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ABSTRACT
In on-line search and display advertising, the click-trough
rate (CTR) has been traditionally a key measure of ad/ cam-
paign effectiveness. More recently, the market has gained
interest in more direct measures of profitability, one early
alternative is the conversion rate (CVR). CVRs measure the
proportion of certain users who take a predefined, desirable
action, such as a purchase, registration, download, etc.; as
compared to simply page browsing. We provide a detailed
analysis of conversion rates in the context of non-guaranteed
delivery targeted advertising. In particular we focus on the
post-click conversion (PCC) problem or the analysis of con-
versions after a user click on a referring ad. The key ele-
ments we study are the probability of a conversion given a
click in a user/page context, P(conversion | click, context).
We provide various fundamental properties of this process
based on contextual information, formalize the problem of
predicting PCC, and propose an approach for measuring at-
tribute relevance when the underlying attribute distribution
is non-stationary. We provide experimental analyses based
on logged events from a large-scale advertising platform.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Commercial Ser-
vices; H.4.m [Information Systems]: Miscellaneous; I.5.2
[Design Methodology]: Classifier Design and Evaluation

General Terms
Algorithms, Design, Experimentation

Keywords
Display Advertising, Non-Guaranteed Delivery, Conversion
Rate, Conversion Modeling, Post-click Conversion

1. INTRODUCTION
Display advertising is a fast growing on-line advertising

medium where advertisers pay publishers to place graphical
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ads on their web pages. There are two ad purchasing and
delivery mechanisms that are commonly used today. Guar-
anteed Delivery (GD) is the traditional mechanism where
an advertiser buys a predetermined number of impressions
(5 million) at a fixed price (10 cents per impression) for a
fixed time period (August 2011) from the publisher. In this
model, the publisher is obligated to deliver the agreed upon
number of impressions that satisfy the advertiser’s target-
ing requirements (e.g., females, between the age of 25-30, in
California). The second mechanism, Non-Guaranteed Deliv-
ery (NGD), is a spot market where the advertisers can buy
ad impressions one at a time. Under this mechanism every
time a user loads a web page with an ad slot, an auction is
run among the ads that match the targeting specifications of
that particular opportunity and an ad is chosen for display.

Guaranteed delivery is preferred by risk-averse publish-
ers and advertisers as it provides one with a steady and
predictable source of income, and the other with an exact
exposure rate. Spot markets, on the other hand, allow the
advertisers to change their bids based on highly granular
targeting profiles, and let them adapt to varying trends in
traffic patterns quickly.

Spot markets also offer advertisers a wider range of pay-
ment models. Like in guaranteed display, advertisers can
choose to pay per impression (CPM). This model works well
for the advertisers who are trying to build brand awareness
where getting the message out is the goal. However, for
many advertisers, an ad impression that does not ultimately
lead to a visit to their website or to a product purchase is
not worth paying for. To address this concern many non-
guaranteed display exchanges provide performance-dependent
payment methods such as pay per click (CPC) and pay per
conversion/action (CPA) [21]. In the pay per click model,
an advertiser will not be charged unless the user clicks on
their ad. Pay per conversion/action model reduces the risk
for the advertisers even further by allowing them to pay
only when the user takes an action that is of interest to
them. Advertisers have complete control over the definition
of these conversion actions. Example actions include but are
not limited to: subscribing to an email list, adding an item
to the shopping cart, or making a purchase.

In a marketplace where advertisers with different payment
types will be competing for the same ad slot, the auction
mechanism needs to convert these bids that are in differ-
ent currencies to a common base, such as a monetary unit.
Expected price per impression (eCPM) is a natural choice
for such a common unit. For CPM ads, the expected price
per impression (eCPM) would be the same as their bid for



that impression. For ads that are defined as pay per click
(CPC) or pay per conversion (CPA), their eCPM will de-
pend on the expected click or conversion rate of the given
impression. More precisely, eCPM(CPC) = p(click) ∗ bid
and eCPM(CPA) = p(conversion) ∗ bid, where p(click) is
the probability that an impression will result in a click, and
p(conversion) is the probability that an impression will lead
the user to take the actions that constitute a conversion for
that advertiser.

Accurate estimations of these probabilities are critical for
the efficiency of an exchange [22]. While the problem of es-
timating click probabilities have been studied extensively in
the context of both search [17, 27, 11, 25, 2, 29, 16], con-
textual [24, 9] and display advertising [10, 14], literature on
conversion prediction is much sparser. In this paper we try
to address precisely this issue by providing empirical answers
to practical questions that arise in conversion prediction and
its application to NGD: How different is conversion model-
ing from click modeling, can we apply lessons learned from
clicks directly to conversions? Previous studies suggest that
the delay between a click and a conversion event could be
quite long, what does the data tell us? How tolerant are our
models to temporal changes? How important are user and
publisher attributes in predicting conversions?

The focus of our analysis is the conversion probability for
clicked ads. While a click is not necessary for a conversion
event to happen, most CPA advertisers do not give credit to
publishers unless they can trace the conversion event back
to an impression on the publisher’s page via a click event;
thus making the click a prerequisite for a conversion action
(hence, this is often called a post-click conversion or PCC).

