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Abstract

A great number of services, experiments, and de-

cisions at Yahoo! require analyzing rich data

sources. This data almost invariably holds a large

number of attributes. In these scenarios, the ef-

ficient selection of relevant attributes is impera-

tive for data analysis (e.g., modeling, prediction).

When approaching new data analysis tasks, do-

main experts, researchers, and engineers spent

a considerable amount of resources identifying

(manually or semi-automatically) these relevant

attributes. This paper attempts to address this

problem by providing a simple and largely auto-

mated attribute selection approach. The method

is based on reformulating the mutual information

(MI) measure. We show why MI cannot in gen-

eral be used effectively without considerable do-

main expertise and describe a more appropriate

measure that allows for a much larger level of

automation (removing considerable manual work

from the analysis loop). Experiments on the tasks

of predicting clicks and conversions for Yahoo!

display advertising platform in the context of the

NGDStone project show the effectiveness of the

proposed approach.

1 Introduction

This paper addresses the problem of automated selection

of relevant data attributes (also referred to as co-variates

or features) when only some attributes can be utilized for

prediction/data modeling tasks. This is a very familiar

scenario when working with rich data sources common at

Yahoo!, where the available number of possible attributes

is too large to be used in their entirety during predic-

tion/modeling. Practical considerations, such as memory,

latency, and training time constraints, make attribute selec-

tion a clear requirement in many real tasks. Additionally,

non-informative attributes can introduce noise and reduce

the predictive accuracy of the system.

While expert knowledge should be used when available,

this often serves as a rough guide as the number of at-

tributes is too large to be considered for a systematic and

thorough solution. Normally the available knowledge is

limited or expensive to incorporate in practice and thus au-

tomated methods are essential.

This paper focuses on the case when attributes and target

value(s) are discrete. Optimal feature selection is known

to be an NP-hard problem in general [4], where the com-

plexity grows at least exponentially with the number of at-

tributes considered. In machine learning, most methods

for approaching the selection problem are broadly classi-

fied into filter and wrapper methods [2]. The first attempts

to identify the optimal attributes independently of the ma-

chine learning model while the latter involves incorporating

model-specific learning in the selection.

We focus on filter methods as they are more practical in

problems with a large number of data attributes. The clas-

sical and widely employed method in this category is the

selection of attributes based on each attribute’s information

content about the target attribute [6], where the Mutual In-

formation [5, 7] is employed to measure the probabilistic

dependence between discrete random variables. This is re-

ferred to, in this report, as the Standard Mutual Informa-

tion (SMI) method, and consists of sorting the attributes’

importance based on their MI score. This method has some

limitations, including its reliance on empirical probability

estimates to compute the MI. One way to address this was

studied in [3, 8] by considering (approximate) distributions

over the MI value (rather than a point estimate). When

building predictive models, where the central motivation

is in learning a model with training data and predicting

the target variable on unseen test data, the differences be-

tween the empirical training and test distributions can lead

to meaningless estimates of MI. This leads to inappropriate

attribute selection results.

In the following presentation we focus on this class of prob-

lems, illustrate them in the context of Yahoo!’s data, and

propose a reformulation to address them. This reformula-

tion is based on utilizing a reference distribution (separate

from the training distribution) to calculate the MI score.

We will show theoretically and experimentally that this de-

velopment allows us to select attributes that are more suit-

able for the problem at hand. In particular we argue how

the proposed approach can considerably reduce a) the time

needed for manual attribute testing and selection and b) the

amount of expert knowledge required to build appropriate

data models for prediction tasks.



2 Formulation

Let the available training data be represented by a set of

N tuples (data points) D = {(x1, . . . , xD, y)}N , where xi

represent the i-th data attribute/feature and y represents the

target value for the tuple. We let the each tuple be a sam-

ple from an unknown distribution p over random variables

X = (X1, ..., XD) and Y .

