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Abstract

This paper describes a machine learning, text
processing approach that allows the extrac-
tion of key medical information from unstruc-
tured text in Electronic Medical Records.
The approach utilizes a novel text represen-
tation that shares the simplicity of the widely
used bag-of-words representation, but can
also represent some form of semantic infor-
mation in the text. The large dimensionality
of this type of learning models is controlled
by the use of a ℓ1 regularization to favor
parsimonious models. Experimental results
demonstrate the accuracy of the approach in
extracting medical assertions that can be as-
sociated to polarity and relevance detection.

1 Introduction

Electronic Medical Record (EMR) adoption is experi-
encing a rapid growth fueled by advances in Informa-
tion Technology. In the United States, this is in part
driven by the recent regulatory mandates and gov-
ernment funding. The ability to mine key, actionable
information from electronic data is a key factor that
motivates the increased EMR adoption from the stand
point of both government and providers. Actionable
information that can be regularly and systematically
mined from EMRs could lead to improved operational,
financial, and clinical outcomes.

However, much of the key information needed for mea-
suring and driving process efficiencies resides in un-
structured free text, and often needs to be mined and
extracted into structured form. Despite the increasing
emphasis on collecting key information in structured
fields of EMRs, in general there will often be the need
to mine other - as yet unthought of - information from
free text documents. This is primarily because it is im-
possible to anticipate and precisely identify/define all
the relevant information that would be useful for clin-
ical, operational, and financial needs that may arise
in the future. Given the constantly changing nature
of medical knowledge in the form of evidence-based
treatment guidelines, the definitions of key informa-
tion elements also change rapidly over time. Thus, the
need to focus on approaches that can easily be adapted
to these changes.

While the need to automatically extract key infor-
mation from medical text has been widely accepted1,
EMR systems often lack a flexible, user configurable,
solution for this type of automation. Two of the rea-
sons for this are: (1) the challenging nature of the text
understanding task by itself and (2) the level of flexibil-
ity required (at the user end) for a solution to be prac-
tical. Open source NLP software toolkits available for
extraction of information from text generally require
expertise beyond that provided by medical personnel
to configure new questions/concepts. At the other end
of the spectrum, simple search based tools allow doc-
tors and nurses to search for documents of patients
that contain some phrases, sometimes expanding the
search based on medical ontologies to get a slightly
large set of documents. However such search based
approaches are fundamentally limited in their ability
to answer complicated clinical questions, and do not
lend themselves to efficient and optimized processes
for information extraction.

In this paper we describe a general machine learning
approach that together with a simple graphical tool,
allows medical personnel to rapidly mine their exist-
ing records to answer or setup (configure) complicated
clinical questions without requiring complicated soft-
ware development. Thus not only do end users obtain
very high accuracy in their answers to clinical ques-
tions, they can also do it with very little effort or ex-
penditure of time.

Significant amount of related work in the literature
has focused on areas such as radiology and pathology
reports1; for instance, automatic structuring of radiol-
ogy reports11. More recently, researchers are making
progress in the automated classification of clinical free
text to coding9 and applying machine learning and
natural language processing for text mining in systems
like MedIE13 and CLEF8.

Friedman et al.4 discuss the potential of using NLP
techniques in the medical domain, and also provides a
comparative overview of the state-of-the-art NLP tools
applied to biomedical text. Literature in4,5 provide a
survey of various approaches to information extraction
from biomedical text including named entity tagging
and extracting relationship between different entities
and between different texts. Of direct relevance is the
analysis of doctors’ dictations by Chapman2, which

1For example, the AMIA i2b2/VA text mining challenge
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Figure 1: Identification of the basic document ele-
ments, representation of the passage in a coordinate
system (along an optimal hyper-plane classifier), and
various examples of inferred concepts.

identifies the seven most common uses of semantic
negation in the text.

Some of the drawbacks of these works include; i) based
on hard-coded rules making them hard to maintain
and difficult to adapt, ii) tuned for specific tasks such
as breast care reports or pathology reports; thus failing
to generalize, iii) based on institution-specific styles,
rules and guidelines. In all fairness, this is partially
because high quality, labeled datasets of clinical docu-
ments have not been available, due to privacy laws and
costs. More recently the Informatics for Integrating
Biology and the Bedside (i2b2) Center (NIH funded
effort) has been releasing de-identified discharge sum-
maries for various shared challenge NLP tasks.

2 Overview of the Approach

A fundamental task in text analysis is to ascertain or
infer that a piece of text (a sentence, passage, or doc-
ument) refers to a particular, given topic or concept.
The topic can vary widely; for example, the passage
The patient is allergic to aspirin is not likely to refer
to whether aspirin was prescribed to the patient but
it is more likely to refer to whether there are any drug
contraindications assessed for the patient.

