
Learning Sparse Metrics via Linear Programming

Rómer Rosales and Glenn Fung
Computer-Aided Diagnosis and Therapy Group

Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA USA

romer.rosales@siemens.com, glenn.fung@siemens.com

ABSTRACT
Calculation of object similarity, for example through a dis-
tance function, is a common part of data mining and ma-
chine learning algorithms. This calculation is crucial for ef-
ficiency since distances are usually evaluated a large number
of times, the classical example being query-by-example (find
objects that are similar to a given query object). Moreover,
the performance of these algorithms depends critically on
choosing a good distance function. However, it is often the
case that (1) the correct distance is unknown or chosen by
hand, and (2) its calculation is computationally expensive
(e.g., such as for large dimensional objects). In this paper,
we propose a method for constructing relative-distance pre-
serving low-dimensional mappings (sparse mappings). This
method allows learning unknown distance functions (or ap-
proximating known functions) with the additional property
of reducing distance computation time. We present an algo-
rithm that given examples of proximity comparisons among
triples of objects (object i is more like object j than ob-
ject k), learns a distance function, in as few dimensions as
possible, that preserves these distance relationships. The
formulation is based on solving a linear programming op-
timization problem that finds an optimal mapping for the
given dataset and distance relationships. Unlike other popu-
lar embedding algorithms, this method can easily generalize
to new points, does not have local minima, and explicitly
models computational efficiency by finding a mapping that
is sparse, i.e., one that depends on a small subset of features
or dimensions. Experimental evaluation shows that the pro-
posed formulation compares favorably with an state-of-the
art method in several publicly available datasets.

Categories and Subject Descriptors
G.4 [Mathematical Software]; H.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval; H.4
[Information Systems Applications]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

General Terms
Algorithms, measurement, performance

Keywords
Metric learning, dimensionality reduction, linear program-
ming, linear projections, convex optimization, relative dis-
tance constraints

1. INTRODUCTION AND RELATED WORK
The notion of a distance is essential in many machine

learning and data mining concepts. From a practical point
of view, the choice of a distance has a direct effect on the
performance of many algorithms, both in terms of accuracy
and of efficiency. From an accuracy perspective, numerous
algorithms rely on the user being able to provide a good
distance function (e.g., nearest neighbor, clustering meth-
ods, SVM, etc). Here, a good distance function is roughly
one that is small for similar objects and large for dissimilar
ones. Clearly, since objects can be similar or dissimilar in
many respects, similarity is not absolute and depends on the
task of interest; thus, different distance functions should in
theory be chosen for different tasks. How to best choose an
appropriate distance function remains an interesting prob-
lem.

From an efficiency perspective, many widely used approaches
for data mining, the classical example being query-by-example
(find objects that are similar to a given query object), re-
quire evaluating a distance function between a large number
of points1. These calculations often take an important part
of the available CPU time and therefore, a relevant prob-
lem is how to automatically find accurate approximations
to these distance functions but that are efficient to evaluate.

In this paper we present an approach, based on formu-
lating and solving a simple linear programming problem,
that allows for automatically building distance functions
from examples (1) that are tailored to the problem at hand
and (2) that have the additional property of being compu-
tationally efficient to evaluate. We are interested in solv-
ing the following problem. Let us represent the objects of
interest2 by points xk in a D-dimensional space <D, with
k = {1, 2, ..., N}. The problem is how to change this repre-
sentation to points x̂k such that distance relationships be-

1Other examples include K-means and kernel-based meth-
ods in general.
2Examples of objects of interest are: database records, user
opinions, product characteristics, etc.

tween points are appropriate for the task of interest accord-
ing to side information provided by a user in the form of
distance relationships (see Sec. 1.1) and in addition, so that
the points lie on a lower dimensional space <d.

In order to achieve this, we are interested in finding a
transformation A : <D → <d that relates any point in the
original space to its low dimensional counterpart. When A
is a linear transformation, this can be thought of as learn-
ing a Mahalanobis distance (e.g., see [18, 12, 16]). Sec. 1.2
describes the connection and differences between the formu-
lation introduced in this paper, the above, and other related
methods.

