfifo+ts)) = t ∈ ReachableStates(ts : spec), where

For each Proc p: t.current view[p] = s[p].current view

For each Proc p, View v: t.prev view[p][v] =

=

{

⊥ if v 6∈ s.P legal views[p][v.startId(p)]

s[p].sync msg[p][v.startId(p)].view otherwise

Proof B.4:

Action Correspondence: A step (s, set cutp(), s
′) of vs rfifo+ts simulates a sequence of

steps of ts : spec that involve one set prev viewp(v
′) for each v′ ∈ s.P legal views(p)(cid),

where cid = s[p].start change.id. A step (s, viewp(v, T), s
′) of vs rfifo+ts simulates (TS(s),

viewp(v, T), TS(s
′)) of ts : spec.

Simulation Proof: Consider the following critical actions:
mbrshp.start changep(id, set): A step involving this action simulates an empty step of ts : spec.

The simulation holds because s′[p].sync msg[p][id] = s[p].sync msg[p][id] = ⊥ (Lemma B.3).

set cutp(): simulates a sequence of steps of ts : spec that involve one set prev viewp(v
′) for each

v′ ∈ s.P legal views(p)(cid), where cid = s[p].start change.id. Each such step is enabled as
can be seen from the following derivation:

TS(s).prev view[p][v’] =

= s[p].sync msg[p][v’.startId(p)].view (Refinement mapping)

= s[p].sync msg[p][cid].view (Invariant B.12)

= ⊥. (Precondition of set cutp())

In the post-state, s’[p].sync msg[p][cid].view and all TS(s’).prev view[p][v’] are equal to
s[p].current view, thus the simulation step holds.

co rfifo.deliverq,p(tag = sync msg, cid, v, cut): A step involving this action does not affect
any of the variables of the refinement mapping and thus simulates an empty step of ts : spec. In
particular, note that the case of q=pmay not happen because end-points do not send synchronization
messages to themselves.
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viewp(v, T): A step involving this action simulates a step of ts : spec that involves viewp(v, T).

The key thing is to show that it is enabled (since it is straightforward to see that, if it is, the
refinement is preserved). Action viewp(v, T) of ts : spec has three preconditions. The fact that
they are enabled follows directly from the inductive hypothesis, the code, the refinement mapping,
and Invariants B.11 and B.12.

From Lemma B.4 and Theorem A.1 we conclude the following:

Theorem B.3 vs rfifo+ts implements ts : spec in the sense of finite trace inclusion.

B.4 Self Delivery

We now prove that the complete gcs end-point automaton simulates self : spec. In order to
prove this, we need to formalize our assumptions about the behavior of the clients of a gcs end-
point: we assume that a client eventually responds to every block request with a block ok response
and subsequently refrains from sending messages until a view is delivered to it. We formalize this
requirement by specifying an abstract client automaton in Figure B.4. In this automaton, each
locally controlled action is defined to be a task by itself, which means that it eventually happens if
it becomes enabled unless it is subsequently disabled by another action.

automaton clientp : spec

Signature:

Input: deliverp(q, m), Proc q, AppMsg m

viewp(v), View v

blockp()

Output: sendp(m), AppMsg m

block okp()

State: block status ∈ {unblocked, requested, blocked}, initially unblocked

Transitions:

INPUT blockp()

eff: block status ← requested

OUTPUT block okp()

pre: block status = requested

eff: block status ← blocked

OUTPUT sendp(m)

pre: block status 6= blocked

eff: none

INPUT deliverp(q, m)

eff: none

INPUT viewp(v)

eff: block status ← unblocked

Figure 16: Abstract specification of a blocking client at end-point p

B.4.1 Invariants

The following invariant states that gcs end-points and their clients have the same perception of
what their block status is.

Invariant B.13 In every reachable state s of gcs, for all Proc p,
s[gcsp].block status = s[clientp].block status.

Proof B.13: Trivial induction.
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Invariant B.14 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ⊥ and
s[p].block status 6= blocked, then s[p].sync msg[p][s[p].start change.id] = ⊥.

