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Abstract

Supervised learning from multiple labeling
sources is an increasingly important problem
in machine learning and data mining. This
paper develops a probabilistic approach to
this problem when annotators may be unre-
liable (labels are noisy), but also their exper-
tise varies depending on the data they ob-
serve (annotators may have knowledge about
different parts of the input space). That is,
an annotator may not be consistently accu-
rate (or inaccurate) across the task domain.
The presented approach produces classifica-
tion and annotator models that allow us to
provide estimates of the true labels and an-
notator variable expertise. We provide an
analysis of the proposed model under vari-
ous scenarios and show experimentally that
annotator expertise can indeed vary in real
tasks and that the presented approach pro-
vides clear advantages over previously intro-
duced multi-annotator methods, which only
consider general annotator characteristics.

1 Introduction

The ease with which data can be shared, organized,
and processed by a large number of entities using stan-
dard communication infrastructures (such as the Inter-
net) is creating a number of interesting problems and
opportunities for machine learning and data modeling
in general. One of the main ramifications is that the
knowledge from these different entities, in particular
people, can now be easily collected and compounded
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in a distributed fashion. There are numerous examples
of this effect, the classical example being open source
(e.g., Linux), and more recently Wikipedia. However,
combining the knowledge from different sources is far
from being a solved problem. In this paper, we con-
centrate on efficiently utilizing the type of knowledge
provided by different annotators (labelers).

Supervised learning traditionally relies on a domain
expert playing the role of a teacher providing the neces-
sary supervision. The most common case is that of an
expert providing annotations that serve as data point
labels in classification problems. The above crowd-

sourcing effect (Howe, 2008) motivates a natural shift
from the traditional reliance on a single domain expert
to several domain experts or even many more non-
experts who contribute to a specific (learning) task.
In supervised learning, more labeled data for training
normally translate, under some assumptions, to higher
test time accuracy. What do more labelers/annotators
translate to and how can their knowledge be efficiently
utilized? This paper tackles these problems in the con-
text of learning from multiple annotators.

The availability of more annotators is not the only mo-
tivation for learning from multiple labelers. In many
application areas, there are problems for which ob-
taining the ground-truth labels is simply impossible
or very costly. For example, in cancer detection from
medical images (e.g., computer tomography, magnetic
resonance imaging), an image region or volume associ-
ated to a body tissue can often be tested for the actual
presence of cancer only by performing a biopsy; this
is clearly a costly, risky procedure. In addition, many
other annotation tasks are subjective by nature and
thus there is no clear correct label. Almost any sub-
jective opinion task falls in this category, such as the
task of sentiment classification, product ratings from
text, or lesion severity judgment from medical images.

In multi-labeler problems, building a classifier in the
traditional single expert manner, without regard for
the label source (annotator) properties may not be ef-
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fective in general. The reasons for this include: some
annotators may be more reliable than others, some
may be malicious, some may be correlated with oth-
ers, there may exist different prior knowledge about
annotators, and in particular annotator effectiveness
may vary depending on the data instance presented.
We believe this last element is of great importance and
has not been clearly considered in previous approaches.

1.1 Related Work

The problem of modeling data that has been processed
by multiple annotators has been receiving increasing
attention. However, similar problems have been stud-
ied for quite some time. For example, in clinical statis-
tics, Dawid and Skeene (1979) studied the problem
of error rate estimation given repeated but conflict-
ing responses (labels) of patients to various medical
questions. In this work, a point estimate of individual
error rates was identified using latent variable models.
Later, Spiegelhalter and Stovin (1983) used this model
to quantify residual uncertainty of the label value.

We can divide the related work in multi-labeler clas-
sification in various sub-areas. One area of work con-
sists on the estimation of error rates for the labelers
independently from building a classifier. Both early
works above (Dawid and Skeene, 1979; Spiegelhalter
and Stovin, 1983) and others such as Hui and Zhou
(1998), fall in this area, while more recently Snow et al.
(2008) showed that employing multiple non-expert an-
notators can be as effective as employing one expert
annotator when building a classifier.

