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ABSTRACT
Privacy-preserving data mining (PPDM) is an emergent re-
search area that addresses the incorporation of privacy pre-
serving concerns to data mining techniques. In this paper
we propose a privacy-preserving (PP) Cox model for sur-
vival analysis, and consider a real clinical setting where the
data is horizontally distributed among different institutions.
The proposed model is based on linearly projecting the data
to a lower dimensional space through an optimal mapping
obtained by solving a linear programming problem. Our ap-
proach differs from the commonly used random projection
approach since it instead finds a projection that is optimal
at preserving the properties of the data that are important
for the specific problem at hand. Since our proposed ap-
proach produces an sparse mapping, it also generates a PP
mapping that not only projects the data to a lower dimen-
sional space but it also depends on a smaller subset of the
original features (it provides explicit feature selection). Real
data from several European healthcare institutions are used
to test our model for survival prediction of non-small-cell
lung cancer patients. These results are also confirmed us-
ing publicly available benchmark datasets. Our experimen-
tal results show that we are able to achieve a near-optimal
performance without directly sharing the data across differ-
ent data sources. This model makes it possible to conduct
large-scale multi-centric survival analysis without violating
privacy-preserving requirements.
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I.2 [Artificial Intelligence]: Miscellaneous
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Algorithms, Theory, Performance
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1. INTRODUCTION
Privacy-preserving data mining (PPDM) is a research area

that focuses on the incorporation of privacy preservation
methods into data mining techniques (e.g., [1]). We are par-
ticularly interested in a scenario where the data is horizon-
tally distributed among different entities or parties. In the
medical domain this means that there exist several medical
institutions (such as hospitals, clinics, etc.) and each one
provides a database containing a complete (or almost com-
plete) subset of item sets (patients). An efficient PPDM
algorithm should be able to process the data from all the
sources and learn data mining/machine learning models that
take into account all the information available without shar-
ing private information among the sources. The ultimate
goal of a PPDM model is to perform similarly or identically
to a model constructed by having access to all the original
data (and in distributed scenarios) at the same time/location.

There has been recent interest on the incorporation of elec-
tronic health records (EHR) in medical institutions world-
wide. There is a general belief that the availability of EHR
will have several significant benefits for health systems across
the world, including improvements in the quality of care
(e.g., by tracking performance-based clinical measures), in-
creases in the accuracy of insurance reimbursement systems,
development of more advanced clinical, computer assisted
diagnosis (CAD) tools, etc.

As a consequence, the number of hospitals storing large
amounts of data has been increasing. This data can be used
to build predictive models to assist doctors in the medical de-
cision process for treatment, diagnosis, prognosis among oth-
ers. Ideally, the data from multiple institutions can be ag-
gregated with the purpose of creating models with a higher
statistical significance. However, sharing the data across in-
stitutions becomes a difficult and tedious process that also
involves considerable legal and economic burden on the in-
stitutions sharing the medical data.

In this paper we propose a novel privacy-preserving tech-
nique based on affine projections applied to learn survival
predictive models. The model is based on the Cox regres-
sion for survival analysis, and we apply it for non-small-cell
lung cancer (NSCLC) patients treated with (chemo) radio-
therapy. The real data is collected from patients treated on
three European institutions in two different countries (the
Netherlands and Belgium). The framework we are describ-
ing in this paper allows to design/learn improved predictive



models that perform better than the individual models ob-
tained by using data from only one institution at a time.
Next, we highlight the main contributions of this paper:

• It presents a new general criterion and formulation
for building affine projections of the data for privacy
preservation. This criterion differs from that used in
the standard random projection method [12].

• It demonstrates how this criterion can be used to learn
Cox regression models for survival analysis.

• It applies the methodology to a real problem of interest
in the clinical domain by learning survival models for
lung cancer radiation therapy with data from multiple
institutions addressing privacy.

• It provides an algorithm that allows to perform feature
selection in the privacy-preserving setting.

The criterion is based on our method for constructing
sparse projection matrices [16]. In this paper, this method
is related and adapted to the privacy-preserving problem.
One of its key advantages is that it builds a data repre-
sentation that maintains the properties that are important
for the problem at hand (while being privacy-preserving).
We are not aware of any other privacy-preserving approach
for learning Cox regression or any survival analysis model.
While our motivation is on radiation therapy, we also demon-
strate our approach on publicly available datasets to ease
future comparisons.

The rest of the paper is organized as follows: In Section 2
we present an overview of the related work. Then in Sec-
tion 3 we present the overview of the Cox model and the
privacy-preserving Cox model. Section 4 develops the op-
timal projection method, and Section 5 and 6 describe the
experimental results using benchmark datasets and in a real
clinical setting. Finally we conclude the paper in Section 7
with a brief discussion.