A virtually equivalent task is to determine the polarity
of the text; that is, whether the piece of text represents
positive or negative evidence about the topic. For ex-
ample, The patient is allergic to aspirin clearly pro-
vides positive evidence about aspirin allergies, while
The patient does not have any know allergies provides
negative evidence about drug (aspiring in this case)
contraindication. A solution for this text inference
problem would allow us to solve (or help solving) more
complex tasks requiring text analysis. This will in
turn, allow high-throughput analysis in large collec-
tion of patients. In order to achieve this, we use a text
representation, learning, and inference (or classifica-

tion) components illustrated in Fig. 1.

Text representation: the text to be analyzed is
represented based on a combination of the document
metadata (document type, date, formatting informa-
tion) and contextual information. For a passage of
interest, the context is defined as the section the pas-
sage is in, the distribution of words in the passage, and
the relationships between these words.

Learning from text: given the large variety of med-
ical concepts or topics of interest, the final user needs
to be able to easily define and extend the system to
address new concepts. We use machine learning tech-
nology to learn from user-provided examples.

Text-based inference: when a document is ana-
lyzed, two main elements are identified: (1) document
metadata and (2) the actual text in the document (the
content). These are represented as a vector of real
numbers and processed as will be explained next. This
representation is designed to be appropriate for a ma-
chine learning system to learn from examples and to
produce an inference or assertion about the medical
concept or topic of interest.

3 Formulation

Let us consider a medical concept/event of interest.
Let y be a variable representing the incidence (or
assertion) of this particular concept of interest in a
text source; y is defined over the domain Y (e.g.,
Y = {true,false}). Let x represent the text source,
this can be a document (e.g., a discharge summary)
or a text passage; x is defined over our input space X ,
which depends on the representation utilized. For ex-
ample, the input could be represented as the full text
or as the commonly employed bag-of-words. In this
paper we described a different representation, where
we will use x = [x1, x2, ..., xD]T , with xi ∈ R.

3.1 A Model for Text and Concepts

We define a mathematical model to associate con-
cepts and text strings as a function f : R

D → Y.
To this end, ŷ , f(x) denotes our estimate of the
concept incidence. Our goal is to build f automati-
cally from a collection of N annotated examples T ≡
{(x1, y1), (x2, y2), ..., (xN , yN )}, so that yi ≈ ŷi. These
examples consist of the input text and their associated
annotation for the particular concept of interest. Thus,
we have basically formulated our concept identification
problem as a machine learning classification problem.

Text Representation Many alternatives have been
suggested to represent free text in NLP tasks. The
most commonly used representation is the bag-of-



words (bow) representation. Using bow, a dictionary
of T terms is built and the input text is represented
as a T dimensional binary vector x, where xi ∈ {0, 1}.
We let xi = 1 if the i-th term occurs in the input
text. While this type of representations have been
widely used, they are insensitive to permutations in
the terms. The text the patient stopped drinking but is
still smoking heavily would be indistinguishable from
the text the patient is still drinking heavily but stopped

smoking. Thus, it would be technically impossible to
reliably determine whether the assertion the patient is

currently a smoker is either true or false.

Many NLP techniques have been proposed to try to
parse the semantics of sentences. They include shal-
low parsing, semantic trees, and part-of-speech tagging
methods. They each have its pros and cons, but in gen-
eral they require further computational resources and
have limited accuracy.

In this paper we propose an alternative representa-
tion that, in addition of being simple (as demonstrated
later), it can still be useful at representing the seman-
tics/context that is critical for correctly handling com-
mon medical assertions. We start by building a dictio-
nary of terms and phrasal terms (terms that contain a
combination of words, such as cardiovascular disease).

Given a passage string S with ordered terms
(s1, s2, ..., sS) and a dictionary D = {t1, t2, ..., tD}; if
sk = ti we let:

xi = Z exp{−d(ti, C)2

2σ2
}, (1)

where d() is a distance function representing how far
(number of terms) the i-th dictionary term (ti) is to a
concept-specific term set, denoted by C. Specifically,
for each string sk, if sk matches the ith term in our
dictionary, then xi is computed using Eq. 1. This is a
Gaussian kernel that allows us to place more emphasis
on words/terms that are nearer to the target concept.

C is a collection of terms that are related to the con-
cept, but importantly are not required to be very ac-
curate. For example, for the smoker concept discussed
before, C = {smoke, cigarette, tobacco, nicotine}.
Note that in order to properly identify all the occur-
rences of the concept of interest we need these terms to
have a high recall, but not necessarily high precision.
The scalar variable σ > 0 is set proportional to our
chosen passage window size. If we need to account for
more context (terms) surrounding C, then σ should be
set larger (and vice versa).