Very recently, the interest has shifted towards more
directly building classifiers from multi-labeler data. In
this area, we can further subdivide the approaches
into those attempting to use repeated labeling or prior
knowledge about labeler similarities. Repeated label-
ing (Smyth et al., 1995; Donmez and Carbonell, 2008;
Sheng et al., 2008) relies on the identification of what
labels should be reacquired in order to improve classifi-
cation performance or data quality. This form of active
learning can be well suited when we can control assign-
ments of data points to labelers. However, Dekel and
Shamir (2009) provided arguments indicating that this
approach is wasteful and negatively impacts the rela-
tive size of the training set. Approaches based on prior
knowledge rely on the existence of some way to mea-
sure labeler relationships. These include the work of
Crammer et al. (2008), where labeler similarities and
their labels are used to identify what samples should be
used to estimate classification models for each labeler,
and Blitzer et al. (2007) where the multiple labels are
obtained by labeling data drawn from multiple under-
lying domains (in the context of domain adaptation).

Application areas for multi-labeler learning vary
widely. These include natural language process-
ing (Snow et al., 2008), computer-aided diagno-
sis/radiology (Raykar et al., 2009; Spiegelhalter and
Stovin, 1983), clinical data integration (Dawid and
Skeene, 1979), and computer vision (Sorokin and
Forsyth, 2008).

This paper differs from the related work in various
axes. Unlike Dawid and Skeene (1979) and Spiegel-
halter and Stovin (1983), we produce labeler error es-
timates and simultaneously build a classifier in a com-
bined process. In contrast to Smyth et al. (1995) and
Sheng et al. (2008), we do not assume that labels can
be reacquired (the active learning setting). Also, we do
not assume the existence of any prior information re-
lating the different labelers or the domains from where
the data is drawn, such as Crammer et al. (2008) or
Blitzer et al. (2007). Like the approach presented by
Raykar et al. (2009) and to some extent that by Jin
and Ghahramani (2003), this paper estimates the error
rates and the classifier simultaneously; however, unlike
both approaches this paper models the error rates of
the labelers as dependent on the data points.

A distinguishing factor in this paper is that, unlike
previous approaches, it is not assumed that expert re-
liability or error rate is consistent across all the input
data even for one task. This is a flawed assumption
in many cases since annotator knowledge can fluctuate
considerably depending on the input instance. In this
paper, the classifiers are built so that they take into
account that some labelers are better at labeling some
types of points (compared with other data points).

2 Formulation

Given N data points {x1, . . . ,xN}, where xi ∈ R
D,

each labeled by at most T labelers/annotators. We
denote the label for the i-th data point given by

annotator t as y
(t)
i ∈ Y. The labels from individ-

ual labelers may not be correct. Let us denote the
true (unknown) label for the i-th data point to be
zi ∈ Z (normally Y ≡ Z). For compactness, we set
the matrices X = [xT

1 ; . . . ;xT
N ] ∈ R

N×D and Y =

[y
(1)
1 , . . . , y

(T )
1 ; . . . ; y

(1)
N , . . . , y

(T )
N ] ∈ R

N×T , where (·)T

stands for matrix transpose. Given training data, X
and Y , our goals are: to produce an estimate for the
ground-truth Z = [z1, ..., zN ]T , a classifier for predict-
ing the label z for new instances x, and a model of the
annotators’ expertise as a function of the input x.

2.1 Probabilistic Model

Let us define the random variables y(t) over the space
of labels Y, provided by labeler t, for t = {1, ..., T}.
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Similarly, let us define the random variables x ∈ X
and z ∈ Z to represent input data points (observed)
and unknown output respectively. We build our clas-
sifier by assuming a probabilistic model over random
variables x, y, and z with a graphical model as shown
in Figure 1. The joint conditional distribution can be
expressed as:

p(Y, Z|X) =
∏

i

p(zi|xi)
∏

t

p(y
(t)
i |xi, zi).

In this model, the annotation provided by labeler t
depends both on the unknown true label z but also on
the (normally) observed input x. In other words, we
do not assume that annotators are equally good (or
bad) at labeling all the data, but it depends on what
input they observe. As can be seen from the model, we
make the assumption that the labelers t = {1, . . . , T}
are independent given the input and the true label. In
order to further specify our model we need to define
the form of the conditional probabilities. In this paper,
we explored several variations. Let us consider each
conditional distribution in turn.

p(y
(t)
i |xi, zi): Our simplest model assumes that

each annotator t provides a noisy version of

the true label z, p(y
(t)
i |xi, zi) = p(y

(t)
i |zi) =

(1 − η(t))
|y

(t)
i

−zi|
η(t)1−|y

(t)
i

−zi|
, with Z ≡ Y = {0, 1}.