2. RELATED WORK
Privacy-preserving data mining has received a lot of atten-

tion recently due to the increasing need to share and analyze
data that have previously been stored in a passive state due
to its private nature. An example is the healthcare setting,
where it is becoming clearer that the market forces point
in a direction that require making the full patient electronic
health record (EHR) available to the patients themselves, to
trusted parties, but also in a private manner to third party
entities. The challenge is not just that of guaranteeing secure
transmission of the data to trusted entities. A more critical
challenge is instead to be able to analyze large amount of
data available using several entities/locations that do not
wish to share the actual data records with any of the other
entities or even with a centralized entity. A clear exam-
ple, which is the motivation for this paper, is the case when
data from multiple healthcare institutions need to be used
to build data mining or machine learning models without
actually sharing the original data content.

More generally, the focus of attention in the privacy pre-
serving field has been: how to develop accurate models with-
out access to the original data in individual records [1]. An
excellent overview of privacy-preserving data mining meth-
ods can be found in [18]. Privacy preservation is analyzed
from various viewpoints based on:

• Data distribution: referring to whether the data is to
be centralized or distributed (including horizontal and
vertical data partitioning).

• Data modification: referring to how to change the data
values so as to ensure high-privacy protection. Various
methods for data modification include data perturba-
tion (additive and multiplicative), blocking, aggrega-
tion, etc.

• Data management protocol: referring to how the data
is exchanged to preserve privacy (including cryptogra-
phy, reconstruction, and heuristic-based techniques)

This paper is concerned primarily with the distributed
scenario. We focus on horizontal data partition, the case
when different entities hold the same input features for dif-
ferent groups of data points (individuals). For example, the
horizontal case has been addressed recently in special scenar-
ios [20, 19] by privacy-preserving SVMs and induction tree
classifiers. We concentrate on horizontal privacy-preserving
data mining. In the vertical data distribution scenario, the
entities have some subset of features for the same individ-
uals. Likewise, several techniques have been proposed to
address this case in special setting including adding random
perturbations to the data [2, 6]

The privacy-preserving methodology employed in this pa-
per consists of a form of data modification based on ag-
gregation that allows for it to be easily exchanged and still
preserve the privacy of the original data. Thus, avoiding the
need for a more complex cryptographic protocol.

This form of data aggregation is related to a data transfor-
mation referred to as random projections which was recently
proposed for privacy-preserving data mining [12] (including
distributed). The basic idea consist of using an approx-
imate random projection method to improve the level of
privacy protection but still preserving some statistical char-
acteristics of the data. This form of data modification was
called randomized multiplicative data perturbation and basi-
cally consists of building a new representation of the data
by projecting the data using a randomly build matrix as
projection operator. The theoretical underpinnings of this
form of transformation are based on the celebrated Johnson-
Lindenstrauss lemma [8] which indicates that a set of n d-
dimensional points can be embedded into a k-dimensional
space with k = O(log n), such that the Euclidean distance
between any two points can be maintained within an arbi-
trarily small factor. Thus, according to this the data can be
made private and still preserve some statistics.

The present approach also applies a multiplicative pertur-
bation via a linear (and non-linear) projection. However, it
is in sharp contrast with the randomized approach because
it attempts to find a projection that is optimal for the prob-
lem at hand. The basic motivation for this is the question
about why preserve the overall data structure when often by
preserving only the relevant structure we can benefit both
in terms of efficiency and accuracy. The efficiency gains are
derived from the fact that by preserving only the relevant
structure, it is possible to obtain a simpler and more com-
pact representation. The accuracy gains are derived from
the fact that for a fixed representation size, concentrating
on the relevant structure for the problem at hand must im-
prove its accuracy.

We can summarize our basic idea as that of finding an
optimal perturbation of the data that maintains (primarily)



the relevant, important properties of the data and that at
the same time promotes a compact representation.

For completeness, we also note that various approaches
are geared toward providing privacy to specific data min-
ing techniques. For example, privacy preservation for clus-
tering tasks [15]. Several other recently proposed privacy-
preserving classification techniques specific to the data min-
ing model include cryptographically private SVMs [10], and
wavelet-based distortion [13]. We are not aware of any
privacy-preserving approaches specific to Cox regression or
survival analysis. While our approach was designed with this
setting in mind, we remark that it is more general and could
be applied in a considerably general data mining scenario.

