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ABSTRACT
Medical coding or classification is the process of transforming in-
formation contained in patient medical records into standard prede-
fined medical codes. There are several worldwide accepted medical
coding conventions associated with diagnoses and medical proce-
dures; however, in the United States the Ninth Revision of ICD
(ICD-9) provides the standard for coding clinical records. Accu-
rate medical coding is important since it is used by hospitals for
insurance billing purposes. Since after discharge a patient can be
assigned or classified to several ICD-9 codes, the coding problem
can be seen as a multi-label classification problem. In this paper, we
introduce a multi-label large-margin classifier that automatically
learns the underlying inter-code structure and allows the controlled
incorporation of prior knowledge about medical code relationships.
In addition to refining and learning the code relationships, our clas-
sifier can also utilize this shared information to improve its per-
formance. Experiments on a publicly available dataset containing
clinical free text and their associated medical codes showed that
our proposed multi-label classifier outperforms related multi-label
models in this problem.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTELLIGENCE—
Learning

General Terms
Algorithms

Keywords
Medical data mining, multi-label classification, medical coding,
large margin, classification, L1 regularization
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1. INTRODUCTION

1.1 Background on Medical Coding
Hospitals and in general healthcare providers rely on medical

coding to record medical services (procedures) and associated causes
or conditions (diagnoses). These procedure and diagnosis codes
are key elements in the financial transactions processed by insur-
ance companies or other medical reimbursement-processing orga-
nizations. Thus, healthcare providers are largely required to use
medical codes to classify the present conditions/diseases and pro-
cedures performed on basically all patients. In addition to this de
facto usage, medical codes have many additional uses in automated
decision support in medicine, medical quality or guideline adher-
ence, and disease surveillance, among many areas.

The most commonly used diagnosis coding systems are based on
the International Statistical Classification of Diseases and Related
Health Problems (commonly abbreviated ICD). ICD-9 was created
by the World Health Organization (WHO) in 1977 (later extended
to ICD-9 CM, where CM stands for Clinical Modification) and is
used primarily in the United States. ICD-10 is used in most of the
rest of the world, albeit with certain regional modifications. The
codes include, in general, classifications for signs, symptoms, ab-
normal findings, complaints, social circumstances, and causes of
injury or disease. In the United States, ICD-9 codes play a key role
in reporting medical statistics to government organizations such
as the Joint Commission on Accreditation of Healthcare Organi-
zations (JCAHO) and the Center for Medicate and Medicaid Ser-
vices (CMS). Importantly, ICD-9 codes are used to track certain
diseases, such as the flu (ICD-9 code 486), that may have public
health implications.

In the considered scenario, when a patient receives a medical ser-
vice, an ICD-9 code is assigned. The code depends on the reasons
for the patient visit. This is normally done manually, by skilled
personnel. The codes may be assigned immediately, but in most
cases, especially for patients requiring hospitalization, codes are
assigned retrospectively after an expert reviews medical documen-
tation (doctor notes, lab reports, etc.) created during the patient
visit. That is, an expert coder reads the documentation and, based
on medical knowledge, guidelines, regulations, and experience, as-
signs one or more ICD-9 codes to the patient visit.

Given the large number of codes and their level of specificity for
certain (not all) diagnoses, this is a very time consuming process. It
is also error prone; it is estimated that only 60% to 80% of assigned



codes truly reflect the patient diagnosis [1]. There are a large num-
ber of reasons why more efficiency and more accuracy are highly
needed in ICD-9 code assignment. These include, the imperative
to reduce healthcare costs; the clear need to keep accurate statistics
of diseases, specially those important for public health; the need to
increase cost transparency in the healthcare system; and the large
potential that a correctly maintained and recorded coding system
can have in patient treatment and in general decision support.

1.2 Specific Data Mining Problem
In this paper, we address the ICD-9 code assignment problem de-

scribed above based on the natural language text employed to doc-
ument the patient hospital visit. This includes text from documents
such as doctor notes, lab reports, history and physical, nursing as-
sessments, etc.