In this Bernoulli model, the parameter η(t) is the prob-
ability of labeler t to be correct (i.e., yi = zi). Another
option we consider is the Gaussian model, where ev-
ery labeler is expected to provide a distorted version

of the true label z, p(y
(t)
i |zi) = N (y

(t)
i ; zi, σ

(t)). This
Gaussian distribution associates a lower variance σ(t)

to more consistently correct labelers compared to in-
consistent labelers. Note that we employ a distribu-
tion for continuous random variables, which is more
natural for regression rather than classification models
(for y continuous). In these models, where we assume

that p(y
(t)
i |xi, zi) = p(y

(t)
i |zi), the additional indepen-

dence assumptions mean that the graphical model is
Markov-equivalent to the model x → z → {y(t)}. This
is comparable to the models proposed by Raykar et al.
(2009) and Jin and Ghahramani (2003), albeit with
different parameterizations.

We use these models as a base for considering more
general cases, where p(y|x, z) 6= p(y|z). In our ex-
perience with real applications, we noticed that the
quality of labels by annotators is not only a function
of their expert level, but also of the type of data pre-
sented to them as well. For example, radiologists will
have difficulty providing quality labels on blurry im-
ages. Additionally, some labelers will be more affected
by blurry images than others and moreover some label-
ers are more knowledgeable for some input types than

x zy

Figure 1: Graphical Model for x, y, and z.

others. In general, annotators will exhibit varying lev-
els of expertise in different types of data. We believe
this is particularly true for non-experts annotators.

In order to model this input dependent variability, we
propose to replace our basic Gaussian model with the
following:

p(y
(t)
i |xi, zi) = N (y

(t)
i ; zi, σt(xi)), (1)

where the variance now depends on the input x and is
also specific to each annotator t.

Since the value of y(t) can only take the binary values
0/1, instead of allowing σt(x) to be any value, we con-
strain it to be in the range between (0, 1] by setting
σt(x) as a logistic function of xi and t:

σt(x) = (1 + exp(−wT
t xi − γt))

−1 (2)

To make sure that σt(x) does not go to zero, we added
a small constant in our experiments. Similarly, we
modify our Bernoulli model by setting ηt(x) to be also
now a function of both xi and t:

p(y
(t)
i |xi, zi) = (1 − ηt(x))

|y
(t)
i

−zi|ηt(x)
1−|y

(t)
i

−zi| (3)

And, we also set ηt(x) to be a logistic function:

ηt(x) = (1 + exp(−wT
t xi − γt))

−1 (4)

p(zi|xi): One can set p(zi|xi) to be any distribution
or in our case classifier g : X → Z, which maps x
to z. In this paper we do not intend to demonstrate
the advantages of different choices for p(zi|xi). For
simplicity, we set p(zi|xi) to be the logistic regression
model:

p(zi = 1|xi) = (1 + exp (−αTxi − β))−1. (5)

In the above case, the classification problem is as-
sumed binary, but one can easily extend this to multi-
ple classes, e.g., using multiple logistic regression.

2.2 Maximum Likelihood Estimation

Given our model, we estimate the set of all parameters,
θ = {α, β, {wt}, {γt}}, by maximizing the likelihood
function. Equivalently

argmax
θ

∏
t

∏
i

p(y
(t)
i |xi; θ), (6)
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which becomes the following problem after taking the
logarithm and including the ground-truth variable z:

= arg max
θ

∑
t

∑
i

log
∑
zi

p(y
(t)
i , zi|xi; θ) (7)

Since we have missing variables z, a standard approach
to solve our maximum likelihood problem is by em-
ploying the expectation maximization (EM) (Demp-
ster et al., 1977) algorithm. We provide the specifics
of our problem of interest below.

2.3 Algorithm

E-step: Compute p̃(zi) , p(zi|xi, yi).

p̃(zi) ∝ p(zi, yi|xi)
i.d.
=

∏
t

p(y
(t)
i |xi, zi)p(zi|xi) (8)

M-step: Maximize
∑

t

∑
i Ep̃(zi)[log p(y

(t)
i , zi|xi)].