The rest of the paper is organized as follows. In Section
2 we discuss related work and in Section 3 we describe the
data that will be used in the rest of the paper. In Section 4
we present the results of our analysis on the various aspects
of post click conversion problem. Section 5 follows by intro-
ducing our baseline model and feature selection algorithm.
Then in Section 6 we present our experimental results. We
finally conclude in Section 7 by summarizing our findings.

2. RELATED WORK
Although the importance of conversion modeling is widely

recognized in the computational advertising community [7]
the published literature on the subject has only recently be-
gun to accumulate. Becker et al. [4] analyze the impact of
landing page on the user’s conversion behavior in the context
of sponsored search. They first provide a taxonomy for the
advertiser landing pages and then show that the conversion
rates varies significantly from category to category. Our pa-
per is complementary to this work because we identify what
other factors could be playing a role in the user’s conversion
behavior. In [3], the authors propose a new model that opti-
mizes the conversion funnel even for CPC campaigns. Since
the authors evaluate their model for contextual advertising
their analysis of conversion prediction is heavily focused on
keyword matches. While the auction model proposed in that
study could easily be applied to display advertising, their
results on conversion modeling would not be directly appli-
cable to graphical ads. In [28] Shi et al. propose the use
of Kullback-Leibler divergence between the default distribu-
tion of user attributes and the user specific distribution as a
feature selection mechanism to build compact user profiles.
They show that these compact user profiles improve the per-

formance of conversion models that are used for behavioral
targeting.

The work by Agarwal et al. [1] is perhaps the closest to
our paper in terms of domain. The authors propose a log-
linear model to estimate click and conversion rates, which
exploits the correlations in aggregates at multiple resolu-
tions. Their results show that this model performs better
than vanilla models that do not make use of the hierarchy
that’s found naturally in the ad data. While the focus of
their paper is purely the modeling aspect, the authors also
report observing differences in relative model performances
on PCC vs click prediction.

While display advertising has been used from the early
days of Internet, data driven research and analysis on the
economic impact of it has been relatively sparse. Results
published by Reiley and Lewis [26] provide the strongest
quantitative analysis to the best of our knowledge. The
authors ran a controlled experiment on over a million users
who could also be linked with their offline activities and
reported that the users who were exposed to the ads showed
a statistically significant increase in both in store and online
sales. Lewis was also able to show that exposing the same ad
to the same user over and over again has diminishing returns
[20] and that display advertising has a bigger impact on older
users [19].

3. DATA DESCRIPTION
We collected live traffic logs from Yahoo!’s Right Media

Exchange (RMX), one of the largest ad exchanges in the
world, which serves around ten billion impressions every day.
RMX follows a ”network-of-networks”model where the con-
nections between advertisers and publishers are facilitated
by intermediaries called networks. Networks can have ei-
ther only publishers or advertisers, or both. Every entity in
the exchange (networks, publishers and advertisers) has a
unique identifier.

Publishers label their web-pages with site id’s. They can
also tag different parts of the same page with a different
section id. While the exchange does not enforce any rules on
the semantics of section id’s, publishers often use a different
section id for different ad slots on the same page.

An insertion order represents the contractual relationship
between a network and an advertiser or a publisher, or be-
tween any two entities on the Exchange. A line item is an
element of an insertion order. An insertion order can have
one or more line items, each with a different pricing type,
budget and targeting profile. Advertisers can have multi-
ple ad groups within a line item, each with a custom target
profile, and different budget settings. In RMX one ad group
can also be associated with multiple line items. In this paper
we represent each {line item, ad group} pair as a campaign.
In RMX, the relationship between campaigns and ad cre-
atives are not necessarily hierarchical. Advertisers can use
the same creative in multiple campaigns.

For CPA campaigns advertisers also need to select the
type of conversion (post-click or post-view), and set the time
out period for a conversion to be valid after the preceding
event. Advertisers can also specify how frequently a conver-
sion is allowed to repeat (e.g., no consecutive conversions
can trigger within one hour of the last conversion). Conver-
sions are tracked using pixels, and each distinct conversion
action is assigned a pixel id. Advertisers are allowed to reuse
existing conversion pixel ids (conversion ids).



CTR Variation for Different Ad Size
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Figure 1: Relative CTR variation for different ad
sizes (measured in pixels).

4. POST-CLICK CONVERSION ANALYSIS
In this section we provide an analysis of the post-click

conversion problem using a large collection of logged events.
The goal of this analysis is to help us uncover special prob-
lem properties and patterns of user behavior to guide the
modeling tasks discussed later. For this we use data col-
lected for a period of one month containing approximately
1 billion user events involving an ad click.

4.1 Contrasting CTR and CVR
We are interested in uncovering the fundamental proper-

ties of the post-click conversion (PCC) event. PCC occurs
after a user has clicked on a relevant ad. Thus, a basic ques-
tion is whether there is evidence that elements of importance
in modeling click-through rate (CTR)1 are also relevant in
modeling PCC conversion rate (CVR). We investigate this
by exploring three important attributes in click modeling,
the user age, the user gender and the ad size.

