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ABSTRACT
Visual design plays an important role in online display ad-
vertising: changing the layout of an online ad can increase or
decrease its effectiveness, measured in terms of click-through
rate (CTR) or total revenue. The decision of which lay-
out to use for an ad involves a trade-off: using a layout
provides feedback about its effectiveness (exploration), but
collecting that feedback requires sacrificing the immediate
reward of using a layout we already know is effective (ex-
ploitation). To balance exploration with exploitation, we
pose automatic layout selection as a contextual bandit prob-
lem. There are many bandit algorithms, each generating a
policy which must be evaluated. It is impractical to test
each policy on live traffic. However, we have found that of-
fline replay (a.k.a. exploration scavenging) can be adapted
to provide an accurate estimator for the performance of ad
layout policies at Linkedin, using only historical data about
the effectiveness of layouts. We describe the development
of our offline replayer, and benchmark a number of common
bandit algorithms.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and PrinciplesGen-
eral
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1. INTRODUCTION
Online advertising continues to grow rapidly as a funda-

mental component of the internet economy and ecosystem.
It has been a subject of considerable research in machine
learning, data mining, economics, user interfaces, and social
sciences in general, among other areas. A widespread form
of on-line advertising called display advertising consists of
placing text or graphical ads (including a combination of
these or related media) in certain reserved slots on pub-
lisher web-pages, targeted to specific user segments. Some
common slots used for these purposes are the top and right
panels of the page, but the location and layouts that could
be employed are practically limitless.

Two common forms of payment methods used in display
advertising include pay per impression (CPM) or pay per
action. Typically actions consists of a click (CPC) or some
post-click outcome like purchase, subscription, etc. referred
to as conversion (CPA). In a CPM campaign, the advertiser
pays when an ad is shown to the specified user segment at
the specified location on a page, while for CPC the advertiser
pays only if the user clicks on the ad1. Publishers typically
sell display advertising using two methods — a) Guaranteed
delivery where ad impressions are sold in advance and the
volume to be delivered by the publisher is guaranteed to the
advertiser. Since the publisher guarantees a certain number
of impressions in the future using this method, advertis-
ers typically pay a premium. Such methods are typically
used by brand advertisers. b) Another increasingly popular
mechanism for buying/selling advertising is to sell each im-
pression through an auction with no guarantees on impres-
sion volume to advertisers. When a user requests a page
with an ad space, an auction is run among the eligible ads
(normally those that satisfy certain targeting constraints).
Then, one or more ads, depending on the space and layout
1other performance variants like conversions can be treated
as CPC by methods described in this paper



characteristics, are chosen for display, ranked based on some
function of expected performance and advertiser bid. Ad-
vertisers are free to change their auction bids as they see
fit to maximize their return on investment (ROI). Normally
the location and layout of the available space (even within
the same web-page) influence their bidding decisions. Such a
method is typically used by performance advertisers. In this
paper, we will only consider the auction method of selling
display ads.

An online display advertisement is a combination of text,
graphics, and potentially other media (e.g., photographs,
videos), placed in a reserved space on a web page. We fo-
cus on the pay-per-click model, where payment is received
when a user clicks on the advertisement. Each serve of an
advertising spot on a web page to a user is referred to as an
impression. An auction mechanism determines which ads
are selected for an impression, and the price an advertiser
will pay if their ad is clicked [9, 10]. A critical component
of the auction is an estimate of the probability that an ad
will be clicked on a given impression; also known as click-
through rate (CTR) prediction [16, 1, 11, 6, 4, 15]. While
there is a large literature on methods to predict CTR of ads,
the concern of this paper is with optimizing the layout (also
referred to as format) of an ad in addition to the choice of a
high performing ad for an impression. The same ad content
can be displayed in different ways: e.g., changing the back-
ground, border, fonts, the size of images, the degree/type
of interactivity, the spacing of elements, the order of text
and images, etc. We use the terms layout and format inter-
changeably, to refer to any difference in the look and feel of
an advertising slot. Figure 1 contains four examples of ad
layouts. While there are many different layouts, not all lay-
outs are feasible for a given impression and set of ads: e.g.,
the layout might be too large or small; or a format might be
specific to certain ad content, such as video ads.

