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Abstract We summarize the contributions of this paper as follows:

e We develop a multi-class large margin classifier that

Multi-class problems have a richer structure than
binary classification problems. Thus, they can po-
tentially improve their performance by exploiting
the relationship among class labels. While for the
purposes of providing an automated classification
result this class structure does not need to be explic-
itly unveiled, for human level analysis or interpreta-
tion this is valuable. We develop a multi-class large °
margin classifier that extracts and takes advantage

of class relationships. We provide a bi-convex for-
mulation that explicitly learns a matrix that cap-

tures these class relationships and is de-coupled

from the feature weights. Our representation can

take advantage of the class structure to compress

the model by reducing the number of classifiers em-
ployed, maintaining high accuracy even with large
compression. In addition, we present an efficient
formulation in terms of speed and memory.

1 Introduction

Multi-class problems often have a much richer structure tha
binary classification problems. This (expected) propests i
direct consequence of the varying levels of relationsHips t °
may exist among the different classes, not available by na-
ture in binary classification. Thus, it is of no surprise that
multi-class classifiers could improve their performancexy
ploiting the relationship among class labels. While for the
purposes of providing an automated classification residt th 2
class structure does not need to be explicitly unveiledHor
man level) analysis or interpretation purposes, an expép-
resentation of this structure or these class relationstaipde
extremely valuable.

As a simple example, consider the case for a given pro
lem, when inputs that are likely to be in cldssare also likely
to be in class:, but very unlikely to be in clasks. The abil-
ity to provide such explicit relationship information cae b
helpful in many domains. Similarly, the decision functiam f
determining clas#; can benefit from the decision functions
learned fromky, andks - a form of transfer learning. This is
helpful specially when training samples are limited.
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takes advantage of class relationships and at the same
time automatically extracts these relationships. We pro-
vide a formulation that explicitly learns a matrix that
captures these class relationships de-coupled from the
feature weights. This provides a flexible model that can
take advantage of the available knowledge.

We provide a formulation to the above problem that
leads to a bi-convex optimization problem that rapidly
converges to good local solutidd-Khayyal and Falk,
1983; Bezdek and Hathaway, 2003~urthermore, we
present a modified version of our general formulation
that uses a novel regularization term and that is efficient
in both time and memory. This approach is comparable
to the fastest multi-class learning methods, and is much
faster than approaches that attempt to learn a comparable
number of parameters for multi-class classification.

Our representation can take advantage of the class struc-
ture to compress the model by reducing the number of
classifiers (weight vectors) and, as shown in the experi-
mental results, maintain accuracy even with large model
compression (controllable by the user).

Our experiments show that our method is competitive
and more consistent than state-of-the-art methods. It of-
ten has a lower test error than competing approaches, in
particular when training data is scarce.

Related Work

Two types of approaches are generally followed for address-
ing multi-class problems: one type reduces the multi-class
problem to a set of binary classification problems, while the
psecond type re-casts the binary objective function to aimult
category problem. Variations of the first approach include:
(a) constructing binary classifiers for every pair of classe
(one-vs-one method), and (b) constructing binary classifie
for differentiating every class against the rest (onees-r
method)[Friedman, 1996; Platt al, 2004. The results of
these binary classifiers can be combined in various ways (see
[Allwein et al, 2004).
We focus on the second, where the multi-class problem is
cast as a single optimization probldiveston and Watkins,