Standard Mutual Information Criterion The definition

of mutual information (MI) between a random variable Xi

(normally representing an attribute) and a target random

variable Y is given by:

I(Xi, Y ) =
∑

xi,y

p(xi, y) log
p(xi, y)

p(xi)p(y)
(1)

where p(xi, y) represents the joint probability of Xi =
xi and Y = y, and p(xi), p(y) are the corresponding

marginals. For a log function with base 2, I(Xi, Y ) indi-

cates how many bits knowing about (the value of) Xi tells

us about (the value of) Y . A useful property for the MI is

that I(Xi, Y ) ≤ H(Y )1, the information provided about a

discrete random variable cannot be larger than its entropy.

The MI score offers a clear guide for attribute selection.

The standard procedure consists of sorting all the attributes

of interest according to their information content about the

target variable Y and selecting the top K . The MI for a

conjunction of attributes XC can be computed by letting

XC take values on the product space of the attributes in

question (thus, basically representing a new compound at-

tribute). This combination of attributes in general increases

the space and time complexity exponentially with the num-

ber of attributes. Unless combinations of all possible at-

tributes are considered, this procedure is not guaranteed to

provide the global optimal solution.

Here we concentrate on a key drawback of this method.

This can be illustrated as follows: Let Xu be a random

variable taking unique values (Xu can for instance be an

event identifier), then I(Xu, Y ) = H(Y ) since the values

of Xu can fully identify the data point and therefore its

label. Formally:

I(Xu, Y ) =
∑

x,y

p(xu, y) log p(y|xu)/p(y) (2)

=
∑

y

p(y) log 1/p(y) = H(Y ), (3)

since p(y∗|xu) = 1 for some y = y∗ (zero otherwise).

However,Xu is useless as an attribute for predicting y since

its values are unique and not observed in any test set.

Although the correspondence needs not be one-to-one, the

above case highlights the main concern that the values

1H(Y ) = −

∑
y
p(y) log p(y) denotes the entropy[1] of Y .

taken byXu are identifying the data points, and are not nec-

essarily of use for predicting the target variable on different

data. More generally, the larger the number of different val-

ues an attribute can take, the higher its mutual information

could potentially be, but also the higher the risk that it does

not generalize on the test distribution.

Reformulating the Mutual Information Criterion In se-

lecting relevant attributes, we are mainly concerned with

performance on a test or reference set. Ideally this test set

follows a distribution similar to the available training set.

However when this is not the case, like in the cases high-

lighted above, the MI is not a valid relevance score.

In order to address this problem we propose using a related

function that explicitly considers a reference distribution.

Let the reference distribution be given by p̃(x, y), then de-

fine the MI with respect to the reference distribution by:

Ip̃(Xi, Y ) =
∑

xi,y

p̃(xi, y) log
p(xi, y)

p(xi)p(y)
, (4)

where the difference lies on calculating the expectation

with respect to the reference (not training) distribution.

This definition has the problem that the log ratio is unde-

fined for cases when p(xi) = 0. This happens when an

attribute value has been seen in the reference distribution p̃
but not in the training set distribution p. Thus, we utilize a

smoothing of the training data distribution of the form:

pr(xi, y) =
Np(xi, y) + p(y)

N + |Xi|
, (5)

guaranteeing pr(xi) > 0, where |Xi| is the number

of states taken by Xi. It is possible to show that, if

(∀y)p(y) > 0, this does not affect the target distribution,

that is: pr(y) = p(y). In the critical case where Xj does

not appear in the training data distribution, we can show

that pr(y|xi) = p(y). In the latter case we have that the log

ratio above becomes 0.

The main relevant property of the new information quantity

is that as attributes are evaluated on a reference distribution,

spurious relationships (such as those seen above) found in a

specific dataset and that do not generalize to the test dataset

are mostly ignored. Consider an extreme example where

the values of Xu seen in the training data do not appear

in the test distribution. Using the new definition, the test

distribution will place no mass to these values, and Xu will

have no measured information about the target variable of

interest. More formally:

Ip̃(Xu, Y ) =
∑

xu,y

p̃(xu, y) log
pr(xu, y)

pr(xu)pr(y)
= 0. (6)

We note that in many instances, any reference distribution p̃
computed on a valid sample (not necessarily the test data)



Table 1: Top features for click prediction along with their

mutual information. First table: standard mutual informa-

tion; second and third table: modified mutual information.