The notion that the design of an ad affects ad performance
predates online advertising [8]. However, such designs are
often manually selected by humans. In this context, [7] pre-
sented an approach for modeling click response for different
ad arrangement templates on a web-page. Our main con-
tribution is to formalize the layout optimization problem
as a contextual bandit problem (Section 2). The policy pro-
duced by the contextual bandit defines a distribution over
layouts, which can be used to choose best performing layouts
for ads on future impressions. We show such algorithmic for-
mat selection significantly improves performance relative to
manual selection on the LinkedIn self-serve display advertis-
ing application. While we make no claim to new algorithms
for generating contextual bandit policies, we evaluate the
performance of several algorithms on data from Linkedin
(Section 4) through offline policy evaluation. In our experi-
ence, it is important to have an accurate offline estimation
method of whether a particular policy will work well in prac-
tice, without having to first deploy it. Simply testing many
different policies on live traffic using A/B testing methods
is costly. In fact, several bandit policies have tuning pa-
rameters that have to be selected carefully to ensure good
performance, offline policy evaluation is an effective mech-
anism to do so. We share our experience with adapting an
existing technique for policy evaluation, offline replay [14]
(a.k.a. exploration scavenging [12]) to layout optimization
(Section 3).

(a) Format 1,
160x600px

(b) Format 2,
160x600px

(c) Format 3,
160x600px

(d) Format 4,
300x250px

Figure 1: Examples of ad layouts. Each arm is re-
stricted to a certain size on a page.

2. LAYOUT OPTIMIZATION
We begin by posing ad layout optimization as an instance

of a contextual multi-armed bandit problem [13]. Each of
the K possible ad layouts is represented by an arm. The set
of all arms (often referred as the action space) is denoted
as A = {a1, . . . aK}, where ai denotes the ith format/arm.
Although the action space in our scenario is dynamic since
new formats are introduced and old ones retired, we shall
not consider this in our preliminary exposition to avoid no-
tational clutter. When a page is requested by a user, the ad
server is called to fill up all reserved ad slots. Each slot has
a size constraint and an available set of ad formats to choose
from. The ad-server has to choose one of the formats for the
slot and the ads that will be shown within the format. We
note that for the LinkedIn self-serve system, a given format
may display more than one ad. Thus, a format may consist
of more than one ad impression. A click on any ad within
the format is considered a click on the format itself. Every
instance to select an ad format on a page will be referred to
as an opportunity.

In this paper, we decouple layout optimization from ad
selection. We assume the ad selection algorithm is fixed and
only focus on the problem of selecting the best format for a
given request. While joint optimization of both ad-format
and ad selection is desirable, it is more complex (especially
due to tight latency constraints the ad-server has to adhere
to), and left as future work.

2.1 Ad format selection and contextual multi-
armed bandits

A multi-armed bandit problem is a sequential decision
making process; e.g., the stream of page views that include
ad slots is a sequence. Bandit problems involve making a
decision in each round; e.g., deciding which layout a ∈ A
to use for a given opportunity. Once a decision is made an
observation is collected, and the corresponding reward com-
puted; e.g., measuring whether the user clicked on the ad
format, with the reward either being the click itself, or the
payment for the click (pay-per-click).

An important extension of bandit problems is the addition
of context or side information. The context for opportunity
t is encoded as a feature vector xt ∈ X . Context can include
anything we know about opportunity t. Context can include
features of a predictive model, as well has hard constraints:
e.g., if the format has a 300 x 250 allocated pixel space, we
cannot choose arms/layouts that are larger or smaller. Every
layout is represented by an arm a ∈ A, but context allows



us to select a subset of feasible layouts for each opportunity
t.

For any opportunity t, we can encode whether or not a
user would have clicked on any of the ads displayed using
layout a ∈ A as rt,a ∈ {0, 1}. The vector of rewards for each
layout/arm is denoted rt = {rt,1, . . . , rt,K}. For theoretical
exposition, we assume the reward vector is drawn from an
(unknown) distribution that is i.i.d. We further denote the
expected reward when arm a is displayed for opportunity t
as r̄a.

Each opportunity t of a contextual bandit can be decom-
posed into three steps:

1. The world draws a context and reward from an unknown
distribution: (xt, rt) ∼ D. The context is revealed to the
player; the reward is not.