Proof B.14: The proposition is vacuously true in the initial state s0 because s0[p].start change

= ⊥. For the inductive step, consider the following critical actions:
mbrshp.start changep(id, set): The proposition remains true because of Lemma B.3.

blockp(): The proposition is true in the post-state if it is true in the pre-state.

block okp(): The proposition becomes vacuously true because s′[p].block status = blocked.

set cutp(): The proposition remains vacuously true because

s[p].block status = s′[p].block status = blocked.

co rfifo.deliverq,p(tag = sync msg, cid, v, cut): The proposition is unaffected because the case
q=p can not happen since end-points do not send synchronization messages to themselves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

Invariant B.15 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ⊥ and
s[p].sync msg[p][s[p].start change.id] 6= ⊥, then
s[p].sync msg[p][s[p].start change.id].cut[p] =
=LastIndexOf(s[p].msgs[p][s[p].current view]).

Proof B.15: The proposition is vacuously true in the initial state s0 because s0[p].start change

= ⊥. For the inductive step, consider the following critical actions:
sendp(m): The proposition is vacuously true because s′[p].sync msg[p][s[p].start change.id] = ⊥,

as follows from the precondition s[clientp].block status 6= blocked on this action at clientp,
and from Invariants B.13 and B.14.

mbrshp.start changep(id, set): The proposition is vacuously true because s′[p].sync msg[p][id]

= s[p].sync msg[p][id] which by Lemma B.3 is ⊥.

set cutp(): Follows from p ∈ current view.set (Invariant B.1) and

the precondition (∀q ∈ current view.set) cut(q) = LongestPrefixOf(msgs[q][v]).

co rfifo.deliverq,p(tag = sync msg, cid, v, cut): The proposition is unaffected because the case
q=p can not happen since, as can be proved by straightforward induction, end-points do not send
synchronization messages to themselves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

B.4.2 Simulation

Lemma B.2 in Section B.2 on page 43 establishes function R′() as a refinement mapping from
automaton vs rfifo+ts to automaton vsrfifo : spec. We now argue that R′() is also a refinement
mapping from automaton gcs to automaton self : spec.

Lemma B.5 Refinement mapping R′() from automaton vs rfifo+ts to automaton vsrfifo : spec

(given in Lemma B.2) is also a refinement mapping from automaton gcs to automaton self : spec,
under the assumption that clients at each end-point p satisfy the client : specp specification for
blocking clients.
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Proof : Automaton self : spec modifies automaton wv rfifo : spec by adding a precondition,
last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p]]), to the steps involving viewp()
actions. We have to show that this precondition is enabled when a step of gcs involving viewp(v, T)
attempts to simulate a step of self : spec involving viewp(v). Indeed:

s[p].last dlvrd[p] = maxr∈Tsync msg[r][v.startId(r)].cut[p] (a precondition)

= s[p].sync msg[p][v.startId(p)].cut[p] (Invariant B.9.)

= s[p].sync msg[p][s[p].start change.id].cut[p] (a precondition)

= LastIndexOf(s[p].msgs[p][s[p].current view]) (Invariant B.15).

Thus, R′(s).last dlvrd[p][p] = LastIndexOf(R′(s).msgs[p][R′(s).current view[p]]) and the precon-
dition is satisfied.

From Lemmas B.1, B.2, and B.5 and Theorem A.1 we conclude the following:

Theorem B.4 gcs implements self : spec in the sense of trace inclusion, under the assumption
that clients at each end-point p satisfy the client : specp specification for blocking clients.

As a child of vs rfifo+ts, gcs also satisfies all the safety property that vs rfifo+ts does, in
particular ts : spec. Thus, from Theorems B.3, and B.4 we conclude the following:

Theorem B.5 gcs implements wv rfifo : spec, vsrfifo : spec, ts : spec, and self : spec

in the sense of trace inclusion, under the assumption that clients at each end-point p satisfy the
client : specp specification for blocking clients.

C Correctness Proof: Liveness Property

In this section we prove that fair executions of our group communication service gcs satisfy Liveness
property 4.1 of Section 4.2. In order to show that a certain action eventually happens, we argue that
the preconditions on this action eventually become and stay satisfied, and thus the action eventually
occurs, by fairness of the execution. Subsection C.1 below presents a number of invariant that are
used in the proof of Liveness property 4.1 in subsection C.2.

C.1 Invariants

The following invariant captures the fact that, before an end-point computes who the members of
its transitional set are, it does not deliver to its client application messages other than those com-
mitted by its own synchronization message. Afterwards, the end-point delivers only the messages
committed to delivery by the members of the transitional set.