1.1 Specifying distance relationships as side
information

In this paper, only distance relationships among a number
of points are used to capture the structure of the space, no
absolute distances are necessary. These relationships may
be provided by a user; thus, it would be beneficial to make
the information required from the user (1) simple to obtain
and (2) easy to provide. We believe that relationships of
the form object i is closer to j than to k are both simple
to specify and sufficiently informative to capture the prop-
erties of the task of interest. In case that an appropriate
metric or an algorithm for determining relative similarity
were available (but cannot always be used because e.g., it
is expensive to evaluate), this information can be obtained
more automatically.

In choosing this type of relative relationships, we were
inspired by the work in [1]; however, distance relationships
of this type were also employed in [15, 12]. Note that we are
not interested in preserving absolute distances, which are in
general much more difficult to obtain3.

Another interesting property of this type of distance re-
lationships is that they do not require the concept of class
labels (e.g., [16]) or the specification of examples of similar
objects vs. dissimilar ones (e.g., [18]). The concepts of sim-
ilar vs. dissimilar are limited by the fact that a user would
need knowledge of at least some (and preferably all) of the
rest of the objects in order to determine whether two objects
are similar or dissimilar; that is, a reference frame is needed.

1.2 Metric learning with dimensionality re-
duction

The framework presented in this paper is related to dif-
ferent sets of approaches. A first set can be represented
by unsupervised methods that have approached the prob-
lem of finding low dimensional representations of the data.
Some of these approaches attempt to capture the variance of
the data such as Principal Components Analysis [9], while
others build low-dimensional embeddings, that is, by trans-
forming a set of data points into a lower dimensional one
such that (some or all) distances are preserved. Examples
of these approaches include algorithms such as Multidimen-
sional Scaling (MDS) [5], Locally Linear Embeddings (LLE)
[11], ISOMAP [13], and low-dimensional embeddings via
SDP [17]. These methods can implicitly reduce the amount
of computation regarding distance calculations; however due
to their purely unsupervised nature, they rely on a distance
function to be given and cannot build a function such that

3Absolute distances imply relative distances, but the con-
verse is not true.

the accuracy of certain (e.g., classification) algorithms is im-
proved. In other words, they are not designed to capture the
concept of an appropriate distance.

Another set of approaches that are related to ours in a
different manner are those that attempt to learn an appro-
priate distance function from examples. The most closely
related approaches are [18, 12, 1]. The first two require
some form of supervision and are designed just to learn
good distance functions, without explicitly attempting to
improve the efficiency of distance calculations. BoostMAP
[1] is the most related to our approach in terms of the goals
targeted, that is, finding a distance function that is both
accurate for the task and efficient to evaluate. Like our
method, both [1] and [12] attempt to preserve distance rela-
tionships. However, BoostMAP, based on using AdaBoost
to combine multiple 1D embeddings to preserve the proxim-
ity structure of the data, has the disadvantage that it leads
to an iterative, greedy algorithm to optimize the embedding
and thus does not have strong optimality guarantees. In
contrast, the method in [12] proposes a convex optimiza-
tion problem based on SVMs. Its disadvantages include the
facts that the problem requires quadratic programming and
is only designed to find appropriate weights for the different
coordinates of the data; thus a very small subset of lin-
ear transformations is explored to obtain a solution. When
comparing the properties of the solution space, [18] is the
most related approach. This is based on finding a square
matrix that defines a Mahalanobis distance. The distance
is optimized to respect distance constraints represented by
two sets, one of similar and one of dissimilar points. The
formulation leads to a convex optimization problem.

As we will show, while the general problem formulated in
this paper does not appear to accept efficient algorithms, a
proposed comparable problem can be solved by using just
linear programming.