In click modeling, ad size is strongly correlated with CTR.
This makes intuitive sense likely because large ads are on av-
erage more attractive and more attention-grabbing to users
than small ads, resulting in measurably higher CTR. This
has been confirmed in the present data. Figure 1 shows the
CTR variation (y-axis) with respect to different ad sizes in
terms of number of pixels (x-axis). The absolute CTR value
in the Figure is removed to comply with company policy.
Due that ad sizes have been predefined (to a large extent)
in the on-line advertising industry, only a few points in the
x-axis can be measured. Figure 1 clearly indicates that the
CTR of ads increase approximately linearly with the ad size.
Using the conversion logs for the same period, the post-click
conversion rate for different ad sizes is calculated and plot-
ted in Figure 2. In contrast with the trend observed in CTR
with regard to the ad size, the CVR for users does not in-
crease when the ad size increases. The size of the ad appears
to have no effect on the user’s decision on converting or not
likely because the user has been directed to a different page
(the ad landing page) and has lost the visual perception of
the ad on the initial page view. In summary, this provides
evidence that the ad size may not be an informative element
for PCC modeling, particularly when compared with click
modeling.

A similar analysis was extended to user profile attributes
such as age and gender. Using the same click logs, Figure

1The probability that a user clicks on a given ad.
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Figure 2: Relative CVR variation for different ad
sizes (measured in pixels).

Figure 3: Relative CTR variation for different age
and gender categories.

3 shows the variation of click through rates for different age
groups and genders (male, female and unknown). There
is an unexpected high CTR rate for users with (mostly)
unknown age and unknown gender, otherwise we did not see
a strong trend in terms of CTR with respect to age groups.
However, male users seem to click more often than female
users at a younger age, with the trend reversing (to a small
extent) for older users. Figure 4 shows the variation of post-
click conversion rates for different age groups and genders.
We can observe that female users tend to convert more often
than male users. Also there is strong linear trend in terms
of conversion rate with respect to the age groups. Older
users seems to covert more often than younger users. Thus,
unlike our observation for ad sizes, the age and gender can
clearly play a more important role in post-click conversion
modeling.

4.2 Analysis of the Click→Conversion Delay
A critical aspect in PCC modeling is the association or

attribution of a conversion event to the corresponding click
event. In order to build a conversion model, we need to at-
tribute the conversion event to the correct click event as this
represents a positive PCC example (vs. a click event without
any associated conversion event). A conversion event can
happen minutes, hours or even days after a click event. The
proper attribution of the conversion event to the right click
event, which can done by properly matching the click and
conversion event attributes, is essential not only for PCC
but also for payment processing.



Figure 4: Relative CVR variation for different age
and gender categories.

In general several conversion events could be associated
with the same click, as advertisers may show a sequence of
conversion-generating pages to the user after a click on the
relevant ad. On the other hand, a conversion event may
not necessarily be associated with any ad click2. This as-
sociation process faces certain practical limitations as the
longer the time elapsed between click and conversion the
more logged events that need to be maintained and matched.
In order to get a better picture of the click-conversion pro-
cess and to answer the question of how much data needs to
be utilized for matching conversions with their correspond-
ing click events, we analyzed the properties of the time delay
for conversion events.

We calculated the percentage of conversion events with
different attribution time intervals as shown in Figure 5.
From the graph, we can observe that a large majority (86.7%)
of conversion events are triggered within 10 minutes of the
click events. Approximately half of these conversion events
(39.2%) occur within 1 minute of the corresponding click
event. If we look further, we observed that we can match
95.5% of the conversion events within one hour of the clicks.
As we are interested in achieving the largest possible recall
within practical boundaries, we decided to consider various
days of delay. Within two days of the click, 98.5% of the
conversions can be recovered. Thus, we would be ignoring
approximately 1.5% of the conversion events and as a con-
sequence incorrectly labeling a click event as referring to a
negative conversion (no conversion) if the time frame set for
post click conversion attribution is limited to 2 days. This
was believed to be sufficient given the practical cost of look-
ing further in time; and thus, we utilize this limit throughout
the paper.

4.3 Ad Emergence Rate Analysis
Post-click conversion models are built based on data col-

lected in the historical logs, using performance information
of ads that have been in the advertising system for some
time. When completely new ads are added to the advertis-
ing system, models built in the past may not perform well
particularly for those new ads (this clearly depends on the
generalization power of the attributes utilized for modeling).
This property of the system raises some challenges regarding
how to keep a conversion prediction model up-to-date. One
strategy is to constantly update the model using the latest

2This can be analyzed in the context of post-view conver-
sion, a process complementary to post-click conversion
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Figure 5: Distribution of click conversion attribu-
tion time delay.
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Figure 6: Percentage of new unique conversion iden-
tifiers, creatives and campaigns emerging for each
day in one month (relative to those existing in the
previous month).

data3. However, this could be too expensive for practical
purposes and potentially unnecessary.