The vector x is further normalized by the (Gaussian)
partition function Z = 1/

√
2πσ to ensure consistent

scaling of x computed for different passages.

Learning from text One overall problem of

dictionary-based representations is that they are of-
ten high-dimensional (every term is represented as a
dimension). This causes problems during learning as
data is normally insufficient to properly learn such a
flexible model. To address this drawback we will focus
on estimating sparse models.

Our general model is a hyperplane classifier, and will
be estimated using the large-margin criterion for clas-
sification. In particular, we will use the Support Vector
Machine formalism12, where the goal is to estimate pa-
rameters w = [w1, w2, ..., wD]T ∈ R

D that are optimal
for classification. In our approach this is formulated
as follows:

arg min
w

∑

i

ei + λ||w||1

s.t.
∑

i

yiw
Txi + ei ≥ 1, (2)

where the first term in the objective function is the
standard support vector machine error (distance from
margin) and the second term is a ℓ1 regularization
term that favors sparse models (weighted by λ ∈ R).
While ℓ2 regularization is also a sensible alternative,
for the same non-sparse vector w, the ℓ1 regularization
produces a larger penalty than the ℓ2 regularization,
and thus sparser solutions are expected for ℓ1. Also,
the sample complexity (number of data points needed
to properly learn) for ℓ1 regularization is in general
lower for the same problem7.

The problem above can be solved using various opti-
mization approaches. Due to space limitations we will
not go into the details for solving this problem and
refer the readers to our proposed approach10.

In order to learn a concept, we need the annotated ex-
amples that represent our training set T . Thus, a user
would be able to increase its repository of concepts
by simply providing some examples of the concept of
interest. This may seen a time consuming process at
first. We have addressed this by designing a user inter-
face that helps the user identify and annotate examples
efficiently.

Concept Inference Once learning has been achieved,
inference just consists of extracting the basic pieces of
information from the document, as described in Sec. 2
and applying our learned function f to the input rep-
resentation.

4 Experimental Evaluation

Experiments were performed using actual EMRs from
various medium/large-size hospitals2. We designed

2Names undisclosed due to privacy agreements.



our experiments to work at the passage level. A pas-
sage is a sequence of word/tokens extracted from a
document. Thus, x represents a passage-based ob-
servation. With the help of expert medical personnel
(such as expert chart abstractors), we concentrated
on gathering information about various medical con-
cepts. These concepts were chosen primarily due to
their prevalence in quality reporting.

We built 19 datasets, one for each concept, with a
few repeated concepts (varying in the data collection
process). These passages were obtained from a set of
∼10 million sentences by searching, in each case, for
a few keywords C related to the concept of interest
and provided by the medical expert. A random subset
of the matching sentences were labeled by the expert
and saved using a specially tailored user interface. As
expected, for all the concepts, keywords were only use-
ful at a first level retrieval. Not surprisingly, a mix-
ture of completely irrelevant, affirmative, or negative
sentences were obtained as a first pass; e.g., not all
patients with passages containing the keyword smok*

are actual smokers or even have a history of smoking.

In our problem, for each chosen passage, an expert
labeled it with the labels T=True and F=False to in-
dicate the following: (1) T → the concept is present
and affirmative in the sentence (2)F → the concept is
absent OR it is present but negated in the passage.

4.1 Experimental Settings

For these experiments we used a passage size of 100
tokens, centered at the concept-specific words C. The
data was used as follows: for each dataset, we first
divided it into two subsets, one held out for testing
only (30%) and one used for training (70%). From
the training subset, a portion was assigned for ac-
tual training (75%) and another portion for cross-
validation (25%). The method requires one tunable
parameter, namely λ. These settings were the same
for all datasets. A total of 10 folds were performed
where the above subsets were always randomized.

We used 23 pre-determined compound dictionary en-
tries (features) as our initial dictionary (common to all
tasks described here). They are compound entries be-
cause in order to account for synonyms (or words play-
ing the same semantic role in general), related words
were grouped into one dictionary element. These in-
cluded keywords referring to negation (e.g., no, not,

never etc.), nouns referring to family members, differ-
ent levels of severity (categorized into normal, mod-
erate/medium, and severe), and specially formatted
strings (such as references to numbers, dates, enumer-
ations). This was the only manual step (some level of
automation is possible but not addressed here).