Table 1 shows a collection of approaches that share some
of the goals or motivations of the approach presented in this
paper. It also highlights several important distinguishing
attributes. In particular we have considered (1) computa-
tional efficiency: whether the method attempts to find low
dimensional representations for efficient distance evaluation,
(2) generalization to new points: whether the method can
easily generalized to new unseen points, (3) distance learn-
ing capability: whether it can learn a distance function from
user examples, and (4) power of learning algorithm: whether
the learning algorithm finds local-free optima (such as it is
the case for convex formulations). The method proposed
in this paper has a unique set of positive attributes that
provide significant advantages over recent approaches.

1.3 Notation and background
In the following, vectors will be assumed to be column

vectors unless transposed to a row vector by a superscript
>. The scalar (inner) product of two vectors x and y in the
n-dimensional real space <n will be denoted by x>y, for any
n. The 2-norm and 1-norm of x will be denoted by ‖x‖2 and
‖x‖1 respectively. For a matrix A ∈ <m×n, Ai ∈ <n denotes
a column vector formed by the elements of the i-th column
of A. A column vector of ones of arbitrary dimension will
be denoted by ~e, and one of zeros will be denoted by ~0. The
identity matrix of arbitrary dimension will be denoted by
I. For a matrix A, we use A � 0 to indicate that this is
positive semidefinite.

Table 1: Related Approaches for Dimensionality Reduction and Metric Learning (Y=Yes, N=No)

Approach
Low dim Generaliz. Learns Local-minima
(efficient to unseen from free
evaluat) data examples (convexity)

Athitsos et al. [1] Y Y Y N
FastMap [6] Y Y N N
MDS [5] Y N N N
Schultz-Joachims[12] N Y Y Y (QP)
Wagstaff et al. [10] N Y Y N
Weinberger et al. [16] Y Y N Y (SDP)
Xing et al. [18] N Y Y Y (Iterat. Proj.)
This paper Y Y Y Y (LP)

2. LEARNING METRICS
Let us say we are given a set of points xk ∈ <D with

k = {1, ..., N} for which an appropriate distance metric is
unknown or expensive to compute. In addition we are given
information about a few relative distance comparisons. For-
mally, we are given a set T ⊂ {(i, j, k)|f(xi,xj) < f(xi,xk)}
for some distance function f . As indicated above, f may
not be known explicitly, instead a user may only be able
to provide these distance relationships sparsely or by exam-
ple. We are interested in finding a linear transformation
A : <D → <d such that:

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 < ||x̂i − x̂k||

2
2 (1)

where x̂k = Axk. Additionally, since we would like to ac-
count for efficiency, we will prefer transformations such that
d � D.

In summary, we would like to find a new representation
of the original space that uses fewer dimensions and where
the L2 norm respects the desired distance relationships.

For ease of notation, we represent the transformation as a
square matrix A ∈ <D×D. It is easy to show that if Ak = ~0
(the k-th column of A is equal to the zero vector), then the
k-th original dimension (in <D) can be ignored when calcu-
lating the projection and subsequently when evaluating the
implied distance function. If z is the number of columns of
A that are zero, then d = D− z (the dimension of the space
induced by A clearly depends on z). Because of the rela-
tionship between this type of matrix sparsity and efficient
metric distance evaluation, we have used the term sparse
metric.

3. BASE FORMULATION
Putting the above ideas together, the projection matrix

A can be formally defined as the optimal solution to the
following optimization problem:

max
A:<D→<d

D
X

m=1

1(Am = ~0)

s.t.

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 < ||x̂i − x̂k||

2
2, (2)

where the set T of triples indicates the distance relationships
to be satisfied and 1(E) is the indicator function which re-
turn the value 1 if the logical expression E evaluates to true
and zero otherwise. The above definition of A is useful at
formalizing the desired concept of an optimal projection in

the sense presented in this paper. However, as formulated,
it is not amenable to practical calculation since it is un-
clear whether there exist an efficient algorithm for finding A
given the set T . We now concentrate on formulating similar
problems that can be more efficiently approached.