The difficulty of this optimization depends on the
specific form of the conditional probabilities. In the
formulations that follow, we show the update equa-
tions for the more general case where σt(x) and
ηt(x) are both functions of the data xi and labeler
t. Since, there is no closed-form solution for maxi-

mizing
∑

t

∑
i Ep̃(zi)[log p(y

(t)
i , zi|xi)] with respect to

the parameters, we apply the LBFGS quasi-Newton
(Nocedal and Wright, 2003) method (that does not re-
quire second order information) to solve the following
optimization problem:

max
α,β,{γt},{wt}

fopt(α, β, {γt}, {wt}) =

max
α,β,{γt},{wt}

∑
i,t

Ep̃(zi)[log p(y
(t)
i |xi, zi) + log p(zi|xi)]

For convenience, we provide the gradients with respect
to the different parameters for the two candidate mod-
els (Gaussian or Bernoulli) here:

∂fopt
∂α

∝
∑

i

∆p̃ exp(−αT x − β)x

(1 + exp(−αT x− β))2

∂fopt
∂β

∝
∑

i

∆p̃ exp(−αT x − β)

(1 + exp(−αT x− β))2
,

where ∆p̃ = p̃(zi = 1) − p̃(zi = 0). When a Gaussian

model is applied for p(y
(t)
i |xi, zi):

∂fopt
∂σt(x)

=
[y

(t)
i

2
− p̃(zi = 1)(2y

(t)
i − 1)]

σ3
t (x)

−
1

σt(x)

When a Bernoulli model is applied for p(y
(t)
i |xi, zi):

∂fopt
∂ηt(x)

= (−1)y
(t)
i (p̃(zi = 0) − p̃(zi = 1))

∂ηt(x)

∂wt

=
∂σt(x)

∂wt

=
exp(−w

T

t
xi−γt)xi

(1+exp(−w
T

t
xi−γt))2

= σt(x)(1 − σt(x))xi, for the Gaussian model (9)

= ηt(x)(1 − ηt(x))xi, for the Bernoulli model (10)

∂ηt(x)

∂γt

=
∂σt(x)

∂γt

=
exp(−w

T

t
xi−γt)

(1+exp(−w
T

t
xi−γt))2

= σt(x)(1 − σt(x)), for the Gaussian model (11)

= ηt(x)(1 − ηt(x)), for the Bernoulli model (12)

To learn the parameters α, β, {γt}, {wt}, and obtain
a distribution over the missing variables zi, we iterate
between the E and M steps until convergence. We
summarize our method in Algorithm 1:

Algorithm 1 Probabilistic Multiple Labeler Algo-
rithm

input: X , Y ; set: α = 0, β = 0 and threshold ǫ
initialize: αnew, βnew, wt and γt

while ‖α − αnew‖
2 + (β − βnew)

2 ≥ ǫ do
E-step: estimating p̃(z) by using equation (8)
M-step: updating αnew, βnew, wt and γt that

maximize
∑

t

∑
i Ep̃(zi)[log p(y

(t)
i , zi|xi)] using the

LBFGS quasi-Newton approximation to compute
the step, with gradient equations (9-12).

end while
return α, β, {wt}, {γt}

2.4 Classification

Once the parameters α, β have been estimated in the
learning stage, a new data point x can be classified by
simply letting p(z = 1|x) = (1 + exp (−αT x − β))−1,
where z = 1 is the the class label of interest.

3 Analysis

In this section, we analyze the resulting classifica-
tion model. In order to simplify the presentation,
we use the set notation {y(t)} as a shorthand for
{y(t)}T

t=1 , {y(1), ..., y(T )} and {y(t\k)} as a shorthand
for {y(t)}T

t=1,t6=k.