Third table contains the top conjunction features.

Single feature SMI (bits)

event id 0.59742
query string 0.59479
xcookie 0.49983
user id 0.49842
user segments 0.43032

Single feature RMI (bits)

section id 0.20747
served creative id 0.20645
site 0.19835
served campaign id 0.19142
rmx ad grp id 0.19094

Conjunction feature RMI (bits)

section id x served advertiser id 0.24691
section id x served creative id 0.24317
section id x served IO id 0.24307
served creative id x publisher id 0.24250
served creative id x site 0.24246
site x served advertiser id 0.24234
section id x pixeloffers 0.24172
site x served IO id 0.23953
publisher id x served advertiser id 0.23903

different than the training distribution will allow the pro-

posed measure to avoid spurious relationships particular to

the training data. However, a reference distribution closer

to the test distribution is preferred as test-specific depen-

dencies will be better captured by the new MI definition.

3 Experiments

In order to test the proposed approach, we focused on two

central prediction tasks in the context of Yahoo!’s display

advertising platform: 1) predicting a user ad click given a

page serve and user context, and 2) predicting a conver-

sion/action given that a click has occurred in this context.

Both of these tasks are at the core of performance-based

advertising products, as they are required to calculate ex-

pected price, revenue/profit measures, and user satisfaction

metrics.

The data utilized for our experiments consisted of a sam-

ple of Non-Guaranteed Display (NGD) logs (serve, click,

and conversion events). For the problem of attribute se-

lection for click prediction, we considered one day of data

for the training distribution and one day for the reference

distribution. Since there are many more serves than clicks,

the serves were further sub-sampled. After filtering (spam

removal, etc.) and joining the appropriate logs, the result-

ing data set had the following statistics: about 78M (mil-

lion) events with a CTR of 28% in both the training and

reference distributions. For conversion prediction, the data

consisted of logs for a period of 5 days (training), 1 day

Table 2: Top features for conversion prediction along with

their mutual information. First table: standard mutual in-

formation; second and third table: modified mutual infor-

mation. Third table contains the top conjunction features.

Single feature SMI (bits)

event id 0.03102
receive time 0.03059
query string 0.02963
xcookie 0.02925
user id 0.02923

Single feature RMI (bits)

conversion id 0.02338
served IO id 0.02207
rmx ad grp id 0.02136
served campaign id 0.02090
served advertiser id 0.02082

Conjunction feature RMI (bits)

conversion id x offer type id 0.02379
conversion id x pop type id 0.02369
conversion id x served IO id 0.02347
served IO id x offer type id 0.02267
served IO id x served bid type 0.02235
served advertiser id x pop type id 0.02120
served advertiser id x offer type id 0.02108
advertiser network id x offer type id 0.00993
publisher network id x advertiser network id 0.00770

(reference), and 2 days (testing). The statistics of this data

set were: 125M events for training, 25M for reference, and

50M for testing.

Our goal is to identify predictive features in the most au-

tomated manner possible (reducing time spent by people

on this task). Thus, practically all the data attributes pro-

vided by the RMX logs are considered potential features.

These were considered in its original form, without fea-

ture pre-processing. They include identifiers for the ac-

tual (serve/click/conversion) event, advertiser, publisher,

campaign, bcookies, timestamps, advertiser/publisher spe-

cific attributes, related urls, demographics, user-specific at-

tributes (e.g., assigned segments), etc. We consider con-

junctions of any of these attributes, giving rise to thousands

of possible compound features in practice. Each feature in

turn can take from two to millions of possible values.