In order to design a model updating mechanism (that is
able to cope with the dynamic nature of campaign gener-
ation) with reasonable trade off between performance and
latency, it is important to investigate the ratio of new ads
emergence with respect to time. In this section, we calculate
the percentage of new ads arising daily for a period of one
month relative to ads already existing in the previous month.
Three representation levels of the ads are investigated: con-
version, creative, and campaign level (these also turned out
to be the most informative advertiser-based features in the
conversion models studied).

Figure 6 plots the percentage of new unique ads for each
day. It is clear from the figure that the percentage of unique
new ads in the data is increasing steadily day by day in terms
of all the three representations. There is a difference in terms
of the emerging rate. Creatives are observed to change most
frequently. There are 19.7% new creatives after 10 days and
39.8% after 20 days. Ad campaigns also increase steadily,
but at a slower rate, with approximately 16% increase after
10 days and 31% after 20 days. Conversion identifiers are the
most stable of the three, with only 5.4% of new unique ids

3There are other phenomena that motivates frequent model
updates, including the dynamic nature of on-line informa-
tion as changes in page-viewing behavior in intrinsically re-
lated to ad effectiveness
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Figure 7: Percentage of events with new conversion
identifiers, creatives, and campaigns for each day in
one month (relative to those existing in the previous
month).

after 10 days and 11.2% after 20 days. This indicates that
advertisers tend to use the same conversion identifiers to
track the respective conversion events even after they create
new ad creatives and campaigns.

This is beneficial to some extent to PCC modeling since
a model relying on conversion identifiers should be relative
stable with respect to changes in time. Furthermore, the
linear trend of the emerging rate in campaigns and creatives
may indicate that the performance dependence of the model
with respect to those features is linearly related to its up-
dating frequency.

Similar conclusions can be reached by looking at the per-
centage of events with new campaign, creatives, and con-
version identifiers with regard to the total number of daily
events using the same time period as before. This is shown
in Figure 7. A proportion of 1.3% of the events contain new
conversion identifiers after 10 days and 4.3% after 20 days
respectively. This is considered to be a relatively small in-
crease for practical purposes as a model not updated for a
very large period (e.g., 10 days) will still consider all the
available conversion identifiers in the system.

4.4 Ad Life-time Analysis
The previous section indicates that there are new ads

emerging day by day. However, it does not tell their ac-
tual lifetime, another relevant property. Figure 8 plots the
distribution of the actual lifetime of ads at three levels: con-
version id, campaign, and creative levels. 37.4% of conver-
sion ids lives longer than 2 months, which is quite significant
compared to 8% for creative ids and 14.9% for campaign ids.
23.6% of creative ids and 18.7% of campaign ids have a life-
time shorter than 3 days, while this number for conversion
id is only 7.4%. It is notable that conversion id lives much
longer than the creative id and campaign id, which is con-
sistent with the conclusion reached in Section 4.3.

5. POST-CLICK CONVERSION MODELS
In this section we focus on PCC prediction modeling, in-

cluding various types of feature definitions, and the prob-
lem of feature selection given the properties of the attribute
distributions in PCC (in particular their non-stationary na-
ture).
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Figure 8: Distribution of lifetime for different IDs.

5.1 Predicting Conversions after a Click
Non-guaranteed delivery (NGD) advertisement is a large

and complex subsystem of the more general on-line display
advertisement market. In NGD, multiple market players
including publishers, advertisers, ad networks, and ad ex-
changes, try to optimize ad placement in a distributed man-
ner. Various elements are fundamental in this large ecosys-
tem, including prices, inventories, and (crucially) expected
user behavior. The details of this overall system are beyond
the scope of this paper. However, the latter element is of
particular importance as revenue for a large sub-class of ad-
vertisement is tied to user actions as related to ads. One
class of such actions is generally referred to as a conversion:
a predefined user transaction such as a purchase, registra-
tion, download, referral, etc. The focus of this section is on
estimating a crucial quantity in this system, that is the prob-
ability that an on-line user (e.g., page visitor) will trigger a
conversion after clicking on a specific advertisement. We call
this the post-click conversion (PCC) prediction problem.

We characterize and formalize PCC prediction as a ma-
chine learning problem. For this, we utilize the logs from a
large-scale advertising platform to identify the conversions
and associate them with their corresponding ad clicks. More
specifically, we are interested in modeling the conditional
probability of a conversion given that a user clicked on a
relevant ad. Two classes of events are of interest in order
to approach this problem: 1) events where a user clicked on
an ad but did not convert are considered negative conver-
sion instances, whereas 2) events where a user clicked and
subsequently converted are considered positive conversion
instances.

Given these definitions, let a set of events be represented
by D = {x(bi, ai, ui), yi} where x(bi, ai, ui) ∈ ℜd is a repre-
sentation of the information available about the event, nor-
mally associated to a publisher bi, advertisement ai and user
ui; whereas yi ∈ {0,+1} is an indicator of whether a con-
version was associated to the event. Thus, given some or all
event information, the goal is to produce a probability of a
conversion p(y|b, a, u), or more succinctly p(y|x).