Note that for d < D the feasible set for the above problem
could be empty. In that case, there is no matrix A that can
solve the problem and A is undefined. Since in practice we
may still be interested in finding a good matrix A, even if
it does not satisfy all of the constraints, in the following we
also study variations of the problem to address these cases.

4. CONVEX FORMULATIONS
Here we concentrate on convex approximations to the

problem in Sec.3.

4.1 Optimizing for A

In order to address the discrete nature of the base for-
mulation, we transform the overall problem into one with a
continuous cost function. Additionally, to address the case
where the feasible set is empty, we relax the constraints by
introducing slack variables εt. The problem can be reformu-
lated as follows:

minA:<D→<d

P

t εt + α
PD

m=1 ||Am||1
s.t.

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 ≤ ||x̂i − x̂k||

2
2 + εt

∀t, εt ≥ 0

(3)

where t indexes the set T , α ∈ < is a scalar that controls the
trade off between the sparsity of A and compliance with the
inequalities generated by the triples in T , and εt ∈ < repre-
sents a slack variable. This new problem is clearly not equiv-
alent to the base formulation; however, the 1-norm tends to
suppress terms and to produce sparse solutions. This has
been empirically validated, in particular in the SVM frame-
work e.g., [4, 7]. Hence, the expression

PD

m=1 ||Am||1 in
formulation (3) will be used to replace the ideal expression

−
PD

m=1 1(Am = ~0). The later would lead to a 0-1 Mixed In-
teger Programming (MIP) problem, known to be NP-hard.

Each distance constraint can be written as:

(Axi)
>(Axi) − 2(Axi)

>(Axj) + (Axj)
>(Axj)

−(Axi)
>(Axi) + 2(Axi)

>(Axk) − (Axk)>(Axk) ≤ εt, (4)

and by defining B = A>A ∈ <D ×<D, Eq. 4 can be further

simplified to:

(x>
j Bxj) − (x>

k Bxk) + 2[(x>
i Bxk) − (x>

i Bxj)] ≤ εt

B � 0

B = B>(5)

The main advantage of the new equation is that it pro-
duces linear constraints in the new variable B, instead of
quadratic constraints in A. However, in order for the equiv-
alence to hold, we must have B symmetric and positive
semidefinite. Assuming the cost function remains convex
in B, this problem is still convex in B. Technically, this
formulation is sufficient to approach the problem at hand.
However, it becomes a (more expensive to solve) semidefi-
nite programming problem (SDP). Next, we will show how
the much more efficient linear programming method (LP)
can be employed instead to solve different instances of this
formulation.

4.2 Optimizing for B = A>A

We first focus on finding a cost function equivalent to
Eq. 3. For this we note that for B = A>A:

Ak = ~0 ⇔ Bk = ~0, (B>)k = ~0. (6)

At the distance calculation level, we can easily note that
since:

||x̂i − x̂j ||
2
2 = ||A(xi − xj)||

2
2 = (xi − xj)

>B(xi − xj)

we have that:
Bk = ~0 ⇒ ||x̂i − x̂j ||

2
2 does not depend on dimension k as

expected.
We can then define a new cost function in terms of B, and

arrive to the following problem:

minε,B

P

t εt + λ
P

m=1...D ||Bm||1
s.t.

∀(i, j, k) ∈ T ,−2(x>
i Bxj) + (x>

j Bxj)
−2(x>

j Bxk) + (x>
k Bxk) ≤ εt

∀t, εt ≥ 0
B = B>

B � 0,

(7)

where the set of constraints involving B follow from Eqs. 5
This is also a semi-definite programming (SDP) problem
which is convex and can be solved using specialized SDP
solvers like [14]. However, we will further develop the for-
mulation presented above by restricting our solution space
to a subfamily of the PSD matrices: the set of diagonal
dominant matrices.