2. The player uses some policy π : X → A to choose an arm
π(xt), given the revealed context.

3. The world reveals the reward of the choice, rt,π(xt).

4. (Optional) The policy π is revised with the data collected
for this opportunity,

(
xt,π(xt), rt,π(xt)

)
.

A policy is simply a function that maps the context to
an arm. Policies can be deterministic or non-deterministic.
For instance, a hard-coded manual policy to choose format
for different ad slots by humans is a deterministic policy. A
non-deterministic policy maintains a distribution over arms,
P (π(x) = a |x), choosing one of them at runtime by sam-
pling from the distribution. Layout optimization seeks to
learn a policy which maximizes the average expected reward
per opportunity

R(π) = E(x)∼D

[
∑

a∈A

r̄aP (π(x) = a |x)
]
. (1)

We have defined the reward as a click, so layout optimiza-
tion is learning a policy which maximizes the click-through
rate. If we redefine the reward as product of bid and click-
throughs, the goal becomes maximizing expected revenue.

For the most part, this paper concerns itself with the set-
ting where an opportunity consists of steps 1-3. A non-
deterministic policy π is learned from data, prior to the first
opportunity based on historical data, and does not change.
The online bandit setting includes step 4, where the player
adapts their policy for the next opportunity using data col-
lected for the current one. To distinguish the two settings,
we refer to an online policy as πt, for t = 1 . . . T . The online
bandit problem does not require that the policy be updated
after each t; in Section 3.1.2, the policy is updated periodi-
cally in a batched mode2.

3. POLICY EVALUATION
The difficult part of maximizing Equation 1 is evaluating

R(π) on a given policy. Consider evaluation strategies used
in other settings:

1. A/B testing: To compute the marginal expectation
with respect to context distribution, segment the impres-
sions or users into B buckets at random, and serve each

2In the online bandit setting, the order of the rounds mat-
ters, which is not reflected in Equation 1. The sample esti-
mator for R(π), Equation 2, is readily adapted to the online
setting.

bucket with a different policy and estimate the theoreti-
cal expectation with empirical average. Each bucket may
need a substantial amount of traffic to generate a test
with sufficient power In large online systems, there can
be a substantial engineering cost in deploying many mod-
els. Not all policies are better than the current serving
one; exploring the policy space often involves sacrificing
immediate expected reward for higher expected future re-
ward. Furthermore, optimal performance of a given pol-
icy often involves tweaking some constants, running A/B
tests for this purpose is often prohibitive.

2. Build a model for D: Computing R(π) is straightfor-
ward if we have the probability density function for D.
However, this would generally involve building an accu-
rate model of user activity, including when a user will
click on an ad. Accurately modeling D would allow for
solving computational advertising beyond just layout op-
timization. Modeling D is not very practical, since his-
torical data does not typically contain observations on all
arms show in a given context3.

What we do have in historical tracking data is a log of
i) past impressions, along with necessary context; ii) what
format was used to display for an opportunity, i.e., the arm
chosen; iii) whether the displayed format was clicked or not,
i.e., the reward. The formats are chosen using a fixed serv-
ing policy s : X → A, so the historical data consists of a
time-ordered stream {(xt, s(xt), rs(xt))}τt=1, where τ is the
present.

In the published literature on contextual bandits, using
historical data from policy s to evaluate other policies π $= s
is referred to as offline replay [14], or exploration scavenging
[12]. Offline replay describes a class of sample estimators

R̂(π) =
1
T

T∑

t=1

∑

a∈A

rs(xt)1[π(xt) = s(xt)]wt,a, (2)

where 1[·] is the indicator function, and wt,a is a normaliza-
tion weight,

wt,a =
1

P (s(xt) = a | π(xt) = a)
.

In our ad layout selection problem, the contextual features of
an opportunity are the channel (web page) and the layout
size. Each channel and size combination has its own set
of admissible formats. In other words, a layout can only
be recommended for one channel and one layout size. Let
ct, #t denote the channel and layout size of impression xt,
t = 1, ..., T . Then,

P (π(xt) = a) = P (π(xt) = a | ct, #t).

For any other channel c or size #, c $= ct or # $= #t,

P (π(xt) = a | c, #) = 0.

3a.k.a. the partial-label problem [14].