Invariant C.1 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ⊥ and
s[p].sync msg[p][s[p].start change.id] 6= ⊥, then for all Proc q ∈ s[p].current view.set,

1. If s[p].start change.id 6= s[p].mbrshp view.startId(p), then
s[p].last dlvrd[q] ≤ s[p].sync msg[p][s[p].start change.id].cut[q].

2. Otherwise, let v = s[p].current view, v′ = s[p].mbrshp view, and let
T = {q ∈ v′.set ∩ v.set | sync msg[q][v′.startId(q)].view = v}, then
s[p].last dlvrd[q] ≤ maxr∈T s[p].sync msg[r][v′.startId(r)].cut[q].
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Proof C.1: The proposition is true in the initial state s0, since s0[p].start change = ⊥. For the
inductive step, consider the following critical actions:
deliverp(q, m): The proposition remains true because the precondition on this action mimics the
statement of this proposition.

mbrshp.start changep(id, set): The proposition is vacuously true because s′[p].sync msg[p][id]

= s[p].sync msg[p][id], which by Lemma B.3 is equal to ⊥.

mbrshp.viewp(v): In the post-state, s[p].start change.id = s[p].mbrshp view.startId(p), so we
must consider the second proposition. Its truth follows from the inductive hypothesis and the fact
that p ∈ T, as implied by Invariant B.1.

set cutp(): The proposition holds since index s[p].last dlvrd[q] is bounded by

LongestPrefixOf(s[p].msgs[q][s[p].current view]) in every reachable state of the system for any
Proc q ∈ s[p].current view.set (this fact can be straightforwardly proved by induction), and from
the precondition, (∀q ∈ s[p].current view.set)
cut(q) = LongestPrefixOf(s[p].msgs[q][s[p].current view]).

co rfifo.deliverq,p(tag = sync msg, cid, v, cut): The proposition is unaffected because the case
q = p is impossible since end-points do not send cuts to themselves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

The following Invariant states that if an end-point p has end-point q’s cut committing certain
messages sent by end-point r in view v, then end-point q has those messages buffered.

Invariant C.2 In every reachable state s of gcs, for all Proc p, Proc q, Proc r, and
StartChangeId cid, if s[p].sync msg[q][cid] 6= ⊥, then, for every integer i between 1

and s[p].sync msg[q][cid].cut[r], s[q].msgs[r][s[p].sync msg[q][cid].view][i] 6= ⊥.

Proof C.2: Let us first argue that an end-point’s cut commits to deliver only those messages
that it has on its message queue. Formally, this means that, in every reachable state s of gcs,
for all Proc q, if s[q].start change 6= ⊥ and s[q].sync msg[q][s[q].start change.id] 6= ⊥, then,
for all Proc r and all Int i such that 1 ≤ i ≤ s[q].sync msg[q][s[q].start change.id].cut[r],
s[q].msgs[r][s[q].current view][i] 6= ⊥. This proposition can be straightforwardly proved by in-
duction: The only interesting action is set cutq(). The truth of the proposition after this ac-
tion is taken follows immediately from the precondition: (∀r ∈ s[q].current view.set) cut(r) =
LongestPrefixOf(s[q].msgs[r][s[q].current view]). Given this property, the truth of the invariant
follows from Invariant B.9.

Invariant C.3 In every reachable state s of gcs, for all Proc p and Proc q, if q ∈ s[p].sync set

then (a) q ∈ s[p].start change.set and (b) q ∈ s[p].reliable set.

Proof C.3: The proposition is vacuously true in the initial state, where s[p].sync set is empty.
The inductive steps for the critical actions mbrshp.start changep(id, set), gcs.viewp(v, T), and
co rfifo.sendp(set, tag = sync msg, cid, v, cut) follow immediately from their code in Figure 12.
The inductive step for the action co rfifo.reliable setp(set) follows straightforwardly from
the precondition-effect code in Figures 10 and 12. The inductive step for the critical action
gcs.set cutp() follows from the code, which sets sync set to {p}, and from the fact that p is
always in its own reliable set and start change.set (provided start change 6= ⊥), which can
be straightforwardly proved by induction.
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C.2 Liveness Proof

The following lemma states that, in any execution of gcs, every gcs.viewp event is preceded with
the right mbrshp.viewp event, which itself is preceded with the right mbrshp.start changep event.