ICD-9 coding has several interesting properties from a data min-
ing and statistical modeling point of view. The codes are based on
a hierarchy where general categories and several sub-categories are
defined. For example, the code 440 is assigned to Atherosclero-
sis, but more specific codes such as 440.1 and 440.2 are assigned
to Atherosclerosis of Renal Artery and Arteries of the Extremities
respectively. A key characteristic of this coding system is that as-
signed codes are often correlated, for example the occurrence of
Chest Pain (786.5) is common with the occurrence of Congestive
Heart Failure (428.0) for the same patient visit. This co-occurrence
of diagnoses is to some degree known by experts and thus this prior
domain knowledge should be utilized whenever possible in the de-
sign of automated coding algorithms. In addition, the problem is
multi-label; one patient visit gets associated with multiple codes.
Finally, the data is sparse, some codes are very common while oth-
ers are very rare. Thus, the data support for the different classes
(codes) varies enormously.

Given the specific challenges presented by this problem and ap-
plication, we developed and analyzed a method for building a multi-
label (multi-class) classifier that can estimate the class structure of
the data together with the individual classifiers. Given the lack of
data for some classes, the method also allows the incorporation of
prior knowledge about the structure automatically, adjusting the de-
gree upon which this prior knowledge should be used. We demon-
strate experimentally that the approach can be used to solve large
problems with a performance similar or superior to related state-of-
the-art approaches.

A large number of daily tasks in healthcare are based on man-
ual review of information, specially documents, written in natural
language. While approaches on natural language processing have
grown rapidly in the past years in many areas (primarily in Web
mining and language translation), the area of automated medical
coding has been explored in a limited way. Most deployed sys-
tems use rule-based approaches [7, 15], while others have used ba-
sic learning methods such as k-nearest neighbors or naive Bayes
classifiers [9]. Sometimes the approach is semi-automated [11].
The most recent approach we are aware of uses a Gaussian Process
(GP) based classifier to learn to assign ICD-9 codes to records [10].
However, related approaches have one or several limitations in that
they either do not take advantage of prior domain knowledge effi-
ciently, are not explicitly designed for multi-label data (thus, they
usually cannot exploit the class structure), or do not explicitly un-
cover the underlying class (code) relationships. In this paper we
propose a method to address these limitations in a new and simple
formulation.

1.3 Technical Overview
This paper presents a solution to the code assignment problem

above based on a multi-label, large-margin classification model. In
multi-class classification, each point (patient visit) x may be la-
beled with a number of distinct classes (codes). A key property of
multi-label problems is that class labels are often not mutually inde-
pendent given a data point; the existence of this class/label structure
is a fundamental factor in this paper.

It is possible to approach this multi-label problem using a combi-
nation of standard binary (or even multi-class) classifiers; however,
this would not exploit the underlying class structure. If the labels
are correlated, we could try to represent combinations of labels as
new, compound labels. This is often inappropriate due to the com-
binatorial number of compound classes required and the lack of
sufficient data to create meaningful estimates [2]).

We can focus on building a function f : X ×Y → � that can be
used to produce properly ranked labels [13]. Various other strate-
gies are possible. If a Hamming loss is used to build the function
f basically to reduce the number of label corrections needed to
classify the given points, a standard binary classification approach
would be sufficient. If the fraction of unordered labels is used as a
loss function, this is equivalent to the rank-SVM approach [5], one
of the state-of-the-art methods. A related non-parametric approach
to achieve this is to learn prototype vectors for each class and rank
the labels of the given test point according to its inner product with
the prototype vectors [3]. A related method, named the multi-label
KNN algorithm (ML-KNN) [18], consists on finding the k nearest
examples to the data point to be classified and formulating a pre-
diction based on the number of elements of the given class falling
in the neighborhood.

The presented approach can represent class relationships where,
for example, data points with a particular medical code (class) may
be very likely to have a related code but very unlikely to have an un-
related code. These type of relationships very often exist in multi-
label problems. A standard classifier will ignore or (at best) not
explicitly model this potentially rich structure, even though it is
present in the data. In this paper, we focus on explicitly uncover-
ing this structure for ICD classifications since this would be highly
valuable for medical interpretability.

In this problem, there exists prior medical knowledge that can
help with incorporating this structure into the classifier. This may
resemble the notion of a prior p(y) in probabilistic modeling ap-
proaches; however, for the purposes of this paper we may not use
the term prior knowledge in an equivalent manner 1. The avail-
ability of prior domain knowledge is clearly another motivation for
explicitly representing the class structure. However, in practice it
is difficult to determine the degree of accuracy of this prior knowl-
edge. In this paper we do not make a strong assumption about how
reliable this knowledge is, instead we automatically determine the
level on which it should be taken into account in order to maximize
our classification criterion.