3. PRIVACY-PRESERVING COX MODEL

3.1 The General Cox Regression Model
In survival analysis, we are interested in the survival time

T of each individual from a certain population [4]. This can
be characterized by the survival function S(t) = Pr(T > t)
for t > 0, which is the probability that the individual is still
alive at time t. A related function is the hazard function,
which assesses the instantaneous risk of demise at time t,
conditional on survival to that time:

λ(t) = lim
∆t→0

Pr[(t ≤ T < t + ∆t)|T ≥ t]

∆t
=

p(t)

S(t)
,

with p(t) being the density function of S(t). It is easily
seen that the hazard function fully determines the survival
function as S(t) = exp(−

∫ t

0
λ(u) du).

It is of practical interest to relate the hazard function not
only to the time t, but also to a set of covariates (explanatory
variables), xi ∈ R

d, of each individual i. In clinical studies,
the covariates typically include demographic variables such
as age and gender, and diagnosis information like the tumor
size. One of the first and the most popular survival models
is the Cox model, in which the hazard function takes, in its
most general form, the following proportional-hazard form:

λ(t|xi) = λ0(t) exp[f(xi)], (1)

where λ0(t) is the baseline hazard function, and f(xi) is a
function of the covariates xi [3]. Note that the Cox haz-
ard function depends on the covariates only via the time-
independent function f . It is commonly assumed that f is
linear, i.e., f(xi) = w⊤xi with some weight vector w ∈ R

d,
but we use the general form such that our privacy-preserving
models can be applied to possibly non-linear f (cf. Sec-
tion 3.2).

In the original paper, Cox also developed the partial like-
lihood for parameter estimation. For this we need to dis-
tinguish individuals who have the actual survival time ob-
served (e.g., observed death or cancer relapse after treat-
ment), from individuals who are (right-)censored (e.g., still
alive or cancer-free at the end of the study). Let δi be an
indicator variable which takes 1 if the individual i is from
the former group, and 0 otherwise. Then the observed time
ti is the survival time when δi = 1, and the censoring time
when δi = 0. For a group of n individuals with outcome
{ti, δi}

n
i=1, the Cox’s partial likelihood L is defined as

∏

i fails

Pr(i fails at ti)

Pr(j ∈ Ri fails at ti)
=

∏

i:δi=1

exp[f(xi)]∑
tj≥ti

exp[f(xj)]
,

where Ri = {j : tj ≥ ti} is the risk set containing the
individuals who are at risk (of failing) at time ti. The key
idea here is to compare at each failure time, the risk for the
failed individual to the risk for all the other individuals at
risk at that time. This completely eliminated the baseline
hazard λ0(t) from parameter estimation, indicating that the
actual times of failure are not important. Censoring times
are not important as well, so long as we keep track of the
risk sets.

When f is linear, i.e., f(xi) = w⊤xi, it is straightfor-
ward to maximize the partial likelihood w.r.t. vector w us-
ing, e.g., gradient methods. When f is non-linear, one can
formulate a regularization framework and optimize function
f in the reproducing kernel Hilbert space (RKHS) [17]. See
[11] for the details and some empirical studies.

3.2 Horizontal Privacy-Preserving Cox Model
In the case of horizontally partitioned data, suppose we

have k different data sources, or parties (e.g., hospitals or
medical centers), and each party j has a subset of nj in-
dividuals (e.g., patients). A same set of d predictors are
shared among all parties, and survival outcomes are avail-
able within each party. The task is to develop a horizontal
privacy-preserving Cox model (HPPCox) which is able to
use all the data across different parties.

We propose a HPPCox model based on lower-dimensional
projection methods such as random projection [12], or ran-
dom kernel mapping in the general (non-linear) case [14].
For simplicity we focus on the former which only applies
for linear survival models, but the whole machinery also ap-
plies to non-linear models. The non-linear extension will be
briefly discussed in Section 3.3.

Our basic idea is based on the simple fact that lower-
dimensional projections are in general not reversible, which
means that with a fixed mapping matrix, we can certainly
project a high-dimensional data point uniquely into a low-
dimensional space, but it is not possible to uniquely re-
cover the exact high-dimensional point with only its low-
dimensional projection.1 Our HPPCox model thus has the
following setup (assuming we use all the d features):

1. Choose a lower dimensionality m < d;

2. Locate a mapping matrix B of size d × m;

3. Project each individual xi ∈ R
d into zi ∈ R

m via map-
ping zi = B⊤xi.

Since there is an information loss when applying the map-
ping B, it is not possible to recover the exact xi given zi,
even when B is known. Therefore in the privacy-preserving
setting, we can use this technique to “hide” the sensitive
data xi, and only share with others the projected data zi

along with the survival outcome {ti, δi}. All the data from
different parties are then combined, and a standard Cox
model can be learned using zi as the (reduced) predictors
for survival analysis. The whole algorithm is summarized in
Algorithm 1.