Lemma C.1 In every execution sequence α of gcs, the following are true:

1. For every gcs.viewp(v, T) event, there is a preceding mbrshp.viewp(v) event. Moreover, nei-
ther a mbrshp.start changep nor a mbrshp.viewp event occurs between mbrshp.viewp(v)
and gcs.viewp(v, T).

2. For every mbrshp.viewp(v) event, there is a preceding mbrshp.start changep(id, set) event
with id = v.startId(p) and set ⊇ v.set, such that neither a mbrshp.start changep,
a mbrshp.viewp, nor a gcs.viewp event occurs in α between mbrshp.start changep(id, set)
and mbrshp.viewp(v).

Proof C.1:

1. Assume that gcs.viewp(v, T) occurs in α. Two of the preconditions on gcs.viewp(v, T) are
v = p.mbrshp view and v.startId(p) = p.start change.id, which can only become satisfied
as a result of a preceding mbrshp.viewp(v) event, followed by no mbrshp.start changep
and mbrshp.viewp events.

2. Assume that mbrshp.viewp(v) occurs in α. Then a mbrshp.start changep(id, set) event
with id = v.startId(p) and set ⊇ v.set must precede mbrshp.viewp(v) because, by the
mbrshp specification, it is the only possible event that can cause the preconditions for
mbrshp.viewp(v) to become true, and since these preconditions do not hold in the ini-
tial state of mbrshp. There maybe several mbrshp.start changep(id, set) events with
the same id and different set arguments. After the last such event, an occurrence of a
different mbrshp.start changep event or a mbrshp.viewp event would violate one of the
preconditions of mbrshp.viewp(v); thus, such events may not happen. As a corollary from
this and part 1 of this Lemma, a gcs.viewp(v

′, T′) event cannot occur between the last
mbrshp.start changep(id, set) and mbrshp.viewp(v).

Lemma C.2 (Liveness) Let v be a view. Let α be a fair execution of a group communication
service gcs in which, for every p ∈ v.set, the action mbrshp.viewp(v) occurs and is followed by
neither mbrshp.viewp nor mbrshp.start changep actions. Then at each end-point p ∈ v.set,
gcs.viewp(v, T), with some T, eventually occurs. Furthermore, for every gcs.sendp(m) that occurs
after gcs.viewp(v, T) and for every q ∈ v.set, gcs.deliverq(p, m) also occurs.

Proof C.2:
Part I We first prove that gcs.viewp(v, T) eventually occurs. Our task is to show that, for each
p ∈ v.set and some transitional set T, action gcs.viewp(v, T) becomes enabled at some point after
p receives mbrshp.viewp(v) and that it stays enabled forever thereafter unless it is executed. The
fact that α is a fair execution of gcs then implies that gcs.viewp(v, T) is in fact executed.

In order for gcs.viewp(v, T) to become enabled, its preconditions (see Figures 10 and 12) must
eventually become and stay satisfied until gcs.viewp(v, T) is executed. We now consider each of
these preconditions:
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v = p.mbrshp view 6= current view: This precondition ensures that view v that is attempted to
be delivered to the client at p is the latest view produced by mbrshp and has not yet been delivered
to the client. The precondition becomes satisfied as a result of mbrshp.viewp(v). Since in any
reachable state of the system mbrshp.mbrshp view = p.mbrshp view ≥ p.current view (Local
Monotonicity), this precondition remains satisfied forever, unless gcs.viewp(v, T) is executed. This
is because, by our assumption, α does not contain any subsequent mbrshp.viewp(v

′), and hence,
by contrapositive of part 1 of Lemma C.1, it also does not contain any subsequent gcs.viewp(v

′, T′)
with v′ 6= v.

v.startId(p) = p.start change.id: This precondition prevents delivery of obsolete views: it en-
sures that the mbrshp service has not issued a new start change notification since the time it pro-
duced view v. If this condition is not already satisfied before the last mbrshp.start changep(id, set)
event with id = v.startId(p) and set ⊇ v.set, then it becomes satisfied as a result of this event,
which, by part 2 of Lemma C.1, must precede mbrshp.viewp(v) in α.