Let rt = rs(xt)1[π(xt) = s(xt)]. By substituting wt,a and rt
into Eq. 2, we have

R̂(π) =
1
T

T∑

t=1

∑

a∈A

rt
P (s(xt) = a |π(xt) = a)

=
1
T

T∑

t=1

∑

a∈A

rt · P (π(xt) = a)
P (s(xt) = a ,π(xt) = a)

=
1
T

T∑

t=1

∑

a∈A

rt · P (π(xt) = a | ct, #t) · P (ct, #t)

P (s(xt) = a ,π(xt) = a)

=
1
T

∑

c,#

P (c, #) ·
T∑

t=1

∑

a∈A

rt · P (π(xt) = a | c, #)
P (s(xt) = a ,π(xt) = a)

Given a channel c and a layout size #, P (π(xt) = a|c, #) only
depends on a. Hence, we can let hc,#,a = P (π(xt) = a | c, #)
and substitute it into R̂(π), we have

R̂(π) =
1
T

∑

c,#

P (c, #) ·
T∑

t=1

∑

a∈A

rt · hc,#,a

P (s(xt) = a , π(xt) = a)

=
∑

c,#

P (c, #) ·
∑

a∈A

T∑

t=1

rt · hc,#,a

T · P (s(xt) = a ,π(xt) = a)

≈
∑

c,#

P (c, #) ·
∑

a∈A

Rc,# · hc,#,a

Ma
, (3)

where Rc,s is the total reward for policy π obtained within
channel c and layout size s, Ma is the number of matched
impressions for arm a. Eq. 3 requires estimating various
distributions since they are unknown. We let:

Rc,# =
∑

t∈{t | ct=c,#t=#}

rt,

hc,#,a ≈ |{t |π(xt) = a, ct = c, #t = #}|
|{t | ct = c, #t = #}| ,

P (c, #) ≈ |{t | ct = c, #t = #}|
T

,

Ma = T · P (s(xt) = a , π(xt) = a)

≈ |{t|s(xt) = a,π(xt) = a}|.

As can be seen, the accuracy of the estimate R̂(π) de-
pends in turn on how well the various probabilities can be
estimated. Since this is done from historical data, this data
plays a major role in guaranteeing a good estimate. For ex-
ample, if the serving policy s rarely serves some layouts a,
this could lead to a high variance estimate. Similarly, if the
evaluated policy π tends to serve some a very few times the
variance could increase although this could be a consequence
of a providing very little reward. In an extreme case, if s
never serves a, there is no way to know the reward of π if π
always recommends a. This is to a large extent equivalent
to the problem that arises in importance sampling when the
proposal distribution has near zero probability in areas the
distribution of interest has non-negligible mass.

3.1 Implementation in Hadoop
In order to evaluate the replayer estimation framework

discussed in the previous section at scale, we implemented
it in the Map/Reduce framework. The testing event set is
partitioned into several subsets. Each reducer only handles

the evaluation for one event subset. The general data flow
is shown in Figure 2.

HDFS

EventTransformer

Generic Avro Record

EventTransformer EventTransformer

Mappers

Reducers

Recommenders Recommenders

RankEvent

Model Files

Distributed Cache

Result File Result File

Figure 2: Data Flow In Hadoop

In Figure 2, the historical events (such as opportunities)
are stored in the distributed file system (HDFS). The map-
pers transform every event record into a ranked event by
using a specified event transformer. The ranked event is a
unified data structure consisting of event attributes, time
stamp and reward. Testing policies are implemented as rec-
ommender instances in every reducer. The replayer in the
reducers feed every ranked event to each recommender and
records their output.

We considered two scenarios for offline evaluation. One
scenario for static recommendation policies, where the mod-
els never change during the evaluation, but are kept fixed
from the start of the evaluation. In this scenario, all models
are built before the evaluation starts. The other scenario
is the case of dynamic recommendation policies, where the
models are updated based on the user feedback recorded
from the events that they recommended. The static scenario
omits Step 4 (Section 2.1); the dynamic scenario includes it.

Based on these two scenarios, we consider two different
methods to shuffle and partition the ranked events from the
mappers.

3.1.1 Without Feedback
If the recommendation policies are static and there is no

feedback from the test events, the ranked events from the
mappers can be randomly assigned to any reducer. The re-
player only needs to address the correct data size balance
for the reducers. In our implementation, the Hadoop parti-
tioner is computed by a hash function taking as argument
the time stamp of the event.