4.2.1 Imposing diagonal dominance on B

In order to provide a better understanding of the mo-
tivation for our next formulation we present the following
theorem stated in [8]:

Theorem 4.1. Diagonal Dominance Theorem Sup-
pose that M ∈ <D×D is symmetric and that for each i =
1, . . . , n , we have:

Mii ≥
X

j 6=i

|Mij | ,

then M is positive semi-definite (PSD). Furthermore, if the
inequalities above are all strict, then M is positive definite.

Based on the diagonal dominance theorem (for matrices
with positive diagonal elements) above, we arrive to the fol-
lowing formulation, which constrains the feasible set to a
subset of that in the formulation (7):

minε,B

P

t εt + λ
P

m=1...D |Bmm|
s.t.

∀(i, j, k) ∈ T ,−2(x>
i Bxj) + (x>

j Bxj)
−2(x>

j Bxk) + (x>
k Bxk) ≤ εt

∀t, εt ≥ 0
B = B>

∀(m)Bmm ≥
P

n |Bmn|,
(8)

where the last constraint is equivalent to diagonal domi-
nance which implies positive semidefiniteness according to
theorem 4.1. As it was explained before, the sum of 1-norms
in the cost function causes preference for sparse solutions.
The second term in the cost function combined with the last
constraint has a similar effect. Note also that since Bmm ≥ 0
(as implied by the constraints), the second term is equivalent
to Trace(B).

The projection matrix A can be recovered by Cholesky
factorization of the symmetric matrix B [8] or by an eigen-
value decomposition. The constraint involving x and B
can be rewritten as follows. For any xi,xj ∈ <D, define
X̃ij = vect(xix

>
j), where vect() means (column-wise) align-

ment of all of the matrix elements in a column vector. Define
b = vect(B). The constraint can now be written:

∀(i, j, k) ∈ T [X̃jj + X̃kk − 2(X̃ij + X̃jk)]b ≤ εt (9)

Finally, using Eqs. 9 and defining auxiliary variables Smn ∈
< (m, n ∈ {1, ..., D}), formulation (8) can be rewritten as a
Linear Program in the following way:

minε,B,S

P

t εt + λ
P

m=1...D Bmm

s.t.
∀(i, j, k) ∈ T

[X̃jj + X̃kk − 2(X̃ij + X̃jk)]b ≤ εt − 1
∀t, εt ≥ 0

B = B>

∀(m,n, m 6= n) − Smn ≤ Bmn ≤ Smn

Bmm ≥
PD

n=1

m6=n
Smn

(10)
Since the matrix B is symmetric, the number of compo-

nents of B to be found can be reduced to D(D+1)/2 instead
of D2, furthermore by doing this, the constraints B = B>

can be discarded. The right hand side of the first set of
inequalities has been changed from εt to εt − 1 in order to
enforce numerical stability and to avoid obtaining the trivial
solution B = 0. In order to better understand the motiva-
tion for formulation (10) it is important to note that:

(i) Minimizing
P

m=1...D Bmm is equivalent to minimizing
PD

n=1

m6=n
Smn since Bmm ≥

PD
n=1

m6=n
Smn.

(ii) Since we are implicitly minimizing
PD

n=1

m6=n
Smn, at the

optimal solution {B∗, S∗, ε∗} to problem (10), we have
that:

0 ≥ S∗
mn = |B∗

mn| , ∀(m,n, m 6= n)

(iii) Combining (i) and (ii) we obtain:

∀(m)B∗
mm ≥

X

n

S∗
mn =

X

n

|B∗
mn|

which implies that B∗ is diagonal dominant and hence
positive semidefinite.

This last formulation works quite effectively in practice as
indicated by the numerical examples presented in the next
section.

5. EXPERIMENTAL EVALUATION
This section presents numerical results obtained by apply-

ing the above formulation to the problem of learning metrics.

5.1 Experimental Setting
We have tested our approach in a collection of nine pub-

licly available datasets, part of the UCI repository 4. These
datasets are summarized in Table 2. These datasets are
commonly used in machine learning tasks as benchmark for
performance evaluation. Our choice is majorly motivated by
their use to evaluate an alternative approach[18]. This is an
state-of-the art method whose code has been made public 5

This method compared well against K-means in the task of
finding a distance function that produced good clusterings.