This condition stays satisfied from the time of the last mbrshp.start changep(id, set) at least until
gcs.viewp(v, T) occurs because the only two types of actions, mbrshp.start changep(id

′, set′) and
gcs.viewp(v

′, T′) with v′ 6= v that may affect the value of p.start change cannot occur in α after
mbrshp.start changep(id, set), as implied by the assumption on this lemma and Lemma C.1.

v.set− sync set = { }: This precondition ensures that prior to delivering view v, end-point p

sends out its synchronization message to every member of v.

If this precondition is satisfied any time after the last mbrshp.start changep(id, set) event with
id = v.startId(p) and set ⊇ v.set occurs, then it stays satisfied from then on until gcs.viewp(v, T)
is executed. If it is not already satisfied right after the mbrshp.start changep action, it becomes
satisfied as a result of co rfifo.sendp(set, tag = sync msg, v.startId(p), v, cut) with set =
p.start change.set − p.sync set. This co rfifo.sendp action must eventually occurs in α be-
cause its two preconditions, (p.sync msg[p][id] 6= ⊥) and (set ⊆ reliable set), eventually become
satisfied, for the following reasons:

• If the first precondition is satisfied any time after the last mbrshp.start changep(id, set)
event with id = v.startId(p) and set ⊇ v.set occurs, then it stays satisfied from that
point on. If it is not already satisfied right after the mbrshp.start changep action, it be-
comes satisfied as a result of set cutp(). In order for set cutp() to occur, its precondition,
block status = blocked, has to becomes satisfied (see Figure 13). This occurs as a result of
a block okq() input from the client at q. If block status equals blocked at anytime after
mbrshp.start changeq(v.startId(q), set), then it remains such until gcs.viewq(v) happens
because blockq() is not enabled after that, and because gcs.viewq(v) is the only possible
gcs view event (by the contrapositive of part 2 of Lemma C.1). To see that block status

does in fact become blocked consider the three possible values of block status right after
mbrshp.start changeq(v.startId(q), set) occurs:

1. block status = blocked: We are done.

2. block status = requested: By Invariant B.13, client.block okq() is enabled. It stays
enabled until it is executed because the actions, blockq() and gcs.viewq(), which would
disable it, cannot occur. When it is executed, the precondition becomes satisfied.

3. block status = unblocked: When mbrshp.start changeq(v.startId(q), set) occurs,
blockq() becomes and stays enabled until it is executed. After that, block status be-
comes requested and the same reasoning as in the previous case applies.
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• The second precondition, set ⊆ reliable set, holds after co rfifo.reliableq(set) with
set = current view.set ∪ start change.set occurs. This action eventually occurs because
it becomes enabled when q receives mbrshp.start changeq(v.startId(q), set). Note that
although co rfifo.reliableq(set) may subsequently occur multiple times, reliable set

remains unchanged until gcs.viewq(v) occurs, since q’s current view and start change re-
main unchanged.

When co rfifo.sendp(set, tag = sync msg, v.startId(p), v, cut) occurs, p.sync set is set
to p.start change.set. Since v.set is a subset of p.start change.set, this implies that v.set
− p.sync set eventually becomes and stays { }.

(∀q ∈ v.set ∩ p.current view.set) p.sync msg[q][v.startId(q)] 6= ⊥: This precondition ensures
that p has received the right synchronization message from every q in v.set ∩ p.current view.set.
The argument above implies that q eventually sends to p a synchronization message tagged with
v.startId(q) and, at the same time, adds p to q.sync set, where p remains forever, unless
gcs.viewp(v, T) with some T occurs. In order to conclude that co rfifo eventually delivers this
synchronization message to p, we argue that, from the time the last synchronization message from
q to p is placed on co rfifo.channel[q][p] and at least until it is delivered to p, end-point p is
in both co rfifo.reliable set[q] and co rfifo.live set[q]. The former implies that co rfifo

does not lose any messages (in particular, this synchronization message) from q to p. In conjunction
with α being a fair execution, the latter implies that co rfifo eventually delivers every message
(in particular, this synchronization message) on the channel from q to p.

• From the time q sends to p the last synchronization message tagged with v.startId(q) until
gcs.viewq(v, T) occurs, p is included in q.sync set. Invariant C.3 implies that in that period
p is included in co rfifo.reliable set[q]. After gcs.viewq(v, T) occurs, p is still included
in co rfifo.reliable set[q], since p ∈ v.set.