2. FORMULATION
Before introducing formally the proposed method, we first de-

fine our notation. Suppose we have D data samples (medical doc-
ument), and each of them is in dimension K, where each data sam-
ple component (feature) is a binary value that represents whether
or not each one of the K considered words is present in the doc-
ument. We represent them as D row vectors: xi ∈ X ; here X
denotes the domain of instances. Each data point shares an asso-
ciate L dimensional row label vector yi, which is formulated from

1A prior reflects the knowledge about class labels before observing
the data in question. In this paper we do not make this restriction
about prior knowledge.



Yxi ⊆ Y; Y = {1, 2, · · · , L}. Each yi(l) shall take either +1 if
l ∈ Yxi (the document belongs to the code i), or−1 if l /∈ Yxi (the
document does not belong to the code i). In order to simplify our
notation, we will denote all the data samples as a D × K matrix:
X = [x′

1x
′
2 · · ·x′

D]′, and similarly, all the labels as a D×L matrix:
Y = [y′

1y
′
2 · · ·y′

D]′, so individually, each row of X corresponds
to one data sample, and its label vector is the corresponding row in
Y . Vector e represents a column vector of ones of proper dimen-
sionality, and diag(v) represents a diagonal matrix whose diagonal
components are the elements of the vector v.

2.1 Proposed Mathematical Programming For-
mulation

Consider the following optimization problem:

(1)

min
W,M

µ
D∑

i=1

‖e− diag(yi)ŷ
′
i‖2 + ‖W‖1 + ν‖M − M̃sim‖2frob

s.t. − 1 ≤M(i, j) ≤ 1, i, j = {1, 2, . . . , D}
where

ŷi � (xiWM + γ)

W stands for a K × L matrix, and each column wi of W is a
hyperplane classifier predicting the ith label. Therefore, since each
data point has L labels, we have in total L columns. M can be de-
fined as a between-labels relation matrix, of size L×L. γ describes
the appropriate hyperplane shift from the origin (or threshold) for
prediction ŷi given by xiWM . The parameter µ controls the trade-
off between classification accuracy and regularization. ‖ · ‖frob de-
notes the matrix Frobenius norm, and ‖ · ‖1 denotes a matrix L1

norm defined as:

‖W‖1 =
∑

i

‖wi‖1 =
∑

ij

|wij |; (2)

this is, the summation of the absolute values of all the elements
of the matrix. In supervised learning, it is often the case that even
though the total number of input features is large, only a small frac-
tion of these features suffices to build a model with (at least) com-
parable performance. Furthermore, it is a well-known fact that fea-
ture selection can help prevent overfitting in problems with many
input features relative to the amount/variability of the data (see [6,
16]). This is generally the case with problems related to text pro-
cessing where the number of available features corresponds to a
large number of available words that are present in the set of docu-
ments.

As mentioned before, M is a matrix that captures the relations
between the labels according to prior knowledge and available data.
M̃sim is an initial prior knowledge matrix that contains informa-
tion about the labels. This prior knowledge can be provided by
the user based on experts’ domain knowledge or it can be simply
empirically estimated from available data. The parameter ν con-
trols how much the matrix M will stay close to the prior knowl-
edge M̃sim vs. the optimization of M to minimize empirical error
based on the training data.

Note that from the definition of ŷi in formulation (1), prediction
of label l depends not only on the corresponding classifier wl (l
column of W ) but also on the remaining L − 1 classifiers corre-
sponding to the other L − 1 labels. This dependence is controlled
by the matrix M , so defining M̃sim that encodes prior knowledge
about the relation among the expected output of the classifiers, in-
tuitively, is a good choice of an initial point for our algorithm.

For empirical estimation of the similarity matrix M̃sim, one
very general choice that is also employed in our experiments is as
follows:

Msim = [ωij ]L×L DM = [dij ]L×L (3)

M̃sim =MsimDM
−1 ωij =

∑D
q=1 yq(i)yq(j)

dii =
∑

j

|ωij | dij = 0 (i �= j)

In order to interpret equation (3) it is useful to note the following:

• For each data sample, if the ith and the jth labels agree with
each other (both positive or both negative), ωij increases by
a unit, otherwise it decreases by a unit.

• Possible D + 1 values of ωij range from −D to D.

• After obtaining Msim = [ωij ]L×L, for all the available
data points being considered, we normalize each column of
Msim by dividing by the 1-norm of the column.

• After normalization, M̃sim represents an empirical prior sim-
ilarity matrix where the ith column contains proportional
(normalized) information about each class {1 . . . L} similar-
ity to the ith class.