3.1.2 With Feedback
If the recommendation policies are dynamic and the re-

player needs to provide feedback to these policies, the ranked
events from the mappers cannot be randomly shuffled and
assigned because the sequential order of the test events af-



batch1 batch2 batch3 batch4

Event sequence

Time 

Provide feedback to models 
(using a callback function)

Figure 3: Batched Feedback

fects the test policies. For some bandit algorithms, such as
the ε-first algorithm, the exploration is done only on the
events at the beginning so we cannot break the original or-
der of the historical events. To keep the original event order,
the time stamp of the ranked event is a part of the key given
to the reducers. As a result, Hadoop is able to sort all rank
events by their time stamps before sending the reducers.

In a real system, the user feedback cannot in general be re-
trieved immediately after each impression. In each reducer,
the event sequence is split into a collection of batches. The
feedback is accumulated within a batch and only provided
to the recommendation models at the end of each batch (see
Figure 3). In our implementation the batch size is a free
parameter, given by the user.

4. EVALUATION
In this section, we first present the performance of various

recommendation policies for ad format selection by using
the introduced replayer. Then, we compare the accuracy
of the replayer estimation with the live (online) system for
some policies. All of the experiments are in the context of
the LinkedIn advertising platform using data from certain
randomly selected markets. Adequate measures were taken
to preserve user privacy while conducting all analyses.

Table 1: Recommendation Policies Employed

Algorithm Description
ε-greedy(ε) With probability ε it recommends an item uni-

formly at random, otherwise it recommends the
best item (arm) [17].

ε-ngreedy(c,d) A variant of ε-greedy algorithm, where ε decreases
with time. Parameters c and d control the speed
of deceasing [3].

ε-first(ε) Recommends an item uniformly at random for the
first ε proportion of time and always recommends
the best item for the remaining test events [18].

softmax(α, k) Randomly draws an item from the multinomial
item distribution with parameters θ = (θ1, ...θm)

to recommend, where θi =
k+Pα

i∑m
j=1(k+Pα

j ) , Pi is

the average reward for the i-th item, and m is the
number of items [17].

softmax(α) softmax(α, 0). Note that softmax(0) is the uni-
form random policy, which is used as a baseline
policy.

ε-softmax(ε,α, k) With probability ε it recommends an item uni-
formly at random, otherwise recommends accord-
ing to softmax(α, k).

ε-firstsoftmax(ε,α) Recommends an item uniformly at random for the
first ε proportion of time and uses softmax(α) to
recommend for the remaining test events.

ucb(ρ) A variant of UCB1 (Upper Confidence Bound)
algorithm with exploration parameter ρ [3].

Thompson sam-
pling

Beta-Bernoulli Thompson Sampling [5].

original Original serving policy, employed to generate the
historical data.

4.1 Ad Format Selection
The goal in the ad format selection problem considered

in this section is to select appropriate ad formats that max-
imize the cumulative pay-off: the cumulative CTR (click-
through-rate) or alternatively revenue. Other performance
quantities are possible but we will use these as they are sim-
ple to measure for the purposes of this paper. As discussed
before, in real scenarios new formats are added into the on-
line system on a regular basis. The recommendation mod-
els can better predict the popularity of the new formats as
they are displayed. Thus, the trade off between exploration
and exploitation is a fundamental element in this problem.
Therefore, this problem is formalized as a bandit problem,
where an arm corresponds to an ad format (or an item in
general) and the reward is a click (binary reward) or revenue
(continuous value reward), depending on the problem.

4.1.1 Comparison of Bandit Algorithms

İ-first(10min)
İ-first(12hour)
İ-first(1day)
İ-first(1hour)
İ-first(30min)
İ-first(3hour)

İ-firstsoftmax(1day,15)
İ-firstsoftmax(1day,2)
İ-firstsoftmax(1day,30)
İ-firstsoftmax(1hour,15)
İ-firstsoftmax(1hour,2)
İ-firstsoftmax(1hour,30)

İ-greedy(0.001)
İ-greedy(0.002)
İ-greedy(0.005)
İ-greedy(0.008)
İ-greedy(0.01)
İ-greedy(0.1)
İ-greedy(0.2)