• End-point p becomes a member of co rfifo.live set[q] at the time of mbrshp.viewq(v),
because mbrshp.viewq(v) is linked to co rfifo.live setq(v.set) and because p ∈ v.set.
This property remains true afterward because α does not contain any subsequent mbrshp

events at end-point q.

Thus, end-point p eventually receives the right synchronization messages from every q in
v.set ∩ p.current view.set.

last sent ≥ sync msg[p][v.startId(p)].cut(p): This precondition ensures that before delivering
view v, p sends to others all of its own messages indicated in its own cut. This precondition eventu-
ally becomes satisfied because sending of of application messages via co rfifo.sendp, which incre-
ments p.last sent, is enabled at least until p.last sent reaches sync msg[p][v.startId(p)].cut(p),
as implied by Invariant C.2.

(∀q ∈ current view.set) p.last dlvrd[q] = maxr∈Tp.sync msg[r][v.startId(r)].cut[q]: This pre-
condition verifies that p has delivered to its client exactly the application messages that it needs to
deliver in order for Virtually-Synchronous Delivery to be satisfied. By Invariant C.1, p.last dlvrd[q]
never exceeds maxr∈T {p.sync msg[r][v.startId(r)].cut[q]} for any q. It is therefore left to show
that p.last dlvrd[q] does not remain smaller than maxr∈T.

We have shown above that all the other preconditions for delivering view v by p eventually be-
come and remain satisfied until the view is delivered. Consider the part of α after all of these
preconditions hold. Let q be an end-point in current view.set such that p.last dlvrd[q] <
maxr∈Tp.sync msg[r][v.startId(r)].cut[q]. Let i = p.last dlvrd[q] + 1. We now argue that
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p.last dlvrd[q] eventually becomes i, that is, that p eventually delivers the next message from
q. Applying this argument inductively, implies that p.last dlvrd[q] eventually reaches maxr∈T
{p.sync msg[r][v.startId(r)].cut[q]}.

All the preconditions (except perhaps p.msgs[q][p.current view][i] 6= ⊥) for delivering the i’th
message from q are eventually satisfied because they are the same as the preconditions for p de-
livering view v, which we have shown to be satisfied. Thus, if the i’th message is already on
p.msgs[q][p.current view][i], then delivery of this message eventually occurs by fairness, resulting
in p.last dlvrd[q] being incremented; in this case, we are done.

Therefore, consider the case when p lacks the i’th message, m, from q. There are two possibilities:

1. If end-point q is in p’s transitional set T for view v, then we know the following:

• q’s view prior to installing view v is the same as p’s current view (by definition of T and
Invariant B.11).

• q’s reliable set contains p starting before q sent any messages in that view and contin-
uing for the rest of α.

• Invariant C.2 implies that q has this message and all the messages that precede it in
q.msgs[q][p.current view].

• End-point q is enabled to send these messages to p in fifo order. The only event that
could prevent q from sending these messages is gcs.viewq(v), as it would change the
value of q.current view. However, as we argued above, q must send all of the messages it
committed in its cut before delivering view gcs.viewq(v). Self Delivery (Invariant B.15)
implies that q’s cut includes all of the messages q sent while in v. Thus, q would eventually
send m to p.

• The fact that the connection between q and p is live at least after mbrshp.viewq(v) occurs
implies that co rfifo eventually delivers this message to p.

2. Otherwise, if end-point q is not in p’s transitional set T for view v, we know by the fact that i
is ≤ maxr∈T {p.sync msg[r][v.startId(r)].cut[q]}, that there exist some end-points in T whose
synchronization messages commit to deliver the i’th message from q in view p.current view.
Let r be an end-point with a smallest identifier among these end-points. Here is what we
know:

• Invariant C.2 implies that r has this message on its r.msgs[r][p.current view] queue.

• r’s reliable set contains p starting before r sent any messages in that view and contin-
uing for the rest of α.

• Upon examination of each of the ForwardingStrategyPredicates in Section 5.2.1, we
see that the preconditions for r forwarding the i’th message of q to a set including p

eventually become and stay satisfied.