Different representations are possible depending on the particular
problem at hand.

It is important to note that even when formulation (1) is not
convex, it is a box-constrained bi-convex optimization problem for
which optimization algorithms with fast convergence rates can be
applied as explained below.

Another interesting characteristic of formulation (1) is that strictly
speaking, ‖W‖1 is not differentiable (around the origin). However,
a simple and effective way to overcome this difficulty is the use of
differentiable close approximations to the L1 norm.

We will use the smooth approximation to the L1 penalty pro-
posed in [14] that based on the following:

(i) |x| = (x)+ + (−x)+, where the plus function is defined as
(x)+ = max {x, 0}

(ii) The plus function can be approximated (smoothly), by the
integral to a smooth approximation of the sigmoid function:

(x)+ ≈ p(x, α) = x +
1

α
log(1 + exp(−αx)) (4)

Combining these facts, we arrive to the following smooth approxi-
mation for the absolute value function consisting of the sum of the
integral of two sigmoid functions (Fig. 1 plots this approximation
near 0 for different values of α):

|x| = (x)+ + (−x)+ ≈ p(x, α) + p(−x, α)
= x + 1

α
log(1 + exp(−αx))

− x + 1
α

log(1 + exp(αx))
= 1

α
[log(1 + exp(−αx)) + log(1 + exp(αx))]

= |x|α
In practice, α = 105 yields results that are within some small tol-

erance of the results produced by (optimal) constrained optimiza-
tion methods. As opposed to the L1-penalty, this approximation is
amenable to standard unconstrained optimization methods since it
is twice-differentiable:

∇(|x|) ≈ (1 + exp(−αx))−1 − (1 + exp(αx))−1

∇2(|x|) ≈ 2α exp(αx)/(1 + exp(αx))2



−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

10000
1000
100
10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 
1
10
100
1000
10000

Figure 1: Approximation for |x| near x = 0 using the function
|x|α for different settings of the parameter α

This approximation can be used in conjunction with any general
likelihood or loss functions. It has been shown in [14] that for
optimization problems derived from learning methods with L1 reg-
ularization, the solutions of the smooth approximated problems ap-
proach the solution to the original problems when α approaches
infinity.

When dealing with large data sets, it is not computationally fea-
sible to update the complete W and M at one single time, both of
the two live in a large-dimensional space. Instead, we implemented
a computationally inexpensive algorithm that updates W and M
one column at a time respectively.

In order to understand our large-scale algorithm, it is useful to
rewrite W in the form of combinations of column vectors, such that
W = [w1,w2, · · · ,wL]. Similarly M is written as combinations
of row vectors M = [mr

1
′ mr

2
′ · · · mr

L
′]′. Using these definitions,

we could simplify formulation (1) as:

min
W,M

µ
D∑

i=1

‖yi − xi

L∑

j=1

wjm
r
j
′‖2 (5)

+
L∑

j=1

‖wj‖1 + ν‖M − M̃sim‖2frob

s.t. : − 1 ≤M(i, j) ≤ 1 i, j = {1, 2, . . . , D}.
The gradient and Hessian of the objective function of (5) with re-
spect to each column vector wj can be written as follows:

∇wj f2 = 2µ(GXXWM −GXY )mr
j + φj (6)

φj(i) = (1 + e−αwj(i))−1 − (1 + eαwj(i))−1 (7)

∆wj f2 = 2µ(mr
j
′
mr

j )GXX + Λ (8)

Λ(i, k) = δ(i− k)
αeαwj(i)

(1 + eαwj(i))2
(9)

where Λ is a K ×K matrix and δ(·) is the characteristic function.
Similarly, using the same idea on M ,we can rewrite it as the com-
bination of column vectors: M = [m1,m2, · · · ,mL]. Then, the
gradient and the Hessian of the objective function of formulation
(5) with respect to each column vector mj is:

∇mj f2 = 2(µW ′GXXWmj −W ′G(j)
XY (10)

+ ν(mj − M̃(j)
sim)

∆mj f2 = 2(µW ′GXXW + νI) (11)

G
(j)
XY and M̃(j)

sim indicate the jth column of the corresponding ma-
trices. By using equations (6-11) with box constraints on M , we

can derive an effective implementation that is ideal for large scale
problems. We used Quasi-Newton techniques in our implementa-
tion, helping our algorithm converge fast to a local minimum, in
practice.