The above dictionary entries were used for all concepts
analyzed. We enhance this initial dictionary in two
ways. (1) We included terms specific to the concept of
interest by automatically measuring the information
content of each term (in the passages) about the label
value. For this we use the information theoretic mu-
tual information (MI) as a scoring function3. In this
manner we added a fixed number (15) of additional
terms. (2) We used the statistics of all the EMR en-
tries from a separate database to build a medical lan-
guage model once using an extension of the random-
walk keyword-document approach6. Then, for each
term we identified the probability of other terms to oc-
cur nearby. We included a fixed number (15) of most
likely to occur terms.

4.2 Quantification of results

For each concept we compared three competing ap-
proaches. (1) In order to demonstrate the advan-
tages of the context based representation introduced,
we built a model employing the bow representation
and trained it using the same large-margin based ap-
proach with a sparsity prior proposed in this paper.
(2) In order to test the benefits of the automated
dictionary construction components, we built another
model using the proposed context based representa-
tion, but without the automated (MI + statistically
related terms). (3) We built a model using our full
approach, which utilizes the introduced context sen-
sitive text representation, the automated dictionary
construction steps, and the sparse model learning.

We have summarized the results in Table 1. In this
table, we provide both the performance using accu-
racy (defined as the proportion of passages correctly
classified) and the AUC (or the Area Under the Re-
ceived Operating Characteristic Curve) for all the ap-
proaches. For each entry in the table, the variance is
also included in parenthesis. For cross-validation (se-
lecting the best tuning parameter), we used the AUC
as target performance measure.

From the results, various points can be verified. (1)
Clearly, context helps; this intuitively explains why a
passage representation that utilizes contextual infor-
mation (based on our Gaussian kernel in Eq. 1) is su-
perior than a bow representation. Our proposed pas-
sage representation was clearly effective at improving
the accuracy for all the concepts relative to the bow
representation. (2) A manually built dictionary is a
valid starting point but probably not sufficient to make
automated concept learning practical (based on expert
judgment). However, it significantly improves over the
baseline bow model; thus illustrating the potential of
the approach even with by employing a simple dictio-
nary. (3) The automated identification of effective dic-



N Accuracy AUC Accuracy AUC Accuracy AUC

1 Currently taking amiodarone 82 0.750 (0.007)  0.688 (0.002) 0.792 (0.005)  0.711 (0.004) 0.833 (0.007)  0.795 (0.016)

2 Joint (e.g.,  knee) revision referred 211 0.513 (0.000)  0.607 (0.010) 0.767 (0.000)  0.787 (0.000) 0.841 (0.003)  0.915 (0.001)

3 Allergy to referred antibiotic 185 0.794 (0.000)  0.745 (0.000) 0.909 (0.001)  0.971 (0.000) 0.982 (0.000)  0.989 (0.000)

4 Currently taking referred antibiotic 182 0.735 (0.006)  0.715 (0.004) 0.815 (0.001)  0.902 (0.000) 0.907 (0.004)  0.977 (0.000)

5 Contraindication to referred antibiotic 185 0.758 (0.005)  0.786 (0.003) 0.879 (0.003)  0.914 (0.002) 0.939 (0.003)  0.991 (0.000)

6 ST elevation assessed 211 0.556 (0.003)  0.543 (0.002) 0.683 (0.002)  0.719 (0.001) 0.862 (0.001)  0.902 (0.001)

7 LBBB assessed 211 0.905 (0.001)  0.523 (0.009) 0.931 (0.002)  0.925 (0.017) 0.995 (0.000)  1.000 (0.000)

8 Currently on aspirin 496 0.782 (0.000)  0.518 (0.000) 0.901 (0.000)  0.934 (0.000) 0.950 (0.000)  0.960 (0.000)

9 Documentation for not prescribing aspirin 495 0.838 (0.000)  0.435 (0.000) 0.964 (0.000)  0.979 (0.000) 0.930 (0.000)  0.959 (0.000)
10 Discharged on aspirin medication 495 0.856 (0.000)  0.832 (0.000) 0.859 (0.000) 0.871 (0.000) 0.919 (0.001)  0.964 (0.000)

11 Atrial fibrillation and flutter 278 0.795 (0.001)  0.737 (0.000) 0.880 (0.002)  0.887 (0.000)  0.922 (0.000)  0.972 (0.001) 

12 Documented atherosclerosis 325 0.605 (0.000)  0.694 (0.001) 0.938 (0.001)  0.960 (0.001)  0.930 (0.000)  0.958 (0.001) 

13 Assessed for rehabilitation services 195 0.776 (0.004)  0.521 (0.000) 0.575 (0.003)  0.575 (0.009)  0.776 (0.000)  0.819 (0.004) 