This HPPCox model actually assumes the following haz-
ard function (in the linear case):

λHPPCox(t|xi) = λ0(t) exp[w⊤B⊤xi], (2)

1Technically one must require that there does not exist a
deterministic relationship between any two dimensions, but
in general it is not difficult to verify.



where the weight vector w is only of length m (instead of

d). When an optimal ŵ and baseline hazard λ̂0(t) are found
using the HPPCox model, for a test individual x∗ the hazard
function is calculated as

λHPPCox(t|x∗) = λ̂0(t) exp[ŵ⊤B⊤x∗].

Two important questions have been left out so far:

• Which dimensionality m to choose?

• How to choose the mapping matrix B (and what if
some original features are irrelevant)?

A significant number of approaches choose the matrix B
randomly, and refer to this as random projection privacy-
preserving data mining. Apart from the simplicity and the
nice properties as shown in [12], random projection in gen-
eral yields inferior performance compared to the (non-privacy-
preserving) methods which share the data explicitly (also
see Section 5 for an empirical comparison). And so far there
has been no approach addressing the feature selection prob-
lem in a privacy-preserving setting. In Section 4, we ad-
dress this problem by finding an optimal projection matrix

B ∈ R
d′×m, with d′ ≤ d, which is designed to have the

following properties:

(i) Relative distance preservation: by explicitly en-
forcing desired user-defined relations (in the form of
linear constraints), e.g., for Cox regression it is de-
sirable that the projected points preserve the explicit
ordering imposed by the survival time in the projected
space.

(ii) Lower dimensionality in the projected space:
by reducing the number of non-zero columns of B,
data points are mapped into a lower dimensional space,
which can be beneficial for model learning, specially in
the presence of large datasets.

(iii) Lower dimensionality in the input space (fea-
ture selection): by reducing the number of non-zero
rows of B (from d to d′, irrelevant input features are
not taken into account in the projection.

To the best of our knowledge, there are no other methods
that attempt to find a projection for privacy-preserving Cox
regression that is optimal in the sense described.

3.3 Non-linear PP Cox Models
The same lower-dimensional projection idea can be ex-

tended for kernel mapping [14], which makes it possible to
derive non-linear privacy-preserving Cox models. Let φ(x)
be a mapping from the input space x ∈ R

d into a RKHS
space H. Applying the lower-dimensional projection in H,
we need to choose a matrix B and calculate B⊤φ(x), which
contains the inner-product of φ(x) with every column of B.
Let B be such that every column B(:, ℓ) = φ(bℓ) for some
bℓ ∈ R

d, we can calculate the inner-product as

〈φ(x),B(:, ℓ)〉 = 〈φ(x), φ(bℓ)〉 = κ(x,bℓ),

with κ(·, ·) being the reproducing kernel function. This re-
producing property allows us to calculate the inner-product
without an explicit form for φ(·), and motivates us to con-
sider privacy-preserving methods for non-linear Cox models.
For instance in non-linear HPPCox model, we need to take
the following steps to get the projections:

Algorithm 1 Horizontal Privacy-Preserving Cox Model

Require: k different parties (data sources), each holding a
subset of individuals with survival outcomes. A same set
of d predictive variables are shared among the parties.

1: Choose m < d, and locate a matrix B of size d×m. All
the parties must agree on this matrix.

2: Every party calculates zi = B⊤xi for every individual
xi, and shares a predictor profile {zi} and a survival
outcome profile {ti, δi} for its population.

3: All the data are combined, and a standard Cox model is
learned (specifically the weight vector w and the baseline
hazard λ0(t)) with zi’s being the predictive variables.

Ensure: The learned Cox model is shared among all par-
ties. Survival prediction for a test individual x∗ is done
by calculating z∗ = B⊤x∗ and then applying the learned
Cox model.

1. Specify a (non-linear) kernel function κ(·, ·);

2. Choose a dimension m < n, the number of individuals;

3. Locate m “fake individuals” {bℓ}, with each bℓ ∈ R
d;

4. Project each individual xi ∈ R
d into zi ∈ R

m via ker-
nel function zi = [κ(xi,b1), . . . , κ(xi,bm)]⊤.

It is easily realized that when m < n, it is not possible to
reconstruct xi from zi and κ(·, ·), so privacy is preserved.