Throughout this paper we utilize a maximum entropy
model of the above distribution. This, also referred to as
logistic regression in statistics[13], is a log-linear model that
combines the individual contributions of each element of
the feature vector representation through a weighting w =
(w1, ..., wd). Formally:



Table 1: Summary of basic features considered di-
vided into feature families

Feature family Feature members
Advertiser advertiser (id), advertiser network,

campaign, creative, conversion id,
ad group, ad size, creative type,
offer type

Publisher publisher (id), publisher network,
site, section, url, page referrer

User (when avail.) gender, age, region, network speed,
accept cookies, geo, user segments

Other serve time

p(y = 1|b, a, u) =
1

1 + exp(−
∑d

i=1
wixi(b, a, u))

, (1)

where wi ∈ ℜ weighs the feature specific contributions.
We find the optimal values for wi by employing the maximum-

a-posteriori probability criterion: w∗ = argmaxp(w|D). We
attach a Gaussian prior p(w) = N (w;0,Σ) to w and solve:

w∗ = arg max
w∈ℜd

N∑

i=i

log(p(yi|bi, ai, ui)) + log p(w). (2)

The problem given by formulation (2) is a convex opti-
mization problem and therefore has an unique maximum
[6]. It can be solved using a variety of techniques [23]; how-
ever, for large-dimensional representations (large d) most
approaches face practical limitations related to computing
and storing the second-order information of the objective
function. Non-linear conjugate methods are a feasible alter-
native due that they rely on computing the function gradient
and only an estimate of its Hessian. We utilize a distributed
conjugate gradient algorithm with a pre-conditioner to ac-
celerate convergence [5].

5.2 Features
When building personalized conversion models, it is fun-

damental to gather the appropriate information about the
different axes of personalization. We consider four sets of at-
tributes or features available in most on-line advertisement
systems as depicted in Table 1. These attributes are ob-
tained at the event level, that is every time a user clicks
and (potentially) makes a conversion on a corresponding
ad-publisher pair. However various forms of feature aggre-
gations are utilized and explained below. The first set is
represented by advertiser-dependent attributes such as its
identifier and ad-specific information for the click event in
consideration. The second set correspond to publisher in-
formation where the event (click or conversion) took place.
The third set includes some pieces of available user informa-
tion. It is worth mentioning that the availability of these
attributes varies across events. The last set includes other
information such as the time of the transaction. Because of
their fine-grained nature, some of the above features carry
very little information in their original form (e.g., user age
and the event times); thus, these have been quantized ap-
propriately.

The use of feedback features in conversion modeling relies

on the simple observation that ads performing better in the
past will likely perform better in the future. In PCC model-
ing, statistics such as the total number of clicks and the con-
version rate (conversions/clicks) are often utilized to mea-
sure the performance of ads. Feedback features are derived
from these statistics by aggregating the historical data for
ads at different levels such as advertiser, campaign, creative,
and conversion id organized by advertisers as described in
Table 1. To capture the variation of ad performance for
different publishers, similar features can also be obtained
by paring the advertisers at different levels with publishers,
e.g., . the publisher-creative pair, the site id-creative pair,
etc. Similarly, aggregations such as age- creative, gender-
creative, and geo-creative are expected to be good feedback
features because they can capture the variation of past ad
performance for different users. Feedback features are quan-
tized using a simple k-means clustering algorithm [8] before
they are fed to the maximum entropy optimization algo-
rithm. Note that feedback features are often refreshed reg-
ularly by updating the statistics with the latest historical
information available.

5.3 Automated Feature Analysis
As seen in the analyses of Section 4, post-click conver-

sion (PCC) events have the property that the distribution
of certain attributes (e.g., campaign, creative, conversion
identifiers) evolve considerably with time. From a machine
learning perspective, this raises some difficulties as the un-
derlying attribute distribution is non-stationary. A feature
value occurring with some regularity in the training data
may not necessarily occur in the same manner on-line (at
inference/classification time) and thus a machine learning
model would likely learn from values that are not as rep-
resentative of the test data as expected4 Two reasons for
the above phenomenon include a) the underlying dynamic
nature of the attribute distribution (as seen in Figures 6-8)
b) the fact that some attribute values are relatively unique
to the data point (i.e., logged event) and cannot be used to
generalize in a machine learning sense. The latter is an ex-
treme case of the former and includes features such as event
identifiers, non-processed time-stamps, etc. Our goal is to
automatically discover the relevant/non-relevant attributes
with as little human involvement as possible. This is of
clear importance when building/updating models regularly
in a live system.

This problem can be studied in the context of the mutual
information (MI) score, an information theoretic quantity
employed to measure the degree of dependence between ran-
dom variables[18, 12]. In our particular context, let I(Xj , Y )
represent the information in feature Xj about Y . A widely
used feature selection method consists of selecting the fea-
tures Xj such that I(Xj , Y ) is high, with Y the target at-
tribute (e.g., whether a conversion occurred). For example,
select the top ranked features [15].