This methods finds a linear transformation of the data
that respects similar vs. dissimilar constraints.

The datasets employed in these experiments are generally
used for classification since class labels are available for ev-
ery point. Our method does not require class labels, but
instead only relative distance comparisons among a subset
of points (clearly class labels provide more information). We
use the available class labels to generate a set of triples with
distance comparisons that respect the classes. More explic-
itly, given a randomly chosen set of three points (from the
training set), if two of these belong to the same class and a
third belongs to a different class, then we place this triple in
our set T (i.e., i and j are the points in the same class, k is
the remaining point). In other words, in order to make use
of the available class labels, we decided that points in the
same class should have smaller pairwise distances between
themselves than with points in any of the other classes (after
projected by A). For [18], the supervision is in the form of
two sets, one called a similar set and the other a dissimilar
set. For this model, we can again use the class labels, now
to build a similar set of pairs (likewise for a dissimilar set
of pairs). Given this level of supervision, this method at-
tempts to find an optimal Mahalanobis distance matrix to
have same-class points closer to each other than different-
class points (see [18] for details).

For every triple (i, j, k) ∈ T used in our approach for
learning, we use (i, j) ∈ S and (i, k) ∈ D for learning in [18];
where S and D are the similar and dissimilar sets required.
We believe this provides a fair level of supervision for both
algorithms since roughly the same information is provided.
It is possible to obtain a superset of T from S and D, and
by construction S and D can be obtained from T .

4http://www.ics.uci.edu/∼mlearn/MLRepository.html.
5Data for all experiments and code for [18] was downloaded
from http://www.cs.cmu.edu/∼epxing/papers/. The class
for dataset 1 was obtained by thresholding the median value
attribute to 25K.

In order to evaluate performance, we use a 0.85/0.15 split
of the data into training and testing. From the training
portion, we generate 1500 triples, as explained above, for
actual training. This information is provided, in the appro-
priate representation, to both algorithms. For testing, we
randomly choose three points, and if their class labels imply
that any two points are closer to each other than to a third
(i.e., again if two points have the same class and a third
has a different class label), then we check that the correct
relationships are satisfied. That is, whether the two points
in the same class are closer to each other than any of these
points (chosen at random) to the third point. This same
measure is used for both algorithms. Thus, we define the
percentage correct simply as the proportion of points from
the test set (sampled at random) that respect the class-
implied distance relationship. Both methods compared are
attempting to improve this performance measure given the
training data and thus we believe this is a valid measure.

5.2 Discussion
Since our method requires setting the balancing parameter

λ, we chose it using cross validation (on the training set) by
letting λ take values in {10−4, 10−3, 10−2, 10−1, 1, 10, 102}.
This indirectly influences d, the optimal number of dimen-
sions the data should be projected to, since a small λ fa-
vors low-dimensionality (i.e., a λ close to zero practically
ignores the number of non-zero dimensions and concentrate
on just fitting the data). However, note that λ does not im-
ply dimensionality since the dimensionality depends on the
randomly built training set itself. This automatic choice
of dimensionality is a valuable property of the method pre-
sented, and to the best of our knowledge, it is not present
in the related methods (with the exception, to some degree,
of [1]).

Fig. 1 shows the average optimal number of dimensions
found by this process in a 10-fold cross validation exper-
iment and the corresponding one-standard-deviation error
bars. Note than in some cases the reduction is consider-
ably large, this reduction depends on the properties of the
dataset. The number of dimensions was identified by looking
at the number of rows in A different than ~0; no thresholding
was necessary.