4. OPTIMAL PROJECTION
As described in Section 3.1, in order to preserve privacy we

follow the standard methodology of applying a lossy trans-
formation to the data. In this section we concentrate specif-
ically on finding an optimal matrix that defines a linear
transformation (projection). We represent the projection as
a rank-deficient matrix B. Instead of employing a random
matrix B, we focus on identifying a lossy transformation
that is optimal at maintaining certain properties of the data
that (importantly) depend on the task at hand while still
preserving data privacy.

Our approach for finding optimal projections is based on
our approach for finding sparse matrices introduced in [16],
where the optimal projection is found so that certain rela-
tionships among data points are preserved, while at the same
time the dimensionality of the resulting data is reduced.

In order to formally define what is meant by optimal pro-
jection, we require one additional ingredient. We define op-
timality in terms of how well the transformation preserves
relationships among data points. The type of relationships
we consider are quite general. They are of the type: data
point i is more like data point j than data point k. Thus,
in order to measure the goodness of our projection, we use
a set called T that is formed by T elements. Each element
is represented by a triplet (i, j, k) where i is an index for a
data points (similarly for j and k), such that xi,xj and xk

satisfy the above relationship.
The set T can be defined in multiple ways. A user can

provide this as a special form of supervision or it can be given
by an algorithm. Note that no specific class label or distance
measure is required, but could be used. As an example, an
algorithm can simply use an attribute (dimension) of the
data points and a simple partial order relation to define it.
In the HPPCox case T is naturally defined by the order



suggested by the patient’s survival time. More specifically,
given three data points indexed i, j, k respectively, the goal
is to preserve relationships of the form:

||B⊤(xi − xj)||
2
2 ≤ ||B⊤(xi − xk)||22 (3)

for a set T of triplets for which this property must hold.
The optimal projection matrix B can formally be defined

as the solution to the following optimization problem:

max
B:Rd→Rm

d∑

i=l

1(Bl = ~0)

s.t. ∀(i, j, k) ∈ T , ||B⊤(xi − xj)||
2
2 ≤ ||B⊤(xi − xk)||22 (4)

where 1(E) is the indicator function which returns the value
1 if the logical expression E evaluates to true and zero oth-
erwise. The formulation is useful at formalizing the desired
concept of an optimal projection. However, it is not prac-
tical since an efficient algorithm for finding B given the set
T is not likely to exist.2 Thus, we provide a different for-
mulation that can be seen as an approximation based on a
convex relaxation of the problem.

Let us define the d × d matrix A = BB⊤. The following
formulation now focuses on finding an optimal A:

minǫ,A

∑
t
ǫt + λ

∑
l=1...d

||Al||1
s.t.

∀(i, j, k) ∈ T ,−2(x⊤
i Axj) + (x⊤

j Axj)
−2(x⊤

j Axk) + (x⊤
k Axk) ≤ ǫt

∀t, ǫt ≥ 0
B = B⊤

B � 0.

(5)

Note that in this problem we are attempting to make the
norm of the columns/rows of A to be zero (thus making it a
zero vector) through the use of an L1 norm regularization,
and at the same time enforcing constraints that depend on
the user/automatically obtained set of triplets. The param-
eter λ controls the balance between sparseness of A and
inequality satisfaction. This can be obtained by tuning (de-
pending on the problem at hand).

The above formulation is convex, and can be solved via
semi-definite programming (SDP). However, since our fo-
cus are data mining applications, we concentrate on large
datasets (in terms both of the number of data points and
their dimensionality) and thus: 1) the cardinality of T could
be potentially large and similarly 2) the size of A increases
quadratically with the input space dimensionality. It is well-
known that they SDP not scale well with the problem size.
By contrast linear program (LP) solvers have much better
scaling properties. In the following, we further modify the
formulation to create an approximation that can be solved
via LP.

Using the definitions x̃ij = vect(xix
⊤
j ) and a = vect(A),

where vect() means (column-wise) alignment of all of the
matrix elements in a column vector, it can be shown that

2This would lead to a 0-1 Mixed Integer Programming
(MIP) problem, known to be NP-hard.

the above optimization problem can be reformulated into:

minǫ,A,S

∑
t
ǫt + λ

∑
l=1...d

All

s.t.

∀(i, j, k) ∈ T
[x̃jj + x̃kk − 2(x̃ij + x̃jk)]⊤a ≤ ǫt − 1

∀t, ǫt ≥ 0
A = A⊤

∀(l, c; l 6= c) − Slc ≤ Alc ≤ Slc

All ≥
∑d

c=1

l6=c
Slc

(6)

where the SDP constraint in formulation (5) was tighten into
a diagonal dominance constraint using the auxiliary vari-
ables Slc ∈ R, where S is a matrix of the same dimensional-
ity as A. In this problem the last constraint is equivalent to
diagonal dominance which implies positive semidefiniteness
(cf. [16]-Theorem 4.1.). Let us denote the data term in the
first set of constraints as:

Cijk = x̃jj + x̃kk − 2(x̃ij + x̃jk), (7)

for (i, j, k) ∈ T . Note that for any (i, j), in order to compute
x̃ij we must know both xi and xj .