3.1 Classification Model

It may be interesting to ask what the model is actu-
ally doing in order to estimate the ground truth from
the information provided by all the labelers. One way
to answer this question is by analyzing the posterior
distribution p(z|{y(t)},x), which is given by:

p(z|{y(t)},x) = p({y(t)}|z,x)p(z|x)/p({y(t)}|x)

=

∏
t p(y(t)|z,x)p(z|x)∑

z

∏
t p(y(t)|z,x)p(z|x)

. (13)
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If we consider the log-likelihood ratio LLR({y(t)},x) =

log p(z=1|{y(t)},x)

p(z=0|{y(t)},x)
for the Bernoulli case, we obtain:

LLR = logit[p(z = 1|x)] +
∑

t

(−1)(1−y(t))logit[ηt(x)]

= αTx + β +
∑

t

(−1)(1−y(t))wT
t x + γt, (14)

where logit(p) = p
1−p

. This provides the insight that
the classification boundary depends on a linear combi-
nation of a score provided by the learned model with
parameters (α, β) and the signed contributions from
the T individual annotators. The annotator contribu-
tions are given by the annotator specific (linear) model
of expertise, weighted positively or negatively depend-
ing on the label provided (1 or 0 respectively). Note
that with a few notation changes this final form can
be written as a logistic regression classifier as well.

For the Gaussian case, the ratio becomes:

LLR = logit[p(z = 1|x)] +
∑

t

(−1)(1−y(t)) 1

σt(x)

= αT x + β + T + − T− +∑
t

(−1)(1−y(t)) exp(−wT
t x − γt), (15)

where T + and T−+ are the counts of positive and neg-
ative labels respectively. Similarly to the case above,
the solution involves a linear combination of scores
given by each labeler. In this case the score is cal-
culated using the exponential function.

3.2 Missing Annotators

From Eq. 13 we can derive the posterior when not all
the annotators provided a label for a data point by
computing the appropriate marginal distributions. If
annotator k was missing, one can show that the model
provides a simple solution:

p(z|{yt\k},x) =

∏
t\k p(y(t)|z,x)p(z|x)∑

z

∏
t\k p(y(t)|z,x)p(z|x)

, (16)

which basically ignores the missing annotator. This
implies the natural result that if all annotators are
missing, we obtain Eq. 5.

3.3 Estimating the Ground-Truth without
Observing Input Data (x)

The presented model provides an expression for es-
timating the ground-truth even purely from the ob-
served annotations (when the input data has not been
observed).

p(z|{y(t)}) =

∫ ∏
t

p(y(t)|z,x)p(z|x)dp(x) (17)

Since we do have a direct prior p(x), we can rely on
sampling. One proposal is to use the previously seen
cases (training data) as a good sample for X . Let XS =
{x1,x2, ...,xS}, a sample from the random variable X .
We can use this sample to compute the posterior by:

p(z|{y(t)}) ≈
1

S

S∑
s=1

p(z|xs)
∏

t

p(y(t)|z,xs), (18)

which can be done easily given a learned model.

3.4 Evaluating Annotators

If we knew the ground-truth (for a particular data
point), we can straightforwardly evaluate the anno-
tator accuracy. However, this is not the usual case.
What if we do not have the ground-truth (it does not
exist or is expensive to obtain)? The proposed ap-
proach provides a way to evaluate an annotator even
without reliance on ground-truth. We can do this by
evaluating the following conditional distribution:

p(y(k)|{y(t\k)},x) =
p({y(t)}|x)

p({y(t\k)}|x)
(19)

=

∑
z p({y(t)}|z,x)p(z|x)∑

z p({y(t\k)}|z,x)p(z|x)

Note that if the ground-truth is given (along with the
input data), the annotators are mutually independent
and p(y(k)|{y(t\k)},x) = p(y(k)|z,x), as expected.

4 Experiments

In this section, we used several simulated and real
datasets to compare the performance of our proposed
approach to other baseline and state-of-the-art meth-
ods. Our experiments where divided in three parts:

(I) Performance simulations on UCI data: We
tested our algorithm on four publicly available
datasets from the UCI Machine Learning Reposi-
tory (Asuncion and Newman, 2007): Ionosphere,
Cleveland Heart, Glass, and Housing. Since there
are no multiple annotations (labels) for these
datasets, we artificially generated 5 simulated la-
belers with different labeler expertise and consid-
ered the provided labels as golden ground-truth.