Fig. 2 shows the percentage correct averaged over 10 ran-
dom splits of the data along with one-standard-deviation
bars. For each of the 10 splits, 1000 triples from the test
set are randomly chosen. When comparing the performance
of both methods, we note that, except for dataset 5, our
method clearly outperforms the competing approach. In-
terestingly, for this dataset, the optimal dimension was de-
termined to always (for all randomly chosen data splits) be
equal to the original dimensionality (four dimensions).

Since both methods can be seen as trying to learn a Maha-
lanobis distance so that distance constraints are satisfied, we
believe the main reason for a superior performance is related
to the possibility to discover projections into lower dimen-
sional spaces. The method presented in this paper always
attempt to reduce the dimensionality while the competing
method always use all the dimensions. Given the results
obtained, this reduction appears to provide an important
advantage at the time of generalization. It is generally ac-
cepted that a simpler model (i.e., one with less parameters)
is preferable (e.g., [3]) and it can reduce overfitting.

Regarding computational at training time. As expected,

Table 2: Benchmark Datasets
Name Points (N) Dimensions (D) Classes

1 Housing-Boston 506 13 2
2 Ionosphere 351 34 2
3 Iris 150 4 3
4 Wine 178 13 3
5 Balance Scale 625 4 3
6 Breast-Cancer Wisconsin 569 30 2
7 Soybean Small 47 35 4
8 Protein 116 20 6
9 Pima Diabetes 768 8 2

parameter search affects overall run-time (linearly). The
cost is proportional to the number of λ values explored.
Given λ, training time is comparable with [18]. In terms
of memory requirements, since the solution involves finding
a full (symmetric) matrix, the parameter space increases
quadratically with D.

From a computational efficiency perspective at test time,
being able to represent the original data more succinctly
is especially advantageous. In particular, when distances
can be calculated directly using a low dimensional repre-
sentation, computational time savings can be significant for
on-line applications. The projection step in this approach
can be precomputed off-line. In retrieval applications (e.g.,
query-by-example), the objects can be stored in their low
dimensional representation.

From a conceptual point of view, our approach also has the
advantage, over other methods, of providing a more effective
tool for understanding the data since it can identify whether
variables (dimensions) are of high or low relevance for a task
of interest.

6. CONCLUSIONS
We have developed a new approach for learning distance

functions from a set of relative distance relationships. An
important property of this approach is that it targets lower
dimensional representations, and the dimensionality is de-
termined automatically depending on the characteristics of
the dataset in question and a balancing parameter λ. A key
distinction is that, unlike a large number of dimensional-
ity reduction approaches, our approach does not attempt to
build an isometry or distance preserving mapping6, but to
respect the proximity relationships between pairs of points.
We believe this allows more freedom for finding lower di-
mensional representations.

We considered the general problem and then designed spe-
cific formulations, based on minimizing the norm of the rows
of a transformation matrix A, that allowed the use of ef-
ficient convex optimization algorithms. In particular, we
showed how the diagonal dominance constraint on B = A>A
leads to a general formulation that can be solved very effi-
ciently using linear programming methods.

Our approach can also be seen as a form of supervised
dimensionality reduction, where the supervision comes in
the form of distance rankings.

We note that another way to arrive at the formulation

6For example by minimizing distortion.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Dataset number

N
um

be
r

of
 d

im
en

si
on

s

Total #dims
Optimal #dims

Figure 1: Dimensionality reduction. Total number of di-

mensions and average number of dimensions (along with

one-standard-deviation error bars) found by our algo-

rithm for each dataset. Averages are computed over 10

random splits of training/test points, and 1500 triples

per run.

(10) is by noticing that Ak = ~0 ⇔ Bkk = 0, which also
justifies the second term of the chosen cost function.

The results from the experimental evaluation show that
our method can outperform state-of-the-art approaches in
terms of accuracy, and also provides the additional benefit
of finding low dimensional representations.