İ-ngreedy(0.001,0.1)
İ-ngreedy(0.001,0.5)
İ-ngreedy(0.002, 0.1)
İ-ngreedy(0.002,0.5)
İ-ngreedy(0.01,0.5)
İ-ngreedy(0.1,0.5)
İ-ngreedy(0.2,0.5)
İ-softmax(0.01,15)
İ-softmax(0.01,2)
İ-softmax(0.01,30)
İ-softmax(0.05,15)
İ-softmax(0.05,2)
İ-softmax(0.05,30)
İ-softmax(0.1,15)
İ-softmax(0.1,2)
İ-softmax(0.1,30)

original
softmax(0)

softmax(15)
softmax(15,0.01)

softmax(2,0.01)
softmax(3)

softmax(30)
softmax(3,0.01)

Thompson Sampling
ucb(0.01)

ucb(0.1)
ucb(0.2)
ucb(0.5)

ucb(1)
ucb(2)

Revenue Per Request

Batch = 10min
Batch = 1day

Figure 4: Comparison of bandit algorithms without
historical training data

In this evaluation, we consider two general experimental
settings. In the first setting, used for evaluating traditional
multi-armed bandit algorithms, policies do not have any his-
torical information about the ad formats. This setting is
useful to evaluate the effect of new ad formats. However, as
most of the ad formats are not new at any given time, we
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Figure 5: Comparison of bandit algorithm with 7
days of historical training data

also employ another experimental setting to look at these
policies when we have historical data.

The testing data consists of about 184M sampled impres-
sion events collected for a period of several weeks. There are
more than 40 channels and each channel has about 2 to 15
layout sizes. The ad formats are not uniformly served in the
historical data because some channels receive a large amount
of traffic and some a relatively smaller amount. Since some
policies are randomized algorithms and sensitive to the or-
der of the testing events, we randomly split the entire data
sequence into 5 subsequences and run every policy indepen-
dently. The results are then averaged appropriately using
the number of matched events (Eq. 3). Table 1 summarizes
the multi-armed bandit algorithms used in this evaluation.
Note that softmax(0) is the uniform random policy. In this
evaluation, softmax(0) is regarded as a baseline policy.

Figure 4 shows the revenue per request when no historical
data is available at the beginning of the experiment (cold-
start setting). Figure 5 shows the revenue per request with
the previous week of historical data available for training
(warm-start). The x-axis has undergone scaling to remove
confidential information. Batch = t indicates that a time
of length t is employed to simulate updating the recom-
mendation models. We use either one day or 10 minutes,
this means that the system will update the recommenda-

tion models daily or every then minutes. In addition to this,
we also vary different parameters for the bandit algorithms
considered, as indicated in the graph.

As shown in Figure 4, by choosing appropriate parame-
ters, ε-softmax, ε-firstsoftmax and ε-greedy have the best
performances. For ε-softmax and ε-firstsoftmax, when α is
large, their strategies are close to ε-greedy. ε-ngreedy is a
variant of ε-greedy [3] with ε decreasing as follows:

ε = min{1, cK
d2n

},

where c and d are parameters, K is the number of formats
that can be recommended, and n is the total number of
recommendations.

There are many variations of the UCB algorithm. In
this experiment, we apply a variant of the UCB1 algorithm,
UCB1(ρ), which can be seen as a generalized UCB1 algo-
rithm [2]. Given an ad format request, assume there are K
formats that can be recommended, the UCB1(ρ) algorithm
recommends the format:

argmax
i∈{1,...,K}

ri
Ti

+
√

ρ logn
Ti

,

n =
∑K

i Ti,

where ri is the total revenue from the i-th format, Ti is
the total number of recommendations for the i-th format,
and ρ is a parameter controlling the priority of exploration
versus exploitation. When ρ is larger there is more explo-
ration. In the experiment, ρ is varied from 2 to 0.01. When
ρ = 2, UCB1(ρ) is the original UCB1 algorithm. In Figures
4 and 5, UCB1(0.01) achieves higher revenue than any other
UCB1(ρ). This means that, for this particular setting, we do
not need to spend a lot of events on exploration and should
focus more on exploitation. In Figure 4, for “Batch = 10
min”, UCB(ρ) with ρ >= 0.1 is even worse than the uni-
form random policy (softmax(0)). This is because the UCB
prefers to explore the format that has a large uncertainty.
However, those formats may be underperforming formats
(whose CTRs are lower than the average CTR). Therefore,
the UCB policy could be worse than the random policy.