Without loss of generality, we set mx and my to be 0, which
could be achieved by preprocessing the data, so the optimal γ is
zero given by γopt = my −mxWM . Algorithm 1 box shows the
large-scale inexpensive SVM-sim algorithm. In this algorithm, we
set the initial W randomly, but one may also choose W from the
result of one-vs-rest SVMs in order to expect faster convergence,
and threshold ε usually depends on the scale of matrix W and thus
depends on the scale of the multi-label problems themselves. A
typical value for ε is 10−4. This setting provided satisfactory re-
sults in most situations.

Algorithm 1 Large Scale SVM-sim Algorithm

input: ν, µ, ε, M̃sim, Winitial

W new ←Winitial, W ← O
while ‖W new −W‖frob ≥ ε do

W ←W new

M ←Mnew

for i = 1 to L do
updating wi by equation (6-8) using BFGS optimization
techniques

end for
W new ← [w1,w2, · · · ,wL]
for i = 1 to L do

updating mi by equation (10-11) with box constraint
|M(i, j)| ≤ 1 using trust-region-reflective algorithm

end for
Mnew ← [m1,m2, · · · ,mL]

end while
return W and M

Note that we used two publicly available optimization methods
as part of our proposed algorithm:

1. For updating W , we used a solver based on the standard
BFGS algorithm [12] with a few minor modifications as im-
plemented in the optimization toolbox2. The BGFS algo-
rithm is probably one of the most popular Quasi-Newton
methods where a superlinear rate of convergence is achieved
without the explicit expensive calculation of complete sec-
ond order information (Hessian matrix).

2. For updating M , we used the standard ‘trust-region-reflective’
algorithm [8] as implemented in the Matlab optimization tool-
box.

3. EXPERIMENTS AND DISCUSSION OF
RESULTS

In this section, we describe our data in more detail, provide the
pre-processing steps we performed to prepare our data, present our
experimental set-up, report our results, and discuss these results.

3.1 The ICD-9 Data and Pre-Processing
Each document sample in the ICD-9 Data represents a recording

of the events that occurs in a patient’s hospital visit. The text in
these documents are free-form notes regarding examinations, treat-
ments, procedures, evaluations (examples include radiology notes,

2http://www.cs.ubc.ca/∼schmidtm/Software/minFunc.html



personal physician notes, lab tests, etc.). These documents are au-
thored by different people with different qualifications (e.g., physi-
cian, nurse, radiologist, etc.). There are a total of 978 samples in
this database. We apply a unigram feature representation, with each
feature indicating the presence (represented as +1) or absence (0)
of a word. As commonly done in text processing, we first removed
stop words and applied stemming, resulting in a 1931-word dictio-
nary. We then retained only words that occurred in at least 5% of
the data samples, which leaves us with 1155 words. We centered
our data to have zero-mean and normalized each feature to have
variance of one. There are 140 different symptom or disease codes
(classes) in this database. Due that the majority of the classes have
very few training examples, in this study we only worked with the
codes (classes) that occurred in at least 5% of the samples, corre-
sponding to a total of 20 codes.

3.2 Experimental Set-Up
In our experiments we investigate whether or not taking advan-

tage of the relationships among classes can improve the classifi-
cation of ICD-9 codes over the standard one-vs-rest SVM, which
learns the classifiers for each binary label separately. We also com-
pare our technique (SVM-sim) with three other different types of
multi-label algorithms: an SVM-based algorithm (rank-SVM [5]),
a k-nearest-neighbor-based method (ML-KNN [18]), and a neural-
network-based method (BP-MLL [17]). Besides checking for per-
formance based on accuracy, another advantage of our approach is
that it can learn the relationship among the classes. We also present
the similarity matrices that SVM-sim discovers. We report our accu-
racies based on a five-fold cross-validation. Within the training set
of each fold, we separate 10% for tuning. We tuned our parameters
(µ and ν) for all the methods over 11 values ranging from 10−5 to
105. For the nearest neighbor algorithm, we tried k = 1, 2, 4, 8, 16
and reported the results from the best k together with the k value
used. For rank-SVM, we tuned the cost parameter over eight val-
ues from 10−5 to 102. For BP-MLL, we set the number of neurons
and number of hidden layers, learning rate and number of train-
ing epochs as suggested by the authors [17]. All results from the
SVM-based classifiers here are with a linear kernel.