This formulation does not take into account the distributed
nature of the privacy-preserving problem in this paper since
these constraints require all the data to be known and avail-
able in one location. For horizontal privacy preserving, we
propose a protocol for computing the matrix B using data
from all parties as follows. We assume that every party
contributes with a set of relative relationships that must be
preserved. Similar to the general case, this set is denoted
T (p) where p indexes the party.

Thus, each party p makes the following information avail-
able for (i, j, k) ∈ T (p):

C
(p)
ijk = x̃

(p)
jj + x̃

(p)
kk − 2(x̃

(p)
ij + x̃

(p)
jk ). (8)

Note that C
(p)
ijk does not reveal the original records xi, xj ,xk

because it combines data from these three records in a way
that it is not possible to recover them back since the user
does not know at any moment which three records are lin-
early combined.

The resulting set of constrains provided by party p is
incorporated into a large (combined) problem by any un-

trusted party given all the vectors C
(p)
ijk as follows:

∀(i, j, k) ∈ T (p)
, [C

(p)
ijk ]⊤b ≤ ǫ

(p)
t − 1. (9)

that is, the combined set of constraints in the final problem
(formulation 6) is made of a combination of all sets T (p).

Note that while this allows imposing constraints for any
triplet formed by records from the same party, it does not
consider constraints that involve records across parties. This
limitation is in general not critical since in most instances
determining the relationship between records may require
knowledge of the relevant records by the same entity (which
is not the case for private information scenarios).

It is important to note that formulation (6) provides a
sparse solution (with zero columns/rows) for the symmetric
d × d matrix A. Since our main interest is in B and A =
BB⊤, we can find the optimal d′ × m matrix B as follows.
We first remove the zero rows/columns of A, which results in

a d′×d′ matrix Â (i.e., the rest d−d′ features are irrelevant
features). We then perform an eigenvalue decomposition for

Â, i.e., Â = VDV⊤, with V an orthogonal matrix and D



Table 1: Summary of the benchmark datasets. n and

d are the number of patients and predictive variables,

respectively.

Dataset n d Missing Censored

SUPPORT-1 477 26 14.9% 36.4%
SUPPORT-2 314 26 16.6% 43.0%
SUPPORT-3 60 26 16.7% 11.7%
SUPPORT-4 149 26 22.0% 10.7%
MELANOMA 191 4 0.0% 70.2%

a diagonal matrix with non-negative diagonal entries sorted
in a non-increasing order. The diagonal entries of D are all
non-negative because Â is positive semidefinite. Then we

yield B = V̂D̂
1

2 , where V̂ contains the first m columns of
V, and D̂ contains the top-left m×m submatrix of D. Note
that we should have m < d′ to ensure privacy is preserved,
which means the feature selection step should obtain more
than m features.

5. RESULTS ON BENCHMARK DATA
Before going into the details of non-small-cell lung can-

cer survival prediction, we first show some empirical results
on some benchmark survival data sets. Table 1 summarizes
these five data sets. All of them are related to medical out-
comes and are publicly available. A substantial amount of
data is censored and also missing. The SUPPORT data set is
a random sample from Phases I and II of the SUPPORT [9]
(Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment) study. As suggested in [7] we split
the data set into four different subsets, each corresponding
to a different cause of death (SUPPORT-1: ARF/MOSF,
SUPPORT-2: COPD/CHF/Cirrhosis, SUPPORT-3: Coma,
SUPPORT-4: Cancer). The MELANOMA data is from a
clinical study of skin cancer.

For these experiments we randomly split each data set
into 4 subsets as 4 parties. Then we randomly pick up 70%
of the patients from each party as training patients, and test
on the rest 30% patients. For HPPCox we combine all the
training patients together using Algorithm 1, in which we
consider both the learned mapping matrix (HPPCox learn)
and random projection (HPPCox rand). These experiments
are repeated 20 times with different splits, and the predictive
Area Under the ROC Curve (AUC) are reported in Figure 1,
2 and 3 for these five data sets. Note that to be able to
calculate the ROC curve, we select the point of interest to
be the median survival time of the data set (i.e., the patient
get an output +1 if he/she survived longer than the median,
or -1 otherwise).