In Figures 4 and 5, the results for ε-softmax, ε-firstsoftmax,
ε-greedy and UCB1(ρ) are similar to the conclusion men-
tioned in [3]. Through parameter tuning the performance of
ε-greedy and UCB1(ρ) can approach the optimal one. When
the algorithms are not well-tuned they can degrade rapidly.
However, the optimal parameter values depend on the dis-
tribution of the data set. If the data distribution changes,
the tuned parameters may not be as effective anymore. On
the other hand, if we already have historical data for pa-
rameter tuning, those multi-arm bandit algorithms are in a
warm-start setting rather than cold-start setting. The best
parameter tuned in one setting may not be the best for the
other setting. As shown in Figure 4 (cold-start), ε-greedy
with larger ε performs well. But in Figure 5 (warm-start),
there are 7 days’ historical training data, so ε-greedy with
smaller ε performs better. Note that the best ε-greedy in
Figure 5 is better than the best ε-greedy in Figure 4.

For ε-ngreedy, [3] asserts that it should approach the op-
timal performance by careful parameter tuning. However,
[19] also indicates that the family of ε-decreasing algorithms
does not have a clear advantage over ε-greedy. Our evalua-
tion results shown in Figures 4 and 5 confirm the point in
[19].



Figure 6: Daily Revenue Per Request for softmax(0)

Figure 7: Daily Revenue Per Request for softmax(15)

The performance of Bernoulli Thompson sampling is close
to the best observed performance when the batch size is 10
minutes. However, when we increase the batch size to 1 day,
it cannot adjust its Beta distributions in time. As a result,
it wastes some impressions on exploration and spends less
on exploitation. Considering the cold-start and warm-start
settings together, Bernoulli Thompson sampling is overall
the best policy in our evaluation for ad format selection.

4.2 Accuracy of Replayer Estimation
In order to evaluate the accuracy of the replayer estimates

described, we use data from the online LinkedIn ad system,
where various policies were implemented, as the source of
ground-truth. In the online production systems, the traffic
is split into several portions that run different recommenda-
tion policies. For this paper we select the traffic where two
of these policies are run. In particular, we selected two ex-
treme policies for evaluation: softmax(0) and softmax(15).
We calculate daily revenue per request for the online system
and let this be our ground-truth performance for these poli-
cies. We use the historical data to run the replayer’s offline
evaluation approach and estimate the revenue per request
for the same policies.

In Figures 6 and 7 we can observe the difference between
the estimated value and the actual value for the metric of
interest. This shows the accuracy of the replayer estimates.
The average reward is computed as the total reward over the
number of matched events, as in [14]. The historical data
is not uniformly served since the ad recommendation has
to be optimized. As a result, the average reward estimate
is biased [14]. As shown by these figures, the average re-
ward always underestimates the performances of softmax(0)
and softmax(15). The normalized reward is the estimate
proposed in Section 3. As shown by the two figures, the
normalized reward is always closer to the actual value of the
revenue per request than the average reward.

5. CONCLUSION
This paper presented a study of optimizing real-time, web-

page ad layout selection, where the goal is to optimize user
response. Optimal ad layout selection was formulated as
an instance of the contextual bandit problem. As evaluat-
ing a battery of bandit algorithms on an on-line system is
costly and impractical, the paper described a method for
large scale offline evaluation. In particular, we have formu-
lated a method that can be used even in cases where the
serving policy is biased (i.e., items are not served at ran-



dom). This is an important practical problem for which
a formal approach has not been provided in detail in the
past. In addition we provided a practical system design tak-
ing advantage of the Hadoop-MapReduce architecture. We
provided an experimental comparison among many bandit
algorithms in the context of a large system, the LinkedIn
Ad platform. Additionally, we compared the proposed of-
fline policy evaluation approach with the on-line production
system and demonstrate its accuracy.

We did not consider the interaction between ad-format
selection and ad selection within a format. A complete solu-
tion would require joint optimization that makes the prob-
lem considerably difficult since the number of ads in a sys-
tem is typically large. Further, ranking at runtime has to
be done under strict latency constraints. Thus, evaluating
the goodness of all possible format and ad combinations is
not feasible, approximate procedures are needed. We plan
to pursue such an approach in the future.
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