(II) Modeling labeler’s expertise on a heart mo-
tion abnormality detection problem: In this
case we perform experiments based on real car-
diac data. This data is related to automatic as-
sessment of heart wall motion abnormalities (Qazi
et al., 2007). The purpose of this experiment is to
measure how well our model learns the labeler’s
expertise based on the particular case character-
istics (data point features).
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(III) Performance on the breast dataset: Analo-
gous to (I) but with a real dataset extracted for
MR digital mammographies and used for classi-
fying regions of interest in the breast into benign
and malignant. The cases are labeled by three ex-
pert radiologists based on visual inspection of the
images. The golden ground-truth was obtained
by performing a biopsy in each case. This is quite
a rare opportunity where ground-truth actually
exists, in particular in the medical domain.

For our proposed multiple labelers method (M.L.), in
our comparisons, we considered three different vari-
ations that depend on the modeling of p(y|x, z) as
described in Sec. 3. M.L.-Gaussian(x) and M.L.-
Bernoulli(x) will refer to the models that explicitly
depend on x. We will refer as M.L.-Original the
original formulation that estimates a parameter σ per
labeler in the spirit of Raykar et al. (2009) and Jin and
Ghahramani (2003). For further comparisons, we also
learn two additional logistic regression classifiers, one
using the labelers majority vote as target labels for
training (Majority), and the other one concatenates
all the labelers information by repeating training data
points as many times as needed to represent all the
labelers (Concatenation).

For both Part I and II, we randomly divided the data
into five equally sized folds (20% of the data each). For
each dataset, we repeated the model training five times
where we used four of the folds (80% of the data) for
training and one fold for testing. For part III we used
40% for training and the remaining 60% for testing.

Part I: Performance simulations on UCI data

We performed experiments on four datasets from the
UCI Irvine machine learning data repository (Asun-
cion and Newman, 2007): Ionosphere (351,34), Cleve-
land Heart (297,13), Glass (214,9), and Housing
(506,13)(with (number of points, number of features)
each). Since multiple labels for any of these UCI
datasets are not available, we need to simulate several
labelers with different labeler expertise or accuracy. In
order to simulate the labelers, for each dataset, we
proceeded as follows: first, we clustered the data into
five subsets using k-means (Berkhin, 2002). Then, we
assume that each one of the five simulated labelers
i = {1, ..., 5} is an expert on cases belonging to clus-
ter i, where their labeling coincides with the ground-
truth; for the rest of the cases (cases belonging to the
other four clusters), labeler i makes a mistake 35%
of the times (we randomly switch labels for 35% of
the points). Figures (2) and (3) show the ROC com-
parisons for different multi-labeler models and base-
line logistic regression models for the four datasets.

The experimental results demonstrate the power of
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M.L.−Gaussian(x) AUC: 0.9
M.L.−Bernoulli(x) AUC: 0.91
M.L.−Original AUC: 0.89
L.R.−Concatenation AUC: 0.77
L.R.−Majority AUC: 0.76
L.R.−Annotator1 AUC: 0.68
L.R.−Annotator2 AUC: 0.65
L.R.−Annotator3 AUC: 0.71
L.R.−Annotator4 AUC: 0.67
L.R.−Annotator5 AUC: 0.67

Figure 2: R.O.C. comparison of multi-labeler methods
for the UCI datasets Glass and Cleveland.

our proposed approach, we can see that even when
our labelers only have slightly better performance than
random (around 60% AUC), our probabilistic models
can achieve significantly better performance (around
90% AUC). Our models are successfully modeling who
is a good labeler for differents subsets of training
data. Our approaches significantly outperform base-
line methods where information from all the labelers
is taken into account in a more naive way.