1999; Bredensteiner and Bennett, 1p9This is appealing tor of ones and a vector of zeros in a real space of arbitrary
because the problem can be represented compactly, anddimensionality are denoted lzyand0 respectively. Thus, for
more clearly defines the optimal classifier for theclass e € R™ andy € R™, ¢’y is the sum of the components @f
problem; basically, all classes are handled simultangousl We can change the notation ofaparating hyperplanfrom
One of its main drawbacks is that the problem size/time com+ () = @'z —~ to f(x) = 2’w, by concatenating a1 com-
plexity growsimpractically fast. Thus, current research has ponent to the end of the datapoint vector, e~ [z, —1].
focused on algorithm efficiendgCrammer and Singer, 2001; Here the new parameterwill be w = [w, 7].
Tsochantaridi®t al., 2005; Borde®t al., 2007. Let m be the total number of training points ard be
The approach taken ifCrammer and Singer, 20Dton-  the number of classes. The matriX will be used to rep-
sisted of breaking the large resulting optimization prable resent numerical relationships (linear combinations) ragno
into smaller ones, taking advantage of sequential optimizathe different classifiers used for a given problem. In some
tion ideas[Platt, 1999. However, in general the derivatives cases (as shown later)/ can be seen as an indicative of
are of sizeO(m?K?), for m data points andk classes, the relation among classes which are not usually consid-
and thus this approach does not scale well. [Teochan- ered when learning large margin multiclass classifiers{one
taridis et al, 2004 this problem was circumvented by em- vs-rest, one-vs-one, etc.). In more recent papers, a simpli
ploying the cutting plane algorithmrequiring only a par- fied version of the inter-class correlation matfik is prede-
tial gradient computation. A stochastic gradient step is fu fined by the usellLeeet al, 2004 or not considered explic-
ther employed ifBordeset al, 2007, where various im- itly [Crammer and Singer, 2001; Tsochantarigisl., 2005;
plementations were compared with the following results: fo Bordeset al, 2007, separated from the class weight vec-
the problem sizes/implementations considered, the method tor/matrix.
[Crammer and Singer, 20pWas the fastest, but it had by  The idea behind our algorithm is to learn and consider the
far the most memory requirements. The two other method#mplicit underlying relationships among thévase classifiers
[Tsochantaridiet al, 2005; Borde®t al,, 2007 had similar ~ we want to learn (depending on the chosen model) in order
memory requirements. to improve performance. Note that the dimensions of the ma-
Despite these important developments, we note two imirix M (b x p, number of base classifiers by number of final
portant shortcomings: (1) the solution does not provide thelassifiers) are strongly related to the chosen model for mul
means to uncover the relationship between the classes tclass classification. For example, when a paradigm simila
more importantly to incorporate domain knowledge aboutto the one-vs-rest method is considereds K andb < p,
these relationships, and (2) there is no clear way to more dif we choseb = p = K , M is a K x K square matrix.
rectly relate the weight vectors associated with each clas§his is, we are going to learA” classifiers, each one trying
The first shortcoming is more related to model interpretabil to separate each class from the rest, but they are going to be
ity and knowledge incorporation, while the second is relate learned jointly (interacting with each other and sharirfgrin
to the flexibility of the approache(g.,to learn weight vectors mation throughM) instead of separately as is the case with
with specific, desirable properties). the standard one-vs-rest method. Similarly, when the @gre-v
The first issue was partly addressed Amit et al., 2007 one method is appliegh = K(K — 1)/2 andb the number
where a class relationship matrix is explicitly incorpexht of base classifiers can be any number large enougty. If
into the problem, in addition to the usual weight matrix. How b = p = K(K — 1)/2 andM = I (fixed), the result is the
ever, this method is limited to regularization based ontime s exact one-vs-one method, however learniigwill enforce
of the Frobenious norms of these matrices. As shown in theisharing the information among classifiers and it will help im
work, this is equivalent to a trace-norm regularizationhef t prove performance. One of the main advantages of this pro-
product of these two matrices (a convex problem). As a conposed method is the possibility of using a smaller number of
sequence of the above limitation, it is not clear how addi-base classifiers than final classifiers (case p). This will
tional information can be incorporated into the relatidpsh result in a more compact representation of the models with
and weight matrix. In this paper, we address these shortcontess parameters to learn and hence less prone to overfitting,
ings and present a formulation that, in addition to being ef-specially when the data is scarce.
ficient, allows for a better control of the solution spacehbot  Let A’ represent the training data used to trainiffieclas-
in terms of the class relationship matrix and the weight masifier wherel = 1, ..., p. For one-vs-restAd! = A for every
trix. We note that the same notionlaitiden featuresnotivat-  [. However, for the one-vs-one approathwill represent the
ing [Amit et al., 2007 is handled by the current formulation; training data for one of the combinations, i.e. a matrix that
however we concentrate on viewing this as representing theonsists of the training points from th& and thej*" classes
class structure. i,j € (1,..., K). D" will signify a diagonal matrix with la-
bels (1 or —1) on the diagonals. The way we assign labels to
training points depends on the approach we implement. For
instance, for a one-vs-rest setting the labels correspgrtdi
Before we introduce our method, let us define the notatiorthe data points in clagswill be 1, whereas the labels for the
we use in this paper. The notatighc R™*" signifies areal rest of the data points willbe 1. LetWW € R™"*? be a matrix
m x n matrix. For such a matrix4’ denotes the transpose of containing theb base classifiers ant/* be the columr of
A and A; thei-th row of A. All vectors are column vectors. the matrixM € R?*P. Similarly to[Fung and Mangasarian,
Forz € R", ||z||, denotes the-norm,p = 1,2,00. Avec- 2001, we can define the set of constraints to sepa#atsith