For features with a dynamic distribution as in our case,
the MI calculated on a training set fails to provide a good
measure of feature relevance. This can be illustrated as fol-
lows: Let Xu be a random variable taking unique values
(Xu can for instance be an event identifier), then I(Xu, Y ) =
H(Y ) since the values of Xu can fully identify the data point
and therefore its label. Formally:

4The degree to which this distribution is non-stationary de-
pends on the choice of features.



I(Xu, Y ) =
∑

x,y

p(xu, y) log p(y|xu)/p(y) (3)

=
∑

y

p(y) log 1/p(y) = H(Y ), (4)

since p(y∗|xu) = 1 for some y = y∗ (zero otherwise). How-
ever, Xu is useless as an attribute for predicting y since its
values are unique and not observed in any test set.

In order to address this problem we propose using a re-
lated function that explicitly considers a reference distribu-
tion. Let the reference distribution be given by p̃(x, y), then
define the MI with respect to the reference distribution by:

Ip̃(Xi, Y ) =
∑

xi,y

p̃(xi, y) log
p(xi, y)

p(xi)p(y)
, (5)

where the difference compared with the standard mutual
information function lies in calculating the expectation with
respect to the reference (not training) distribution.

This definition has the problem that the log ratio is un-
defined for cases when p(xi) = 0. This happens when an
attribute value has been seen in the reference distribution p̃
but not in the training set distribution p. Thus, we utilize a
smoothing of the training data distribution of the form:

pr(xi, y) =
Np(xi, y) + p(y)

N + |Xi|
, (6)

guaranteeing pr(xi) > 0, where |Xi| is the number of states
taken by Xi. It is possible to show that, if (∀y)p(y) > 0, this
does not affect the target distribution, that is: pr(y) = p(y).
In the critical case where Xj does not appear in the training
data distribution, we can show that pr(y|xi) = p(y). In the
latter case we have that the log ratio above becomes 0.

The main relevant property of the new information quan-
tity is that as attributes are evaluated on a reference dis-
tribution, spurious relationships (such as those seen above)
found in a specific data set and that do not generalize to the
test data set are mostly ignored. Consider the same illustra-
tive example above: the values of Xu do not appear in the
test distribution (as these values are unique to a data point);
thus, the test distribution will place no mass on these values,
and Xu will have no measured information about the target
variable of interest. More formally:

Ip̃(Xu, Y ) =
∑

xu,y

p̃(xu, y) log
pr(xu, y)

pr(xu)pr(y)
= 0. (7)

We note that in many instances, any reference distribution p̃
computed on a valid sample (not necessarily the test data)
different than the training distribution will allow the pro-
posed measure to avoid spurious relationships particular to
the training data. However, a reference distribution closer
to the test distribution is preferred as test-specific depen-
dencies will be better captured by the new MI definition.

6. MODELING EXPERIMENTS
In this section we further provide experimental evaluations

involving conversion modeling. In particular, we study the
importance of publisher information, the impact of model
update frequency and methodology prediction accuracy, and
the use of more automated feature selection methods in

Table 2: Impact of publisher information on post-
click conversion prediction accuracy (in terms of
area under precision-recall curve

Model AUC (PR) Lift
Base (No pub info) 0.13432 –
Base + pub 0.14187 5.62%
Base + pub + pub nwrk 0.14239 6.01%
Base + pub + pub nwrk + site 0.14260 6.15%
Base + pub + pub nwrk + site + sect. 0.14298 6.45%

both model interpretability and accuracy. All of these ex-
periments optimize formulation (2) using Σ = λ−1I, with
λ ∈ ℜ and employ a Map-Reduce implementation of the
pre-conditioned conjugate gradient method referred in Sec-
tion 5.1.

Except where noted, for all of our modeling experiments
we utilize one full month as training data and the following
month as test data, as highlighted in Section 4.

6.1 Relevance of Publisher-Side Information
We now provide an analysis of the relevance of publisher

information in the task of post-click conversion prediction.
Our motivation for this experiment was to understand whether
knowing the publisher would improve prediction at all when
the advertiser and the user are known. It seems plausible
that once the user clicks on the ad, the publisher’s page
should not have an impact on that user’s conversion behav-
ior. If this were the case, then PCC models could be con-
siderably simplified as no publisher-side information would
be needed.

For this we built models that include no publisher infor-
mation and then models that progressively add more de-
tailed information from the publisher side. We considered
the attributes: publisher, publisher network, publisher site,
and publisher section. The results are shown in Table 2.

The results indicate that knowledge of the publisher iden-
tity benefits conversion predictive accuracy to some extent
(5.62% improvement). Additional information helps but to a
smaller degree. Thus, while the contribution is not large, the
models utilized in the following sections do utilize publisher-
side information.