Part II: Modeling labeler’s expertise on the
AWMA heart data

The Heart Motion Abnormality Detection data con-
sists of 220 cases for which we have associated im-
ages all of which were generated using pharmacologi-
cal stress. All the cases have been labeled at the heart
wall segment level by a group of five trained cardiol-
ogists. According to standard protocol, there are 16
LV heart wall segments. Each of the segments were
ranked from 1 to 5 according to its movement. For
simplicity, we converted the labels to a binary (1 =
normal, 2 to 5 = abnormal). For our experiments, we
used 24 global and local image features for each node
calculated from tracked contours.
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M.L.−Gaussian(x) AUC: 0.94
M.L.−Bernoulli(x) AUC: 0.93
M.L.−Original AUC: 0.93
L.R.−Concatenation AUC: 0.8
L.R.−Majority AUC: 0.77
L.R.−Annotator1 AUC: 0.68
L.R.−Annotator2 AUC: 0.68
L.R.−Annotator3 AUC: 0.73
L.R.−Annotator4 AUC: 0.71
L.R.−Annotator5 AUC: 0.72
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M.L.−Gaussian(x) AUC: 0.87
M.L.−Bernoulli(x) AUC: 0.89
M.L.−Original AUC: 0.78
L.R.−Concatenation AUC: 0.69
L.R.−Majority AUC: 0.76
L.R.−Annotator1 AUC: 0.6
L.R.−Annotator2 AUC: 0.67
L.R.−Annotator3 AUC: 0.7
L.R.−Annotator4 AUC: 0.66
L.R.−Annotator5 AUC: 0.64

Figure 3: R.O.C. comparison of multi-labeler methods
for UCI datasets Ionosphere and Housing.

Since we have 5 doctor labels but no golden ground-
truth (biopsy), we will assume that the majority vote
of the 5 doctors are a fair approximation to the true
labels. For this experiment we proceeded as follows:
after training, we used our model to pick the best la-
beler for each training data point. Then, we trained
a simple logistic regression model using the suggested
label. We compared our two proposed models (M.L.-
Gaussian(x) and M.L.-Bernoulli(x)) against a
baseline model where for each training data point the
corresponding labeler is picked randomly among the
five available labelers (Random selection). Fig-
ure 4 shows the corresponding ROCs for this exper-
iment. Note that when using the annotator’s labels
suggested by our model, a simple logistic regression
method clearly outperforms a model trained using la-
bels coming from a labeler picked at random among
the five labels available form the annotators. This
model has an interesting potential in a medical setting
where annotating cases is expensive. The proposed
model can rank experts by case and can help decide
which annotator is more apt to label a given new case.

Part III: Performance on the breast dataset

CAD algorithms for mammography are designed to de-
tect suspicious findings in a digitized mammographic
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indicated by Gaussian(x), A.U.C:0.8
indicated by Bernoulli(x), A.U.C:0.79
random selection, A.U.C:0.72

Figure 4: ROCs of the three logistic regression mod-
els for the cardiac data: M.L.-Gaussian(x), M.L.-
Bernoulli(x) and Random selection.

image with a high sensitivity. Given a set of descrip-
tive morphological features for a region in an image,
the task is to predict whether it is potentially malig-
nant or not. We use a set of mammograms collected
from hospitals that generate a biopsy-proven (which
provides the golden ground-truth) dataset containing
28 positive and 47 negative examples. Each instance
is described by a set of 8 morphological features and
labeled independently by three doctors. Results are
presented in Figure 5. Note that the results are simi-
lar to the ones obtained in part I. Our proposed M.L.
methods again significantly outperform the baseline
methods and each individual annotator even when us-
ing a reduced set of training data (only 40% in this
case).
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M.L.−Gaussian(x) AUC: 0.83
M.L.−Bernoulli(x) AUC: 0.82
M.L.−Original AUC: 0.81
L.R.−Concatenation AUC: 0.79
L.R.−Majority AUC: 0.79
L.R.−Annotator1 AUC: 0.8
L.R.−Annotator2 AUC: 0.69
L.R.−Annotator3 AUC: 0.78
L.R.−true label AUC: 0.88

Figure 5: Results for the breast dataset

5 Conclusion

Traditionally, supervised learning relies on a single la-
beler playing the role of a teacher providing the neces-
sary supervision. However, the increasing availability



Modeling annotator expertise

of more annotators for certain domains, the difficulty
of obtaining ground truth (such as in cancer detection
in medical images), and/or the subjectivity of label-
ing (such as product ratings), lead to the growing im-
portance of studying supervised learning when there
are multiple annotators whose labels may be unreli-
able. A distinguishing factor in this paper, in con-
trast to previous approaches, is that we do not assume
that the reliability of annotators is the same across all
data. In many cases, annotator knowledge can fluc-
tuate considerably depending on the specific input in-
stance observed. This is the common case when ev-
eryone knows something about the problem domain,
but everyone may know different aspects of the same
problem (rarely does someone know everything). For
example, radiologists specialized in heart images will
be better at labeling lesions of the heart compared to
radiologists with lung expertise, who on the other hand
would label instances of lung diseases better.