It is clear from these figures that HPPCox yields much
better predictions than the Cox model trained on each indi-
vidual subset. This indicates that by sharing the data in the
privacy-preserving way, PPCox is able to better predict the
survival. From these figures we can also see that HPPCox
using the learned mapping matrix is in general better than
HPPCox using random projection, and with smaller error
bars. This means our strategy is very promising in further
improving the performance. In Figure 3 we also compare
the “HPPCox learn” with the non-HPPCox which explicitly
combines the training data from different parties without
mapping. The HPPCox one achieves almost the same per-
formance as non-HPPCox, indicating that HPPCox can not

only preserve privacy, but also achieve almost-optimal per-
formance.

We believe the high performance achieved using the rep-
resentation provided by our learned (optimized) projection
matrix is in part due to the feature selection properties of
our model. Feature selection can often prevent overfitting
and is specially useful in scenarios with limited training data
relative to the number of dimensions. However, we remark
that in this paper we do not concentrate on analyzing the
effects of feature selection on this datasets.

6. CASE STUDY: SURVIVAL PREDICTION
FOR NSCLC PATIENTS

Radiotherapy, combined with chemotherapy, is treatment
of choice for a large group of non-small cell lung cancer
(NSCLC) patients. The marginal role of radiotherapy and
chemotherapy for the survival of NSCLC patients has been
changed into one of significant importance. Improved radio-
therapy treatment techniques allow an increase of the radia-
tion dose, while at the same time more effective chemoradi-
ation schemes are being applied. These developments have
lead to an improved outcome in terms of survival. In sum-
mary, an increasing number of patients is being treated suc-
cessfully with (chemo) radiation, but an accurate estimation
of the survival probability for an individual patient, taking
into account patient, tumor as well as treatment charac-
teristics and offering the possibility for treatment decision-
making, is currently not available.

At present, generally accepted prognostic factors for inop-
erable patients are performance status, weight loss, presence
of comorbidity, use of chemotherapy in addition to radio-
therapy, radiation dose and tumor size. For other factors
such as gender and age the literature shows inconsistent re-
sults. In a recent study it was shown that number of in-
volved nodal areas quantified by PET-CT was an impor-
tant prognostic factor [5]. We performed this retrospective
study to develop a prediction model for 2-year survival of
NSCLC patients, treated with (chemo) radiotherapy, taking
into account all known prognostic factors. To the best of
our knowledge, this is the first study of prediction models
for NSCLC patients treated with (chemo)radiotherapy.

6.1 Patient Population and Clinical Variables
Between May 2002 and January 2007, a total number of

455 inoperable NSCLC patients, stage I-IIIB, were referred
to MAASTRO clinic to be treated with curative intent.
Clinical data of all these patients were collected retrospec-
tively by reviewing the clinical charts. If PET was not used
as a staging tool, patients were excluded from the study.
This resulted in the inclusion of 399 patients. The primary
gross tumor volume (GTVprimary) and nodal gross tumor
volume (GTVnodal) were calculated, and the sum of them
resulted in the GTV. Radiotherapy planning was performed
with a Focus (CMS) system, taking into account lung den-
sity and according to ICRU 50 guidelines. There were four
different radiotherapy treatment regimes applied for these
patients in this retrospective study, therefore to account for
the different treatment time and number of fractions per day,
the equivalent dose in 2 Gy fractions, corrected for overall
treatment time (EQD2T), was used as a measure for the
intensity of chest radiotherapy. The final list of clinical vari-
ables are summarized in Table 2.
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Figure 1: AUC comparison for HPPCox model for benchmark data sets SUPPORT-1 (left) and SUPPORT-2 (right).

We compare HPPCox with learned mapping, HPPCox with random mapping, and 4 individual Cox without sharing

data. The mapping dimension m = d − 1. In each of the run 70% of the data are used for training, and 30% for testing.

The error bars are calculated based on 20 times of random splits of the data.
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Figure 2: AUC comparison for HPPCox model for benchmark data sets SUPPORT-3 (left) and SUPPORT-4 (right).

We compare HPPCox with learned mapping, HPPCox with random mapping, and 4 individual Cox without sharing

data. The mapping dimension m = d − 1. In each of the run 70% of the data are used for training, and 30% for testing.

The error bars are calculated based on 20 times of random splits of the data.
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Figure 3: AUC comparison using MELANOMA data. We compare HPPCox with separate trainings using only the

self training individuals (left), and compare HPPCox learn and non-HPPCox (which explicitly use all the training data

from different parties) with different percentages of training patients (middle) and in a scatter plot (right).