6.2 Model Evaluation with Respect to Update
Frequency

The results in Section 4.3 and 4.4 indicate that there is
a non-trivial percentage of new ads entering the system ev-
ery day. In this section, we first evaluate the actual im-
pact of the new ads on post-click conversion modeling and
then develop two solutions to address this problem. A sin-
gle model, called the ID model due to its reliance on iden-
tifier attributes (Table 1) is trained using data collected for
one entire month, with post-click conversion events as pos-
itive examples and clicks without conversions as negative
examples (as before). These attributes have been converted
into indicator features (one for each attribute-value pair) re-
sulting in approximately 368K features. The data collected
from the following month is used as test data. The data uti-
lized contained two types of ad campaigns: cost per action
(CPA) and dynamic cost-per-mille (dCPM) campaigns. The
performance of the model is evaluated using the AUC (area
under the receiver operating characteristic or ROC) curve.
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Figure 9: The performance (AUC) of the single ID
model degrades with time for both CPA and dCPM
campaigns.
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Figure 10: The Performance (AUC) of the ID+CF
model is considerably more stable than the that of
the ID model.

In order to evaluate the impact of the new ads on the
performance of the single model, we divided the test data
into separate slices. Each slice of the data represents one
day test data of each campaign type. In Figure 9 we plot
the AUC calculated based on different slices of the test data
using the learned model. The x-axis represents each day in
the test data and the y-axis indicates the AUC for each slice
of data. We can see from Figure 9 that the performance
of the model degrades almost linearly with respect to time
for both CPA and dCPM campaigns. It seems clear that
the degrading performance is closely related to the new ads
emerging in the test data, as elucidated in previous analyses
(Sections 4.3-4.4).

We experimented with one way to address the problem of
performance degradation above (when using a single model
for the entire test period). For this, we use the feedback
features introduced in Section 6 and refresh the statistics
captured by these features regularly to include information
about new ads (on a daily basis). Feedback features cap-
ture the current performance of different ads, publishers and
users by updating the number of clicks and conversion rates
to the reflect their most up-to-date rates. A second approach
(not tested) would be to adapt the model parameters to the
latest data. In this second approach, the model is simply
retrained regularly using Table 1 features, thus including
the emerging advertisement-publisher information directly.
Note that the first method is considerably less expensive

because there is no need to update (re-train) the conversion
model per se, but only to update the feedback statistics.

Figure 10 shows the performance of a model that utilizes
feedback features refreshed every day (ID+CF model) com-
pared with the single ID model. The feedback features in-
cluded are the number of clicks and the conversion rates
for each campaign, conversion identifier, creative, and pub-
lisher. In addition we compute the click and conversion rates
for every pair of (publisher, creative), (publisher, campaign),
(creative, conversion id), (user age, creative), (user age, con-
version id), (user gender, creative), (user gender, conversion
id), (geo, creative), (geo, campaign) and the triplet (pub-
lisher, creative, conversion id) . After quantization, there
are approximately 1K new features added and refreshed ev-
ery day, which is quite small compared to the size of the ID
features above. From 10, we can see that the ID+CF model
clearly outperforms the ID model for every daily slice of test-
ing data. More importantly, the performance of ID+CF is
quite stable compared with the ID model, which degrades
linearly along time. Thus, we conclude that adding feed-
back features improves the performance of the post click
conversion model and refreshing the features with sufficient
regularity (i.e., daily) will maintain these improvements.

6.3 Automated Feature Selection
We utilized the method described in Section 5.3 for de-

termining feature relevance. Our main motivations were
not only increasing automation in cases were the underly-
ing data distribution is non-stationary but also decreasing
model complexity as the available number of possible fea-
tures is too large to be used in their entirety during predic-
tion/modeling. Practical considerations, such as memory,
latency, and training time constraints, make attribute se-
lection a clear requirement in this task. Non-informative
attributes can introduce noise and reduce the predictive ac-
curacy of the system.

We used events for a period of 5 days (training), 1 day
(reference), and 2 days (testing). The statistics of this data
set were: 125M events for training, 25M for reference, and
50M for testing. The conversion rate varies considerable for
different advertisers/publishers/users but rarely exceeds 5%;
thus the data set is to a large extent unbalanced.

Our goal is to identify predictive features in the most au-
tomated manner possible (reducing time spent by people on
this task). Thus, practically all the raw (unprocessed) data
attributes available were included in the analysis. These
attributes are a super-set of those in Table 1 and include
identifiers for the actual (serve/click/conversion) event, ad-
vertiser, publisher, campaign, bcookies, timestamps, adver-
tiser/publisher specific attributes, related urls, demograph-
ics, user-specific attributes (identifiers, assigned segments),
etc. We consider conjunctions of any of these attributes, giv-
ing rise to about 5000 possible compound features in prac-
tice. Each feature in turn can take from two to millions of
possible values.

The important element to consider is that without time-
consuming research into attribute definitions, it is extremely
tedious to apply most machine learning or data mining/
analysis algorithms. Thus, requiring considerable effort from
e.g., machine learning scientists or domain experts. Wrap-
per methods are not appropriate in this setting as they re-
quire training using a large set of variables; this is usually
impractical except for some simple models. It is in this set-



Table 3: Top features for conversion prediction
along with their mutual information. Top: standard
mutual information; Middle and Bottom: modified
mutual information. Bottom table contains the top
conjunction features.