In this paper, we developed a probabilistic model for
learning a classifier from multiple annotators, where
the reliability of the annotators vary on the annotator
and the data that they observe. Our approach allows
us to provide estimates for the true labels given new
instances and also provide the expertise variability for
each annotator across the domain task. Our experi-
ments on benchmark and real cardiac and breast can-
cer data show that the expertise of annotators do vary
across data and that our model provides better classifi-
cation performance over various forms of data prepro-
cessing (majority vote or concatenation of the labels
provided by all the annotators), and more importantly
improves the results over the model that ignores the
effect of variable expertise across instances.

We have further provided an analysis of the proposed
approach in terms of the resulting decision bound-
ary properties. We showed how the model is suit-
able for handling missing annotators, for estimating
the ground-truth, and for evaluating annotators when
the ground-truth is not available. This was done in the
context of statistical inference once the correct condi-
tional distribution of interest is identified.

Acknowledgments

This work is supported by NSF IIS-0915910.

References

A. Asuncion and D. Newman. UCI ma-
chine learning repository, 2007. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

P. Berkhin. Survey of clustering data mining tech-
niques (on−line), 2002. URL http://www.ee.ucr.edu/
∼barth/EE242/clustering−survey.pdf.

J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. Wortman. Learning bounds for domain adaptation.
In Adv. Neural Information Processing Systems, 2007.

K. Crammer, M. Kearns, and J. Wortman. Learning from
multiple sources. J. of Machine Learning Research, 9:
1757–1774, 2008.

A. P. Dawid and A. M. Skeene. Maximum likelihood esti-
mation of observed error-rates using the EM algorithm.
Applied Statistics, 28:20–28, 1979.

O. Dekel and O. Shamir. Good learners for evil teachers.
In Int. Conf. on Machine Learning, 2009.

A. Dempster, N. Laird, and D. Rubin. Maximum likeli-
hood estimation from incomplete data. J. of the Royal
Statistical Society (B), 39(1), 1977.

P. Donmez and J. G. Carbonell. Proactive learning: Cost-
sensitive active learning with multiple imperfect oracles.
In Conf. on Information and Knowledge Management,
2008.

J. Howe. Crowdsourcing: why the power of the crowd is
driving the future of business. Crown Business, 2008.

S. L. Hui and X. H. Zhou. Evaluation of diagnostic tests
without a gold standard. Statistical Methods in Medical
Research, 7:354–370, 1998.

R. Jin and Z. Ghahramani. Learning with multiple labels.
In Adv. Neural Information Processing Systems, 2003.

J. Nocedal and S. Wright. Numerical Optimization (2nd
ed.). Springer-Verlag, Berlin, New York, 2003.

M. Qazi, G. Fung, S. Krishnan, R. Rosales, H. Steck,
B. Rao, D. D. Poldermans, and D. Chandrasekaran. Au-
tomated heartwall motion abnormality detection from
ultrasound images using Bayesian networks. In Int. Joint
Conf. on Artificial Intelligence, 2007.

V. C. Raykar, S. Yu, L. Zhao, A. Jerebko, C. Florin,
G. Hermosillo-Valadez, L. Bogoni, and L. Moy. Super-
vised learning from multiple experts: whom to trust
when everyone lies a bit. In Int. Conf. on Machine
Learning, 2009.

V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another
label? Improving data quality and data mining using
multiple, noisy labelers. In Knowledge Discovery and
Data Mining (KDD), 2008.

P. Smyth, U. Fayyad, M. Burl, P. Perona, and P. Baldi.
Inferring ground truth from subjective labeling of Venus
images. In Adv. Neural Information Processing Systems,
1995.

R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap and
fast - but is it good? Evaluating non-expert annotations
for natural language tasks. In Conf. Empirical Methods
on Natural Language Processing (EMNLP), 2008.

A. Sorokin and D. Forsyth. Utility data annotation with
Amazon Mechanical Turk. In CVPR Workshop on In-
ternet Vision, 2008.

D. J. Spiegelhalter and P. Stovin. An analysis of repeated
biopsies following cardiac transplantation. Stat. Med., 2
(1):33–40, Jan-Mar 1983.