• Since in both forwarding strategies there is only a finite number of messages from q sent
in this view that can be forwarded, fairness implies that the i’s message is eventually
forwarded to p.

• The fact that the connection between r and p is live at least after mbrshp.viewq(v) occurs
implies that co rfifo eventually delivers this message to p.

Therefore, the i’th message from q is eventually delivered to end-point p, and since, as a result
of this, the preconditions on delivering this message to the client at p are satisfied, this deliv-
ery eventually occurs, and p.last dlvrd[q] is incremented. Applying this argument inductively,
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we conclude that p.last dlvrd[q] eventually reaches maxr∈T p.sync msg[r][v.startId(r)].cut[q] for
every q in current view.set.

We have shown that each precondition on p delivering gcs.viewp(v, T) eventually becomes and
stays satisfied. Fairness implies that gcs.viewp(v, T) eventually occurs.

Part II We now consider the second part of the lemma. The following argument proves that, after
gcs.viewp(v, T) occurs at p, for every subsequent gcs.sendp(m) event at p, there is a corresponding
gcs.deliverq(p, m) event that occurs at every q ∈ v.set:

1. For the rest of α, after gcs.viewp(v, T) occurs, co rfifo.live set[p] is equal to v.set.

This is true because co rfifo.live set[p] is set to v.set when mbrshp.viewp(v) occurs
and remains unchanged thereafter because of the assumption that α does not contain any
subsequent mbrshp events at end-point p.

2. After gcs.viewp(v, T) occurs and before any co rfifo.sendp event involving a ViewMsg or
an AppMsg occurs, p eventually executes co rfifo.reliablep(v.set). Moreover, after that
and forever thereafter, both p.reliable set and co rfifo.reliable set[p] equal v.set.

This is true because gcs.viewp(v, T) sets p.start change to ⊥ and p.current view.set to
v.set, thus enabling co rfifo.reliablep(v.set). This action eventually happens because α
is a fair execution and because for the rest of α there are no subsequent mbrshp.start changep
and gcs.viewp(v

′, T′) events. Moreover, since p.start change and p.current view.set re-
main unchanged because of the latter reason, whenever co rfifo.reliablep occurs subse-
quently, both p.reliable set and co rfifo.reliable set[p] remain equal to v.set.

From the above argument and from fairness, it follows that any kind of message that end-point
p sends subsequently to q via co rfifo will eventually reach end-point q.

3. After co rfifo.reliablep(v.set) occurs, co rfifo.sendp(v.set− {p}, tag = view msg, v)
eventually occurs, as follows from the code in Figure 12. By the reasoning above, co rfifo

delivers this ViewMsg to every end-point q ∈ v.set − {p}, resulting in q.view msg[p] being
set to v for the remainder of α (Invariant B.4).

4. When gcs.sendp(m) event occurs at p, m is appended to p.msgs[p][v].

5. After sending the ViewMsg, for the rest of α, if p.msgs[p][v][p.last sent+ 1] contains a
message (say m′), action co rfifo.sendp(v.set− {p}, tag = app msg, m′) is enabled, and
hence eventually occurs by fairness. Since p.last sent is incremented after each applica-
tion message is sent using co rfifo.sendp, any message on p.msgs[p][v] is eventually sent
to v.set − {p}. As was argued above, these messages are eventually delivered to every
end-point q ∈ v.set− {p}. Since q.view msg[p] = v at the time q receives m′, q puts m′

in q.msgs[p][v][q.last rcvd+ 1] (Invariant B.5) and increments q.last rcvd. Therefore, all
messages that end-point p sends in view v are eventually inserted with no gaps in the end-point
q’s queue, q.msgs[p][v], for every q ∈ v.set − {p}.

6. Once gcs.viewq(v, T) happens (by Part I of the lemma), end-point q ∈ v.set is continuously
enabled to deliver a message, m′, from q.msgs[p][v][q.last dlvrd+ 1]; by fairness, such de-
livery eventually occurs, resulting in q.last dlvrd[p] being incremented. Therefore, every
messages on q.msgs[p][v] is eventually delivered to client at p, including the case of q = p.

It follows from this argument that every gcs.sendp(m) event at p that occurs after gcs.viewp(v, T)
in α is eventually followed by a gcs.deliverq(p, m) at every q ∈ v.set.

55