Being able to obtain a distance that depends on a rel-
atively small number of features permits to define kernels
and/or similarity matrices for classification that may de-
pend on an small number of features. For example, instead
of using the standard Gaussian kernel (µ is the Gaussian
kernel parameter):

(K(X, Y))ij = e−µ‖Xi
>−Yj‖

2

,

that depends on all the features, including irrelevant features
for classification, we could use a modified Gaussian kernel
as follows:

(K̄(X, Y))ij = e−µ‖A(Xi
>−Yj)‖2

,

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset number

%
 c

or
re

ct
 d

is
ta

nc
e

re
la

tio
ns

hi
p

(×
 1

00
)

Xing et al.
This method

Figure 2: Performance comparison between competing

approach and our approach in nine UCI datasets. Bars

show performance results on 10 random splits of train-

ing/test points. Performance is measured in terms of the

percentage of randomly chosen points (1000) from test

set whose distance relationship respect the class labels.

The number of triples used for training for all runs was

1500. Error bars show one standard deviation.

that would only depend on relevant features. This simple
but powerful change may increase classification performance
considerably and it is part of our future work.

Another idea worth exploring is the application of LP-
boost algorithms [2] to allow our method the handling of
datasets in very high dimensional spaces.

The approach followed in this paper have possible implica-
tions in other areas. Our results suggest that the technique
applied in this paper to approximate an SDP problem by a
linear programming problem (which is much easier to solve)
has the potential to be applied to other recently proposed
machine learning related problems involving SDP formula-
tions.

7. REFERENCES
[1] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios.

Boostmap: A method for efficient approximate
similarity rankings. In Computer Vision and Pattern
Recognition, 2004.

[2] K. P. Bennett, A. Demiriz, and J. Shawe-Taylor. A
column generation algorithm for boosting. In Proc.
17th International Conf. on Machine Learning, pages
65–72. Morgan Kaufmann, San Francisco, CA, 2000.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Occam’s razor. Information Processing
Letters, 24:377–380, 1987.

[4] P. S. Bradley and O. L. Mangasarian. Feature
selection via concave minimization and support vector
machines. In J. Shavlik, editor, Machine Learning
Proceedings of the Fifteenth International
Conference(ICML ’98), pages 82–90, San Francisco,
California, 1998. Morgan Kaufmann.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-
03.ps.

[5] T. Cox and M. Cox. Multidimensional Scaling.
Chapman & Hall, London, 1994.

[6] C. Faloutsos and K. Lin. Fastmap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. ACM SIGMOD,
pages 163–174, 1995.

[7] G. Fung, O. L. Mangasarian, and A. Smola. Minimal
kernel classifiers. Journal of Machine Learning
Research, pages 303–321, 2002. University of
Wisconsin Data Mining Institute Technical Report
00-08, November 200,
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-08.ps.

[8] G. H. Golub and C. F. Van Loan. Matrix
Computations. The John Hopkins University Press,
Baltimore, Maryland, 3rd edition, 1996.

[9] I. Jolliffe. Principal Component Analysis.
Springer-Verlag, New York, 1989.

[10] K.Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In International Conference on Machine
Learning, 2001.

[11] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[12] M. Schultz and T. Joachims. Learning a distance
metric from relative comparisons. In Advances in
Neural Information Processing Systems, 2003.

[13] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323,
2000.

[14] K. C. Toh, M. J. Todd, and R. Tutuncu. SDPT3 — a
Matlab software package for semidefinite
programming. Optimization Methods and Software,
11:545–581, 1999.

[15] W.Cohen, R.Schapire, and Y. Singer. Learning to
order things. In Advances in Neural Information
Processing Systems 10, 1998.

[16] K. Weinberger, J. Blitzer, and L. Saul. Distance
metric learning for large margin nearest neighbor
classification. In Advances in Neural Information
Processing Systems 18, 2006.

[17] K. Q. Weinberger, B. D. Packer, and L. K. Saul.
Unsupervised learning of image manifolds by
semidefinite programming. In Proceedings of the Tenth
International Workshop on Artificial Intelligence and
Statistics, Barbados, January 2005.

[18] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance
metric learning, with application to clustering with
side information. In Advances in Neural Information
Processing Systems, 2002.