3 General Formulation



respect to the labeling defined If as: 4 Practical Formulations
L gl l I _
. DAWM +y =e 4.1 The one-vs-rest case
Using these constraints, the problem becomes: | der to simplify notati hen th Lf |
. P — DLAYW M2 + W12 M2 n order to simplify notation, when the one-vs-rest formula
(vnle,lzxr}) 2= #lle Iz + Wl + v 1Mfe tion is considered, formulation (1) can be indexed by train-
(1) ing datapoint and rewritten as below. Let us assume that
2 2 R ~k
where|[W||7 and || M ||}, are the regularization terms foF ¢k (;) = 2/w* represents théth classifier andf;" repre-

and M respectively, and the pajy, v) control the trade-off  sents the output of théth classifier for theit" datapoint,

between accuracy and generalization. . ~k , '
y g A;. ie. fi = A;w*. Let us define a vectof; such that

We can solve Eq. (1) in a bi-convex fashion such that when -1 K., )
W is given then we solve the following problem to obtain /i = [fi »--- fi . We also define a vectoy;, of slack
variables such that; = [y;,...,y;*]’ and a matrixi¥ such

. p gl 12 2
I(r]l\}l)l o1 blle = DPATWM|I3 + v || M| % (2) thativ = [w!, ..., wX]

When M isAgiven, on Ehe other hand, just note that ,ip p ||e—DiMfi||§+ZkK:1 ||wk||g+y|\M||§
AWM = AW, where Al = [M, A',... M, Al and W)

. . . 4)
W= [Wy,...,Wy]". Using the new notations, we can solve thjs formulation can be solved efficiently by exploiting the
the following problem to obtaifil’: ) bi-convexity property of the problem similar f6unget al.,

min Y7 plle — DlAzW”g + HWH ©) 2004. Subpr(.)bllem (3)isan unconstrair)eq convex qqa_dratic
(W) ' 2 problem that is independent of any restrictions\drand it is

We can summarize the bi-convex solution to Eq. (1) as fol-easily obtained by solving a system of linear equations. When
lows: M = REXK ‘this is also an unconstrained convex quadratic
o ) ) ) programming problem and its solution can also be found by
0. initialization: if M is a square matrix thed/® = I splving a simple system of linear equations. The complexity
otherwise initializel by setting the components@mr  of formulation (2) depends heavily on the conditions immbse
1 randomly. on M. In what is left of the paper, we impose conditions on
M, such that its elements are bounded in theg/-sét 1]. By
doing this, M can be associated to correlations among the
classes (although symmetry was not enforced in our experi-
ments to allow more general assymetrical relationshipisis T
is achieved by adding simple box constraints in the elements
of M, modifying formulation (2) into a constrained quadratic
programming problem.

1. Atiterationt, if the stopping criterion is not met, solve
EqQ. (3) to obtainV**! given M = M*.

2. For the obtainedl’**!, solve Eq. (2) to obtaid/**+!:

In contrast with[Amit et al, 2007, that recently pro-
posed implicitly modeling the hidden class relationships t
improve multi-class classification performance, our appio 4 5 Efficient formulation for the one-vs-rest case
produces an explicit representation of the inter-classiosi- ) ) _ o _
ships learned. IfAmit et al, 2007, they learn a matri¥y’ In this section, we propose a _shghtly moqmed version of our
to account for both class relationships and weight vectorsformulation presented in section 4.1. This modified formula
whereas, in our formulation we explicitly de-coupled the ef tion is time and memory efficient and requires neither build-
fect of the class relationships from the weight vectors capind large sized matrices nor solving large sized systems of
tured inM andW respectively. Another important difference linear equations. o _
with [Amit et al, 2007 is that in our formulation, additional ~ Instead of using the 2-norm regularization term in formu-
constraints on\/ can be added to formulation (1) to enforce lation (4) that corresponds to a Gaussian prior on each one
desired conditions or prior knowledge about the problem. A®f the hyperplane weight vectors®, we use a joint prior on
far as we know, this is not possible with any previous relatedhe set ofw*’s, inspired by the work presentedfibeeet al,
approaches. Examples of conditions that can be easily im2004. In that work, they considered the following vector-
posed onM without significantly altering the complexity of Vvalued class codes:
the problem are: symmetry, positive definiteness, comgtrai Di, = 4 A belqngs to class (5)
bounds on the elements df, a prior known relation between | 7= otherwise _
two or more of the classes, etc. Experiments regarding difhey showed (inspired by the Bayes rule) that enforcing,
ferent types of contriants i/ is currently being explored for each data point, that the conditional probabilities fuf t
and it will be a part of future work. Since we are also ex-k classes add to 1 is equivalent to the sum-to-zero con-
plicitly modeling the classifiers weight vectori, separately ~ Straint on the separating functions (classifiefisfor all x):
from the matrix), we can also impose extra conditions on Zle fx(x) = 0. However, when considering linear classi-
the hyperplane$V’ (alone). For example: we could include fiers, we have that:

regularization-based feature selection, we could alsoreaf K K

uniform feature selection across all theclassifiers by using Vo, Y ful@) =0= (O _wh) =0 (6)

a block regularization on all thecomponents of th&” hyper- ) k=1 k=1

plane classifiers, or simply incorporatetandblock feature Inspired by this constraint, instead of the standard 2-norm
selectionYuan and Lin, 200bto formulation (1). regularization ternEkK:1 }|wk| ; we propose to apply a new




regularization term inspired by the sum-to-zero constrain
2

Hzle w’“H . By minimizing this term, we are favoring so-
2

lutions for which equation (6) is satisfied (or close to be sat
isfied). As stated ifLee et al, 2004, by using this regu-
larization term the discriminating power of tlieclassifiers

is improved, especially where there is not a dominatingsclas

(which is usually the case). With the new regularizatiomter
we obtain the following formulation, which is very similar t
formulation (4):

. m i K 2
min Yoy lle = DIMfill3 4 || 3y w13 + v |M])5
(7)

5 Exploring the Benefits of theM Matrix

There are two main advantages of incorporating thema-

trix explicitly in our proposed formulation.

One of them is to discover useful information about the re-
lationships among the classes involved in the classifinatio
problem. In order to present an illustrative toy example, we
generated two-dimensional synthetic data with five claases
depicted in Figure & As shown in the Figure, there are
five classes wher€l ass 1 is spatially related ta@Cl ass

2 (the classes are adjacent and similarly distributed) and si
ilarly Cl ass 3 is related toCl ass 4. On the other hand,
Cl ass 5 is relatively more distant to the rest of the classes.

The solution to formulation(7) can be obtained by using an"When we train our algorithm using an RBF kernel, we ob-

alternating optimization algorithm similar to (1), but tvit

tain the classifier boundaries in Figurgé dnd theM matrix

some added computational benefits that make this formulashown in Figure & For this toy example, in thé/ matrix,
tion much faster and scalable. The main difference is that igimilarity relations would appear as relatively large dbto

the second iterative step of the alternating optimization,
stead of (3), the problem to solve becomes:

min > lle = DIM fill3 + |1 >y w”|I3

(8)

M matrix coefficients. The block structure of the matrix sug-
gests the similarities among some of the classes. Note that
for similar classes the correspondifg coefficient has op-
posite signs. For example, let us explore the resulfffor)

whose solution can be obtained by solving a system of lineaand f»(x). Note if z;, belongs to class 1 we must have that

equations such that* = [w'’,..., wX'] = —P~1¢, where

P =T'® A (the standard Kronecker product) with= M’ M
Here,g = —23"7" | B'¢c, where

Dy M A

Dy Mix A;
B! = : (9)
Note thatP is a matrix of sizeK(n + 1) by K(n + 1).
Recall thatK is the number of classes ands the number of
features. As we presented above, the solution to (@) is=

fi(xzx) > 0 but because class 1 and 2 are simifafxy) is
likely to be greater than zero as well. This potential praoble
is compensated by/ such that the final classifigf (z) for
class 1 is approximately.9 f1 (zx) — 0.1 f2(xy). This means
that in case of confusion (both classifiers are positive:fgra
large magnitude of.(zy) (classifier 2 is very certain tha,
belong to class 2) could swing the valuefaof ;) to be neg-
ative (or to change its prediction). Note that thematrix in
Figure L, learned the expected relationships among the five
classes. Another property of thid matrix is that by using a
rectangula/, we can decrease the number of classifiers re-

—P~!qand can be calculated efficiently (both memory-wisequired to classify a multiclass problem by slightly modifyi
and time-wise) by using a basic property of the Kroneckerour original formulation. In order to exemplify thi&/ prop-

product: -
Pl=T"'gA!