Additionally, a smaller number of patients treated at the
other two centers, the Gent hospital and the Leuven hospi-
tal, were also collected for this study. There are respectively
86 and 40 patients from the Gent and Leuven hospitals, and
the same set of clinical variables as the MAASTRO patients
were measured.

6.2 Experimental Setup

In this paper we focus on 2-year survival prediction for
these NSCLC patients, which is the most interesting pre-
diction from clinical perspective. The survival status was
evaluated in December 2007. The mean values across pa-
tients are used to impute the missing entries if some of these
predictors are missing for certain patients. To account for



Table 2: Clinical variables for NSCLC study.

Variable Description

Gender Male or Female

WHO WHO performance score

FEV Lung function

T-Stage T stage information

N-Stage N stage information

NPLN Number of positive lymph nodes

GTV Gross tumor volume

Chemo With chemo-therapy or not

EQD2T Equivalent dose corrected by time

OTT Overall treatment time

the very different number of patients from the three sites, a
subset of MAASTRO patients were selected for the follow-
ing study. In the following we use the names “MAASTRO”,
“Gent” and “Leuven” to denote the data from the three dif-
ferent centers. We finally end up with 80, 85 and 40 patients
for MAASTRO, Gent and Leuven, respectively.

Under the privacy-preserving setting, we are interested in
assessing the predictive performance of a model combining
the patient data from the three centers together, compared
to the models trained based on each of these centers. The
data combination needs to be done in a way that sensitive
information is not uncovered. Therefore for our experiments
we trained the following 5 models under each configuration:

• HPPCox learn: Apply HPPCox with learned map-
ping matrix.

• HPPCox rand: Apply HPPCox with random pro-
jection.

• MAASTRO: Only use MAASTRO training patients.

• Gent: Only use Gent training patients.

• Leuven: Only use Leuven training patients.

For each of the configurations, we vary the percentage of
training patients in each of the centers, and report the AUC
for the test patients. Note that the testing was performed
using all the test patients from all centers.

6.3 Results
Figure 4 shows the comparison results of “HPPCox learn”

with other Cox model settings. It’s clear that “HPPCox
learn” again outperforms all the other settings. In Figure 4
middle and right, we show the random projection versus the
optimal non-HPPCox training which explicitly combines the
data from different centers, and as can be seen the difference
is not big. The “HPPCox learn” is slightly better than “HP-
PCox rand”, so for clarity we didn’t draw that curve on the
figure. As expected, with higher percentages of training data
the predictive performance is better. The big error bars in-
dicate that when we randomly select 90% of the data for
training, the test performance is largely influenced by the
quality of the (combined) left-out data.

Our proposed mapping learning algorithm has the nice
property that we can automatically do feature selection si-
multaneously as the PP Cox modeling. In this study we
start from 10 features as listed in Table 2, and finally our
algorithm successfully selected, in average, 6.35 features.

Finally based on these selected 6 features, we varied the
mapping dimensions m for the B matrix we used in PPCox
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Figure 5: AUC comparison for HPPCox with different

dimensions m, where the optimal non-HPPCox line is

using the identified 6 best features.

models (see Figure 5), and as expected, bigger m yield better
predictive performance. Therefore, in practice we normally
choose m = d − 1 to maximize the performance of the PP
models (which still perfectly satisfies the privacy-preserving
requirements).

7. DISCUSSION AND CONCLUSIONS
We have designed an approach for privacy-preserving data

mining based on a linear (lossy) projection of the original
data onto a lower-dimensional space. This projection is op-
timal in the sense that it preserves the relevant attributes of
the data that are important for the application of interest. It
can therefore be contrasted with the random projection ap-
proach for privacy preserving. We have described our adap-
tation of this concept to a real clinical setting where data is
shared across three healthcare institutions. Our approach is
able to build more accurate predictive models than what was
possible by using only the data from each institution alone
and using the random projection approach. These results
were also obtained using benchmark datasets. We believe
this is the first approach for privacy-preserving data mining
for Cox regression survival analysis.

There are a few interesting challenges related to adapting
this approach to the scenario of vertical data distribution.
For vertical privacy-preserving, formulation (6) is not ap-
plicable in a similar way as for the horizontal case, since it
assumes full records are available at once. The outer prod-

uct needed to calculate C
(p)
ijk cannot be computed indepen-

dently by each party (at each institution). This can be cir-

cumvented by letting C
(p)
ijk be an incomplete matrix/vector,

where the element corresponding to the above entry is not
utilized (equivalentely can be made equal to zero); this ap-
proach is not included in this paper due to space consid-
erations. However, while this approach makes it possible
to obtain a direct vertical privacy-preserving formulation,
we believe it is sub-optimal and can open the door to new
alternative formulations.
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