The important element to consider is that without time-

consuming research into attribute definitions, it is ex-

tremely tedious to apply most machine learning or data

mining/analysis algorithms for. Thus, requiring consider-

able effort from e.g., machine learning scientists or domain

experts. Wrapper methods are not appropriate in this set-

ting as they require training using a large set of variables;

this is usually impractical except for some simple models.

It is in this setting where filter methods, such as the MI

methods described here, can be more advantageous.
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Figure 1: Performance of Logistic Regression Models

trained with the top K features given by SMI and RMI

3.1 Attribute Selection Results

We applied the standard MI (SMI) ranking algorithm for

feature selection. The results, summarized in Tables 1-

2(top) reflect our main concern. In the presence of spu-

rious features, or features that are informative about the

data point per se rank substantially high. The calculated

MI score is correct in that it reflects the information content

of these features; however, these features are too specific to

the training data distribution.

The proposed extension of the MI score utilizing a refer-

ence distribution (RMI) provides a more appropriate rank-

ing as shown in Tables 1-2(mid-bottom). The reason for

this is that the information content is calculated with re-

spect to (expectations on) the reference distribution and

thus feature values that are not seen in the new distribution

are basically considered less important and their impact on

the information score is reduced.

More specifically, attributes such as event id that iden-

tifies the data point have maximal information content ac-

cording to the training distribution (SMI), but near zero

information content when calculated with a reference dis-

tribution (RMI) (c.f.; Sec. 2). A similar effect was ob-

served for other features that have low relevance for predic-

tion such as query string and receive time which

unless parsed are too specific, xcookie and user id

which clearly do not generalize across users (but could be

quite informative about a small fraction of the test data),

and user segments which is encoded as a string with a

list of segments. The results for other features are more

subtle but follow the same underlying principle where a

reference distribution is utilized to avoid spurious depen-

dencies often found when utilizing empirical distributions.

3.2 Learning Performance Results

We now explore the question of whether the new feature

rankings actually offer any performance gains. For this, we

ranked all the feature conjunctions provided by SMI/RMI

and trained a Logistic Regression model using the top K
conjunctions given by each method. The results for conver-

sion prediction are shown in Fig. 1 for various K values.

The graph shows performance in terms of the (scaled) Area

Under the Precision-Recall curve (similar results obtained

when measuring the Area Under the ROC curve and per-

centage of correct predictions). The results indicate that

SMI ranks very irrelevant features on top. After more

than 100 conjunctions, more relevant features start to be in-

cluded in the model as evidenced by the performance gains.

On the contrary, RMI captures relevant features much ear-

lier, as only the top 10 features are sufficient to perform bet-

ter than SMI with 128 features. The performance increases

considerably at 32 features, and appears to stabilize after 64

features. One interesting question is whether after a large

K the performance of both methods will be comparable.

As seen in both curves, when 256 features are utilized, still

the difference is considerable. We believe the performance

of SMI will remain affected by the various irrelevant fea-

ture included early on, depending on how much the model

is susceptible to the noise introduced by these.

Finally, the top line in the graph represents the current best

model after considerable feature engineering (e.g., where

features such as receive time and query string

have been parsed and transformed into a suitable represen-

tation), manual feature selection, grouping, and train/test

exploration experiments. This indicates that the proposed

selection method produced quantitatively comparable re-

sults but have been much more resource-efficient than the

best possible modeling efforts in this problem so far.

4 Conclusions

We have developed and tested an efficient filter approach

for attribute selection. The approach is based on reformu-

lating the widely used mutual information measure to ad-

dress some of its limitations for attribute selection. These

limitations are of conceptual and practical nature particu-

larly in cases where training and test data distributions are

inherently different for some attributes or cannot be esti-

mated accurately due to limited data. This is very often

the case when working in real application scenarios with

a large number of attributes. We have found that this ap-

proach allows for a considerable increase in automation as

it can efficiently assign a lower rank to spurious features as

seen in our experimental evaluation. We expect this to be

a valuable tool for approaching new problems or analysis

tasks as it allows for a quicker and less resource-intensive

initial understanding of new data sources.
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