3.3 Results and Discussion
Table 1 reports the five-fold cross-validated accuracies for all five

methods. In the table, we highlighted the best performing method
for each code class in bold and in red. The higher the accuracies,
the better. In Figure 2, we also present the accuracies (as shown
on the (left) subfigure) for each class in ascending order for all the
methods, and their corresponding standard deviations (as shown on
the (right) subfigure). Note that our method, SVM-sim, performed
the best in almost all of the classes and came in close second for the
other cases. In all cases, our approach had the lowest variance in
accuracies among the different folds. Note, too, how taking advan-
tage of the relationship among classes drastically improved the re-
sults over one-vs-rest. This data set is a difficult classification task
with only about 60%− 80% accuracy when manually labeled [1];
however, by taking advantage of relationships and data from the
other classes helped improve our performance, where we reached
accuracies between 95% to 99%.

In Figure 3, we also display the receiver operating characteris-
tic (ROC) curves for all the methods and their corresponding area
under the curve (AUC). We cannot show all of the 20 ROC plots;
instead, we provide the average of the ROC plots for the 20 classes.
Observe that our approach, SVM-sim still performed the best. In Ta-
ble 2, we report the five-fold cross-validated area under the curve
(AUC) results for all five methods on the ICD-9 data for all 20

classes (codes), with the best results highlighted in bold and in red.
Note that our approach is the best in all cases except for class 18.
We take a closer look at this worst case by plotting the ROC curves
on class 18 as shown in Figure 5. Even though our approach is the
worst in terms of AUC on class 18, it performed the best in terms
of true positive detection at low false positive ratios (below 20%).

The results reveal that the multi-label classification of ICD-9
codes benefits from the sharing of information among the classes.
The codes represent different symptoms/diseases, many of which
are highly correlated to each other. For example, patients that suf-
fer from a particular pain belongs to a subset of symptoms/diseases.
The elements in that subset share many common words and are
sometimes even just different descriptions of the same disease. Let
us say, a patient has vesicoureteral problems (C5: vesicoureteral
reflux). It is highly probable that this patient is suffering disorders
of the urinary system type (C2). Inversely, symptoms that are lo-
cated at the urinary system would have no correlation with asthma.

In contrast to all the other multi-label methods, we also learn
the relationships among classes. M̃sim and M in equation (3) are
the prior and similarity matrices learned by SVM-sim. To high-
light the relationship among the classes, we permute the rows and
columns of this similarity matrix using co-clustering [4]. The co-
clustering algorithm we implemented basically alternates k-means
clustering of the rows and k-means clustering of the columns until
convergence. After permutation, we obtain the matrix M . Note
that the relationship matrix does not have to be symmetric. We
can interpret the relationship from this matrix as a directed graph
(showing only the strongest 10% relations). Figures 7 and Figure
8 display directed graphs showing the prior code relations M̃sim

and the learnt relations M respectively. These figures show that
our approach besides improving our classification performance also
provides us with information regarding the relationship among the
classes (codes). For instance, Figure 7 (the graph for prior M̃sim)
reveals that C13 (which stands for “Fever and other physiologic
disturbances of temperature regulation”) and C18 (“Lung field:
Coin lesion lung, shadow lung”) can help predict patients as hav-
ing C15 (“Symptoms involving respiratory system and other chest
symptoms”), which makes sense.

Comparing Figures 7 and 8, we find that the topology of rela-
tions changed during the learning process. The graph in Figure 8
(the graph for final M ) shows that fever (C13), chest pain (C16)
and respiratory abnormalities (C14) can cause respiratory symp-
toms (C15). The graph also shows that urinary tract infection (C9)
and chest pain (C16) are associated with fever (C13). Note that
the graph from the final M matrix makes more sense than the prior
graph. In the prior relation graph, it indicates that bladder disor-
ders (C8) is predictive of asthma (C2), which does not seem right.
However, after the learning process, the graph from the final M
shows that chest pain (C16), lung field (C18) and pulmonary col-
lapse (C3) can be predictive of asthma (C2).