Single feature SMI (bits)
event guid 0.03102
receive time 0.03059
query string 0.02963
xcookie 0.02925
user identifier 0.02923

Single feature RMI (bits)
conversion id 0.02338
campaign id 0.02207
ad group id 0.02136
line item id 0.02090
advertiser id 0.02082

Conjunction feature RMI (bits)
conversion id x offer type id 0.02379
conversion id x pop type id 0.02369
conversion id x campaign id 0.02347
campaign id x offer type id 0.02267
campaign id x bid type 0.02235
advertiser id x pop type id 0.02120
advertiser id x offer type id 0.02108
advertiser network id x offer type id 0.00993
publisher network id x advertiser network id 0.00770

ting where filter methods, such as the MI methods described
here, can be more advantageous.

6.3.1 Attribute Selection Results
We applied the standard MI (SMI) ranking algorithm for

feature selection. The results, summarized in Table 3(top)
reflect our main concern. In the presence of spurious fea-
tures, or features that are informative about the data point
per se rank substantially high. The calculated MI score is
correct in that it reflects the information content of these fea-
tures; however, these features are too specific to the training
data distribution.

The proposed extension of the MI score utilizing a refer-
ence distribution (RMI) provides a more appropriate rank-
ing as shown in Tables 3(mid-bottom). The reason for this
is that the information content is calculated with respect
to (expectations on) the reference distribution and thus fea-
ture values that are not seen in the new distribution are
basically considered less important and their impact on the
information score is reduced.

More specifically, attributes such as event_guid that iden-
tifies the data point have maximal information content ac-
cording to the training distribution (SMI), but near zero
information content when calculated with a reference dis-
tribution (RMI) (c.f.; Section 5.3). A similar effect was
observed for other features that have low relevance for pre-
diction such as query_string and receive_time which un-
less parsed are too specific, xcookie and user_identifier

which clearly do not generalize across users (but could be
quite informative about a small fraction of the test data),
and user_segments which is encoded as a string with a list
of segments. The results for other features are more subtle
but follow the same underlying principle where a reference
distribution is utilized to avoid spurious dependencies often
found when utilizing empirical distributions.
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Figure 11: Performance of Logistic Regression Mod-
els trained with the top K features given by SMI and
RMI

6.3.2 Learning Performance Results
Here we explore the question of whether the new fea-

ture rankings actually offer any performance gains. For
this, we ranked all the feature conjunctions provided by
SMI/RMI and trained a Maximum Entropy (Logistic Re-
gression) model using the top K conjunctions given by each
method. The results for conversion prediction are shown in
Fig. 11 for various values of K.

The graph shows performance in terms of Area Under the
Precision-Recall curve (similar results were obtained when
measuring the Area Under the ROC curve and percentage
of correct predictions). The results indicate that SMI ranks
very irrelevant features on top. After more than 100 con-
junctions, more relevant features start to be included in the
model as evidenced by the performance gains. On the con-
trary, RMI captures relevant features much earlier, as only
the top 10 features are sufficient to perform better than SMI
with 128 features. The performance increases considerably
at 32 features, and appears to stabilize after 64 features.
One interesting question is whether after a large K the per-
formance of both methods will be comparable. As seen at
the end of both curves, when 256 features are utilized, still
the difference is considerable. We believe the performance
of SMI will remain affected by the various irrelevant fea-
ture included early on, depending on how much the model
is susceptible to the noise introduced by these. Finally, the
top line in the graph represents the current best model5, us-
ing the features described in Table 1, after considerable fea-
ture engineering (e.g., where features such as receive_time
and query_string have been parsed and transformed into a
suitable quantized representation), manual feature selection,
grouping, and train/test exploration experiments. Thus, the
proposed selection method produced quantitatively compa-
rable results but is much more resource-efficient.

7. CONCLUSIONS
The accurate estimation of click and conversion probabil-

ities is critical for the efficiency of on-line advertisement ex-
changes. While click-trough rate (CTR) analyses have been

5for the train/test period utilized in this experiment



the subject of much attention, post-click conversion (PCC)
analysis studies are much more limited in scope and data
coverage. As advertisers gain interest in more direct mea-
sures of profitability such as conversion rates, PCC becomes
more important.

This paper provided a detailed analysis of conversion rates
in the context of non-guaranteed delivery (NGD) for dis-
play advertising. We provided fundamental properties of
the PCC process based on contextual information includ-
ing a comparison between CTR and CVR for some relevant
data attributes, an analysis of click-to-conversion delay, var-
ious properties about how rapidly new advertisements ap-
pear and stay in the system. We formalized the problem
of conversion modeling along with the problem of deter-
mining attribute relevance in the specific setting of CVR
optimization where the underlying data distribution is non-
stationary. We also provided PCC modeling experimental
results including measuring relevance of publisher informa-
tion, measuring the effect of model update frequency (rele-
vant for evolving attribute distributions), and the effect of
automated feature analysis in this scenario. All this was
done using data from a large-scale advertising platform. We
believe this can provide a more thorough understanding of
the PCC process and its modeling challenges.
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