We can draw the following conclusions from the equation
shown above:

1) CalculatingA—! € R+ x(n+1) andl—1 € REK*K gep-
arately is enough to obtaiR—! € RE(n+1)xK(n+1),

2) At every iteration of our method, only the inverse of
I' € RX*K js required to be calculated whef¢ is around
ten for most problems.

3) We can calculate any row, column or componentPof!
without actually building or storing®~! itself or evenP.

4) Consequently, no matter how big ti&—! matrix is, we
can still pelrform basic matrix operations withi—! such as
w* =—-P~'q.

5) Finally, there is a relatively low computational cost in-
vol\{ed on finding the solutiom*, regardless of the size of
P~

The time complexity for this efficient method can be pre-
sented as0(n? + iK3), wherei is the number of itera-
tions it takes for the alternating optimization problem ¢me¢

S

erty, let us consider the one-vs-one approach where we are
required to traip = K (K — 1)/2 classifiers. Our goal is to
trainb < p number of classifiers that can achieve comparable
accuracies. This property has the potential to create coimpa
multiclass classification models that require considgrkgss
parameters to learn (hyperplane coefficients) especidbnw
non-linear kernels are used. For example, let us consiger th
case where a kernel with 1000 basis functions is used and
the one-vs-one method is considered for a 10-class problem.
Using the standard one-vs-one methpd= 45 classifiers
have to be learned with000 coefficients eachd6000 coeffi-
cients). However, by considering € R'°*45 we only have

to learn10 x 1000 plane coefficients plus M (450 coefficients)
for a total of 10450 coefficients. This compact represeonati
might benefit from Occam’s razor (by avoiding overfitting)
and hence resulting in more robust classifiers.

6 Numerical Experiments

In these experiments, we investigate whether we can improve
the accuracy of one-vs-rest by using the information that we

verge. In our experiments, it took five iterations on averagdearn from inter-class relationships, how the performasice
for our methods to converge. The memory complexity ofour classifiers compares with related state-of-the-arh oo,
our methods are also very efficient and can be presented asd if we can achieve the accuracyasfe- vs- one by us-

O(n? + K?).

ing less number of classifiers than wrate- vs- one re-
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Figure 1:a: Synthetic Datd-with five classes. b: Class boundaries for Synthetic Dat@-The M matrix obtained for Synthetic Dath-

quires. We test on five data sets: ICD (978,520'3%¢hi-  formation among the classes as demonstrated by the signifi-
cle (846, 18, 4), USPS (9298,256,10), Letter (20000,16,26) cantly higher accuracies obtained by ftest , ori gi nal ,

and HRCT (500,108,8) with (a, b, c) representing number t raceNor m andSVMst r uct methods, which take advan-
of samples, features, and classes respectively. We impléage of the shared class structure, compardd/&r est and
mented the following algorithmsor i gi nal , our original  LaRank. In summary, our proposed algorithms were consis-
formulation in Eq. 4;f ast our efficient formulation (7) tently ranked among the beSVMst r uct also did well for
from Sec. 4.2;t r aceNor mfrom [Amit et al, 2007; and  most datasets; however, it cannot extract explicit clasa-re
lvsrest a standard one-vs-rest formulation. While solv-tionships. The main competing approath,aceNor mdid

ing (2), we imposed the conditions d such thatM;; € not scale well to large datasets. Another advantage of our
[-1,1],Vi,5. We used conjugate gradient descent to solvamethods over r aceNor mis that we can explicitly learn the

t raceNor mas indicated ifAmit et al, 2007. We also inter-class relations and represent it in a matrix fori,.
compared our methods against popular multi-class algosth  In Figure 2 f), we present thé/ matrix that we learned
such ag aRank andSVMst r uct and used the implementa- for USPS by usingf ast with 1000 data points.USPS is a
tions distributed by the authors. After randomly selectimg  good example where we can relate the relationships of dasse
training set, we separat®% of the remaining data as a vali- given in M to the physical domain, since the classes corre-
dation set to tune the parameters. The remaining data is usegond to digits and we can intuitively say that some digi¢s ar
for testing. We tuned our parametersgndy) and the trade-  similar, such ag and8. Looking at the5!” row of M in Fig.

off parameter () for all the methods ovet1 values ranging  2(f), we observe that the'" classifier, f5 (), is related to
from 10~° to 10°. All of the classifiers use a linear kernel digits 3, 6 and8, which looks similar in the physical domain.
for | CD, Vehi cl e andHRCT, and the Gaussian Kernel with Similar relations can be observed in ro#s7 and8, where

& = 0.1 for theUSPS andLet t er data. digit 7 is similar to1, 6 to 5, and9 to 8.