14 Documentation for last know-well (biased) 81 0.917 (0.000)  0.614 (0.007) 0.901 (0.091)  0.755 (0.004)  0.906 (0.147)  0.779 (0.000) 

15 VTE present on arrival 508 0.679 (0.001)  0.621 (0.000) 0.774 (0.000)  0.830 (0.001)  0.822 (0.001)  0.898 (0.001) 

16 Smoker one year prior to hospital arrival (I) 289 0.707 (0.001)  0.512 (0.004) 0.763 (0.002)  0.772 (0.001)  0.825 (0.001)  0.902 (0.001) 

17 Documentation for antibiotic allergy 650 0.543 (0.000)  0.617 (0.002) 0.878 (0.001)  0.940 (0.000)  0.890 (0.000)  0.963 (0.000) 

18 Asserted/negated antibiotic allergy 308 0.875 (0.001)  0.834 (0.001) 0.938 (0.000)  0.978 (0.000)  0.984 (0.001)  0.979 (0.000) 

19 Smoker one year prior to hospital arrival (II) 980 0.490 (0.001)  0.500 (0.000) 0.823 (0.002)  0.913 (0.001)  0.922 (0.000)  0.974 (0.000) 

Average 316 0.730 0.634 0.846 0.819 0.902 0.931

Proposed (automated)

ID Medical concept/event

BOW Proposed (manual dict.)

Table 1: Accuracy and area under the ROC curve (AUC) of various classification schemes for medical concepts.

tionary entries proved very valuable for all concepts.
This may point to automated dictionary construction
as a promising strategy to further increase accuracy
and ease of use for non-NLP experts. (4) It is possible
to parse and understand medical free text to the extent
that assertions can be properly classified for polarity
(positive vs. negative) and for relevance (relevant vs.
non-relevant) to a good degree even for complex con-
cepts. Quantitatively, the proposed approach clearly
outperformed the comparison models.

5 Conclusion

The general goal of this work is to develop the analysis
technology to enable the effective use of unstructured
free-text contained in large clinical data warehouses.
This includes the automated search and identification
of medical concepts and events that can impact clini-
cal decision-making and by extension, the meaningful
use of clinical data. We have developed text repre-
sentations and placed the problem in the context of
a mathematical programming formulation. Based on
our experimental results, we believe the presented ap-
proach is a step towards achieving this general goal.

References

[1] D. Aronow and K. Coltin. Information technology
applications in quality assurance and quality improve-
ment, part II. Joint Commission Journal on Quality
Improvement, 10:465–478, 1993.

[2] W. Chapman, W. Bridewell, P. Hanbury G., Cooper,
and B. Buchanan. Evaluation of negation phrases in

narrative clinical reports. Proc. American Medical In-
formatics Association Symp., pages 105–109, 2001.

[3] T. Cover and J. Thomas. Elements of Information
Theory. Wiley Interscience, Hoboken, 1991.

[4] C. Friedman and G. Hripcsak. Natural language pro-
cessing and its future in medicine: Can computers
make sense out of natural language text. Academic
Medicine, 74(8):890–895, 1999.

[5] L. Hirschman, J. C. Park, J. Tsujii, L. Wong, and
C. H. Wu. Accomplishments and challenges in lit-
erature data mining for biology. Bioinformatics,
18(12):1553–1561, 2002.

[6] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In ACM SIGIR Conference, 2001.

[7] A. Ng. Feature selection, L1 vs. L2 regularization, and
rotational invariance. In Adv. in Neural Information
Processing Systems, 2004.

[8] A. Roberts, R. Gaizauskas, and M. Hepple. Extracting
clinical relationships from patient narratives. BioNLP
2008: Curr. Trends in Biomedical NLP, 2008.

[9] N. Sager, M. Lyman, N. Nhan, and L. Tick. Au-
tomatic encoding into SNOMED III: A preliminary
investigation. Journal of the American Medical Infor-
matics Association, pages 230–234, 1994.

[10] M. Schmidt, G. Fung, and R. Rosales. Fast optimiza-
tion methods for L1 regularization: A comparative
study and two new approaches. In European Conf. on
Machine Learning, 2007.

[11] R. Taira, S. Soderland, and R. Jakobovits. Auto-
matic structuring of radiology free text reports. Ra-
dioGraphics, 21:237–245, 2001.

[12] V. N. Vapnik. The Nature of Statistical Learning The-
ory. Springer, New York, 1995.

[13] X. Zhou, H. Han, I. Chankai, A. Prestrud, and
A. Brooks. Approaches to text mining for clinical med-
ical records. ACM Symposium on Applied Computing,
pages 235–239, 2006.