Besides learning the class code relations, our approach also learns
the features that are important for each code (class) through the L1
norm regularization in our formulation. We consider each column
of W as a baseline classifier (the classifier before structure sharing
by matrix M ). Because of the L1 norm regularization on W , the
coefficients for each classifier will be sparse. In Figure 4, we re-
port the number of features selected for each class. We considered
a feature as being selected for class j if the absolute value of its
weight is greater than 0.05 (|W (i, j)| ≥ 0.05). Note that different
classes selected different numbers of features and that we achieved
substantial amount of reduction from the original 1155 features. In
Table 3, we also list the selected words (features) for each class. We
limit the list here to the top 5 words (in terms of absolute weight)



Table 1: Accuracies Obtained by the Different Methods on ICD-9 Data
Class class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10

Pneu- Asthma Pulm. Rheu. Vesic. Kidney Neuro. Bladder Urinary Hema-
Methods monia collapse fever reflux adhesion bladder disorder infect.(uns) turia

simSVM 95.6% 98.6% 97.8% 97.4% 97.1% 96.6% 99.8% 98.3% 98.9% 99.8%
1vsR SVM 91.3% 96.2% 96.8% 90.4% 88.0% 93.4% 95.0% 97.8% 85.1% 96.0%
rankSVM 95.2% 96.9% 97.1% 96.9% 95.8% 95.2% 99.0% 97.2% 97.7% 98.4%
BPMLL 92.5% 95.6% 96.6% 97.3% 95.0% 95.0% 97.2% 97.4% 98.5% 96.7%
MLKNN 92.9% 95.9% 96.3% 94.5% 89.3% 93.2% 95.0% 97.4% 93.1% 96.0%

Class class 11 class 12 class 13 class 14 class 15 class 16 class 17 class 18 class 19 class 20
Hydroc- Kidney Fever Resp. Cough Chest Urinary Lung Urinary Urinary

Methods ephalus anomal. abnorm. pain incont. lesion infect. disorder

simSVM 98.8% 97.9% 95.3% 99.7% 95.9% 99.1% 99.3% 95.3% 96.3% 95.9%
1vsR SVM 97.4% 97.0% 83.8% 95.0% 70.2% 96.0% 96.2% 94.6% 92.0% 95.3%
rankSVM 98.9% 97.4% 95.3% 99.1% 94.2% 99.3% 97.8% 94.2% 95.5% 93.8%
BPMLL 98.3% 91.5% 93.3% 96.3% 85.9% 98.1% 97.0% 94.8% 92.4% 92.2%
MLKNN 97.3% 97.0% 90.7% 95.4% 87.7% 98.1% 96.2% 94.3% 93.1% 94.8%

Table 2: The Resulting Area Under the Curve Obtained by the Different Methods on the ICD-9 Data
Class class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10

Pneu- Asthma Pulm. Rheu. Vesic. Kidney Neuro. Bladder Urinary Hema-
Methods monia collapse fever reflux adhesion bladder disorder infect.(uns) turia

simSVM 0.915 0.974 0.984 0.991 0.977 0.942 0.995 0.929 0.983 0.994
rankSVM 0.909 0.840 0.939 0.971 0.932 0.914 0.989 0.775 0.980 0.909
BPMLL 0.891 0.844 0.929 0.977 0.937 0.924 0.974 0.850 0.970 0.878
MLKNN 0.867 0.737 0.950 0.961 0.851 0.818 0.908 0.687 0.946 0.842

Class class 11 class 12 class 13 class 14 class 15 class 16 class 17 class 18 class 19 class 20
Hydroc- Kidney Fever Resp. Cough Chest Urinary Lung Urinary Urinary

Methods ephalus anomal. abnorm. pain incont. lesion infect. disorder

simSVM 0.990 0.945 0.969 0.994 0.984 0.963 0.960 0.828 0.960 0.874
rankSVM 0.981 0.802 0.940 0.963 0.963 0.955 0.853 0.833 0.931 0.828
BPMLL 0.984 0.822 0.911 0.891 0.844 0.955 0.829 0.853 0.916 0.865
MLKNN 0.833 0.751 0.905 0.887 0.929 0.952 0.771 0.866 0.927 0.791

per class. From the table, we observe that different classifiers do
find different key words for the different classes and that the key
words selected made sense and are associated to the class. We also
noticed that class 13 & 15 use the largest amount of words (135
words for the 13th class, and 172 words for the 15th class), corre-
sponding to fever and cough classes respectively. These two classes
are symptoms that commonly occur in many diseases and are more
general than other symptom/disease codes; thus, they need more
words compared to other more specific symptom/disease codes.