Figures 2(a) — (f) plot the performanceyfaxis) of We also ran experiments comparing the performance of
the six methods for varying amounts of training daia ( one- vs- one versus our approach with a reduced set of base
axis). Each point on the plots is an average of ten ranelassifiersy educed. Due to space limitations, we only re-
dom trials. For theUSPS andLett er data, the compet- port the results on thBIRCT and USPS data. Figures Zg)
ing method[Amit et al, 2007 was too demanding com- and (k) show the results. For these datme- vs- one re-
putationally to run for training set sizes of more theix, quires10 and50 classifiers, whereaseduced only trained
thus we limited comparisons to a lower range. For the ICDwith 5 and10 classifiers for th&iRCT andUSPS respectively.
data, we observe thist andor i gi nal improve the one- In order to combine the outputs of the classifiers, we applied
vs-rest coding and outperforms the other algorithms for evvotingfor both approaches. The figures demonstrate that we
ery amount of training datat r aceNor m exceeded our can achieve similar performance in terms of accuracy even
memory capacity for this data set and thus results are natith fewer base classifiers (half and one-fifth in these dases
available. For theHRCT data, we observe that the four compared toone- vs- one, because we take advantage of
methods {vsrest, fast, original andtraceNorm inter-class relationships.

) are comparable. HowevdraRank andSVMst r uct per-

formed poorly. For the/ehi cl e data, we see thdtast 7 Conclusions

andori gi nal are better than others for the first one hun- .

dred training samples. For more than one hundred training/€ developed a general formulation that allows us to lean th
samples, the performances of the algorithms are comparab S$'f'ef and uncover the underlying class reIannsﬁTp_ss .
except forLaRank (which performed poorly). For theSPS provides an advantage over methods that solely obtain deci-

data, we observe the improvement due to the sharing of irs!on boundaries since the results of our approach are more
amenable tod.g., human-level) analysis. A closely related

1A medical dataset from www.computationalmedicine.org work ist r aceNor m[Amit et al, 2007. However in[Amit

2http://www.ics.uci.edutmlearn/MLRepository.html et al, 2007, they require further work (solving another op-

A real-world high-resolution computed tomography image timization problem after learning the decision boundaries
medical data set for lung disease classification. recover the class relationships; whereas, our approaafslea
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Figure 2:a-d: Experimental results for various datasets comparing one-g&gasts/s. our original methoa( i gi nal ), the fast method
(fast), LaRank, SVMst ruct andtraceNor m e: M matrix representing the inter-class correlations learnedJ8?S data. Indices
correspond to digit$ . . . 9 and0 respectively. f-g: Comparingne- vs- one vs. our method; educed, on theHRCT andUSPS data.

the boundaries and the relationships at the same time. In afBordeset al, 2007 A. Bordes, L. Bottou, P. Gallinari, and J. We-

dition, we are able to achieve this efficiently at faster sisee ston. Solving multiclass support vector machines with larank. In
: ICML 07, pages 89-96, 2007.

and less memory compared to theaceNor mformulation.

i redensteiner and Bennett, 1998. Bredensteiner and K. Ben-
Our fast formulation has speeds comparable to the standatl nett. Multicategory classification by support vector machines.

one-vs-rest approach. In terms of accuracy, the perforenanc Computational Optimization and Applicatiqr2:53—79, 1999.

of our formulation is consistently ranked among the best an(ﬁCrammer and Singer, 20D1K. Crammer and Y. Singer. On the al-
the results confirm that taking class relationships intment gorithmic implementation of multiclass kernel-based vector ma-

improves class accuracy compared to the standard onest/s-re chines.JMLR, 2:265-292, 2001.

approach. Moreover, experiments reveal that our approacfriedman, 1996 J. Friedman. Another approach to polychoto-
can perform as well as standard one-vs-one with fewer base mous classifcation. Technical report, Stanford University, De-
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