Finally, we investigate how our prior class relationship structure,
M̃sim, affects the performance of our classifier. The first M̃sim is
as what we suggested in Equation 3. Let us call this the similarity
prior. We compare this against two other priors: (1) identity and
(2) random. Identity assumes no correlation among the classes and
serves as our baseline. The other prior assumes a random L × L
matrix, where each element is sampled from a uniform distribution
in the set of [−1, +1]. This prior assumes an arbitrary set of re-
lations between the different classes. The average ROC results for
the 20 classes are shown in Figure 6. We observe that the similarity
prior outperforms the other two priors. This shows that knowing
a good prior improves the performance of our classification. The
figure also shows that even when we start with a bad prior, like ran-
dom, we still obtain ROC results that are comparable with the other
competing multi-label classifiers (see results on Figure 3).
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simSVM A.U.C: 0.96
BPMLL A.U.C: 0.90
rankSVM A.U.C: 0.91
MLKNN A.U.C: 0.86

Figure 3: Results for ICD9 Text Data: Average ROC curves for
the different methods from 20 codes.

4. CONCLUSIONS
Hospitals and healthcare providers rely on medical coding to

record medical services and associated causes and conditions dur-
ing a patient’s visit. This coding is normally done manually. Given
the large number of codes and their level of specificity for certain
diagnosis, this is a very time consuming process and is error prone



Table 3: A list of words whose absolute weight value is larger than 0.05 for each medical code (class). Note that we only limit the list
to up to five words per class.

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10
Pneu- Asthma Pulm. Rheu. Vesic. Kidney Neuro. Bladder Urinary Hema-
monia collapse fever reflux adhesion bladder disorder infect.(uns) turia

postvoid lobe atelectasis hydron- reflux pyelectasis neurogenic neurogenic UTI hematuria
brochial pneumonia collapse ephrosis hydron- reflux pyelectasis hematuria tract tract

ultrasound wheezing cough ephrosis myelomen- pain urinary UTI
pneumonia asthma atelectasis decrease ingocele enuresis hematuria urinary

cystitis opacity pyelectasis time cough cough cough

class 11 class 12 class 13 class 14 class 15 class 16 class 17 class 18 class 19 class 20
Hydroc- Kidney Fever Resp. Cough Chest Urinary Lung Urinary Urinary
ephalus anomal. abnorm. pain incont. lesion infect. disorder

hematuria enuresis fever wheezing cough wheezing pain pain pain urinary
infection atelectasis cough fever ring bilateral enuresis hematuria infection urothelial

hematuria atelectasis myelomen- appearing bronchitis duplication neurogenic tract
lobe hematuria ingocele fever pain urinary

wheezing febrile ring effusion raise UTI
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Figure 2: Results for ICD9 Text Data: Five-fold cross-validated accuracies (left) and standard deviations (right) for the different
methods for each of the 20 codes.
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Figure 4: The number of features (words) selected by SVM-sim
for each class out of the original 1155 words.

with an estimated accuracies of around only 60% to 80%. In this
study, we have developed a multi-label classifier to automate the
process of classifying ICD-9 codes from text recordings. We cast
the medical coding problem as a multi-label classification problem
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simSVM: AUC−.828
rankSVM: AUC−.802
BPMLL: AUC−.822
MLKNN: AUC−.687

Figure 5: The ROC curves for Class 18, the worst AUC result
for SVM-sim.

because each text document can be classified to one or more codes
(classes). The number of codes/classes is high and the occurrence
of these codes may be few in a training set. Moreover, codes (which
are associated with symptoms and/or diseases) are correlated. This
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Figure 7: Class relationship graph for ICD9 Data, showing only the strongest 10% relations: Based on the prior M̃sim.
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similarity Msim−AUC: 0.96
identity Msim−AUC: 0.92
random Msim−AUC: 0.89

Figure 6: ROC results for three different initial prior class re-
lationship matrix, M̃sim: similarity, identity, and random.

motivated us to take advantage of code/class relations to help build
better classifiers for classes with few training samples. In this pa-
per, we have introduced a multi-label large-margin formulation that
explicitly represents the medical code/class structure and simulta-
neously learns the classifier and the code/class structure from the
data. Moreover, our formulation enables the incorporation of prior
knowledge about the structure automatically into the classifier. We
found that sharing the code/class structure among the classifiers
help improve the performance of each binary classification. Our

experiments demonstrated the ability of our approach in discover-
ing medical code relations. Furthermore, our results reveal that in-
corporation of prior domain knowledge helped SVM-sim to obtain
classification performance superior to other multi-label approaches
for classifying ICD-9 medical codes, where we reached accuracies
between 95% to 99%.
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